
FOR--
THE

. -
... II:II.EI 1:0Mll>IJTIII

MACHINE LANGUAGE PROGRAMMING

FOR THE '8 0 0 8'

(AND SIMILAR MICROCOMPUTERS)

Author:

Nat Wadsworth

© COPYRIGHT 1975
© COPYRIGHT 1976 - Revised

Scelbi Computer Consulting, Inc.
1322 Rear - Boston Post Road

Milford, Ct. 06460

ALL RIGHTS RESERVED

IMPORTANT NOTICE

Other than using the information detailed herein on the purchaser's individual
co mputer system, no part of this pUblication may be reproduced, transmitted,
stored in a retrieval system, or otherwise duplicated in any form, or by any
means, electronic , mechanical, photocopying, recording, or otherwise, without
the prior express written consent of the copyright owner.

The information in this publication has been carefully reviewed and is believed
to be entirely reliable. However, no responsibility is assumed for inaccuracies
or for the success or failure of various applications to which the information
herein might be applied.

MACHINE LANGUAGE PROGRAMMING

FOR THE'S a a S'

(AND SIMILAR MICROCOMPUTERS)

**************** *** ***** ******************

TABLE OF CONTENTS

******************************* **** *******

Chapter ONE

Chapter TWO

Chapter THREE

Chapter FOUR

Chapter FIVE

Chapter SIX

Chapter SEVEN

Chapter EIGHT

Chapter NINE

Chapter TEN

Introduction

The 'SOOS' CPU Instruction Set

Initial Steps for Developing Programs

Fundamental Programming Skills

Basic Programming Techniques

Mathematical Operations

U sing Memory Space Effectively

Input/Output Programming

Real-time Programming

PROM Programming Co nsiderations

Creative Programming Concepts

INTRODUCTION

This manual is about machine language
programming methods and techniques for the
'8008 ' and similar microprocessors. Machine
language programming is the most fundamen-
tal type of computer programming possible.
It is by far the most efficien t method, in
terms of utilization of the machine 's .capa-
cabilities, with which to program or set up a
microcomputer to perform a task. Machine
language programming is, on the other hand,
the most demanding method of computer
programming in terms of human endeavor
and skill. However, the fundamental skills
and techniques necessary for machine lan-
guage programming can be applied to vir-
tually any level of computer programming.
A clear understanding of machine language
programming will give one great insight into
higher level language programming.

Machine language programming is the
actual step-by-step programming of the
computer using the machine codes and
memory addresses that arc used by the
computer directly. It is considerably more
detailed than programming in a high level
language such as FORTRAN or BASIC.
It is the level of programming from which
those high level languages must be developed.
In fact, if one learns how to develop programs
in machine language , one will have the basic
skills necessary for developing higher level
languages. (That is a tremendous asset over
one who only knows how to program using
higher level languages.)

The pri mary reason for having a manual
devoted to machine language programming
for microprocessors is because th is method
is by far the most efficient method for
packing a program into a small amount of
memory. As user's know, memory e lements
cost a good amount of money. The more
one can program into a given amount of
memory. the less memory required for a
given task. Thus, the more one can do with
a low cost machine. High level languages
require much more memory because of two

I- I

major reasons. First, a large amount of
memory must be used by the high level
language itself. Second, higher level languages
must convert user statements or commands
to machine language codes. They generally
cannot do this any where near as efficiently
(memory usage wise) as a trained human
programmer.

Another reason for discussing machine
language programming at length is because
it is the only method whereby many capa-
bilities of the machine can be efficiently
utilized. This is particularly true for " real-
time" and 1/0 operations. Many users will
want to utilize their microprocessors for
unique applications . The contents of this
manual will present many ideas and concepts
for these people to apply to their individual
applications.

Machine language programming in general
is nowhere as difficult to learn as many
people might tend to think when first intro-
duced to the subject. This is especially true
for the '8008' type microprocessor. There
are many fundamental concepts that can be
readily learned. Once this has been accom-
plished th e novice is on the way to developing
original solutions to programming problems
that may be of special interest to the indivi-
dual.

Computer programming, and machine
language programming in particular, is in
many respects an art, and in other respects
a very rigid science. The fun part, and what
can be considered artistic, is that individUals
can tailor or fashion series of instructions
to accomplish a particular task in a variety of
ways. The scien tific part of programming
involves acquiring some basic skills and
knowledge about what can and cannot be
done. At a higher level this requires an under-
standing of basic mathematic algorithms
and procedures that can be readily applied
using computer techniques. Some of the basic
skills include knowing just what the available

machine instructions are, and some of the
most frequently used combinations of in-
structions that will perform frequently reo
quired tasks. These skills are as fundamental
as a painter knowing the primary colors and
how to combine t hem to create the common-
ly used secondary colors. However , like the
pain ter wh o combines the basic pigments,
beyond a certain point the task of computer
programming becomes a highly creative
individualistic art. It is an art in which o ne
can constantly gai n new skills and abili ty.
A high school student or a college professor
can both find equally rewarding challenges
in computer program ming. There are often
many differen t ways to program a computer
to perform a given task and many " trade·
offs" to consider when developing a program.
(Such as how much memory to use, what
functions have priority, and how much
burden to place on the human operator
when the program is operating.) Individuals
soon learn to capitalize on the aspects con-
sidered most important for the specific
applications at hand and to develop their
own personal meth ods for handling various
types of programming tasks .

Remember as you read this manual that
there are man y other ways of programming
a computer to perform many of the example
programs illustrated . Don 't be afraid to
develop your own solut ions. See if they work
as planned. Practice being a creative program-

1 - 2

mer' By the t ime you have completed ab-
sorbing a nd understandin g the co ntents of
this pu blication you should be well equipped
to develop programs of your own. You will
th us be in a posit ion to reap greater benefits
from your microprocessor than just being
able to operate programs that other people
have prepared.

The first chapter of this manual contains
a detai led presen tat;on of the instruction set
that the ' 8008' CPU is capable of performing.
It goes almost withou t saying, that the first
step towards becom ing a proficient machine
language programmer is to become thorough-
ly familiar with all the types of instructions
that the machine being ut il ized can execute.
One sh ould especially learn about any special
conditi ons that apply to the execution of
specific types of commands. The lead-off
chapter presents a comprehensive explanation
of all the instructions in the ' 8008' repertoi re
along with the mnemonics a nd machine
codes. The reader should become quite
familiar with the informat ion presented there
before going further in this manual. (At least
to the point where one can rapidly locate
any class o f instructions in the chapter in
order to refresh one's memory on just how an
instruction operates . Additionally , such fami-
liarity will enable one to be able to quickly
locate machine codes when one is preparing
the final version of a machine language
program')

THE '8008' CPU INSTR UCTION SET

The '8008' microprocessor has quit.p. ::l

comprehe nsive instruction set that consists
of 48 basic instructions, which, when the
possible permutations are considered, result
in a total set of about 170 instructions.

The instruction set allows the user to direct
the computer to perform operations with
memory. with the seven basic registers in the
CPU, and with INP UT and OUTPUT [lorts.

It should be pointed out that the seven
basic registers in the CPU co nsist of one
Haccumu lator ," a register that can perform
mathematical and logic operations, plus an
additional six registers, which, while not
having the fu ll capability of the accumulator,
can perform various useful operations. These
operations include the ability to hold data,
serve as an "operator" with the accumulator,
and increment or decrement their contents.
Two of these six registers have special sig-
nificance because they may be used to serve
as a "pointer" to locations in memory.

The seven CPU registers have arbitrarily
been given sy mbols so that we may refer to
them in an abbreviated language. The first
register is designated by the symbol ' A' in the
following discuss ion and will be referred to
as the "accumulator" regisLer. The next four
registers will be referred to as the 'B,' 'C,' 'D '
and ' E' registers. The remaining two spec ial
memory pointing registers shall be designated
the 'H' (for the HIGH portion of a memory
address) and the' L' (for the LOW portion of
a memory address) registers .

The CPU also has several " f1ip-nops" which
shall be referred to as "FLAGS." The f1ip-
flops are set as the result of certain operations
and are important because they can be "test-
ed" by many of the instructions with the in-
struction 's meanin g changing as a conse-
quence of the particular status of a FLAG at
the time the instruction is executed. There are
four basic flags wh ich will be referred to in
this manual. They are defined as follows:

The 'C' flag refers to the carry bit status. The carry bit is a one unit register which
change& state when the accumulator overflows or underflows. This bit can also be
set to a known condition by certain types of instructions. This is important to
remember when developing a program because quite often a program will have a
long string of instructions which do not utilize the carry bit or care about its status,
but which will be causing the carry bit to change iis state frum iilue-to-time. Thus,
when one prepares to do a series of operations that will rely on the carry bit, one
often desires to set the carry bit to a known state.

The 'Z' for zero flag refers to a one unit register that when desired will indicate
whether the value of the accumulator is exactly equal to zero. In addition, immed-
iately after an increment o f decrement of the B, C, D , E, H or L registers , this flag
will also indicate whether the increment or decrement caused that particular register
to go to zero.

The'S' fo r sign flag refers to a one unit register that indicates whether the value
in the accumulator is a positive or negative value (based on two's co mplement
nomenclature). Essentially, this flag monitors the most significant bit in the accumu-
lator and is "set" when it is a o ne .

The 'P' flag refers to the last fl ag in the group which is for indicating when the
accumulator contains a value which has even parity. Parity is useful for a number of

1 - 1

reasons and is usually used in conjunction with testing for error conditions on
words of data especially when transferring data to and from external devices. Even
parity occurs when the number of bits that are a logic one in the accumulator is an
even value. Zero is considered an even value for this purpose . Since there are eight
bits in the accumulator, even parity will occur when zero , two, four or six bits are in
the logic one condition regardless of what order they may appear in within the
register.

It is important to note that the Z, S, and
P flags (as well as the previously mentioned
C flag) can all be set to known states by
certain instructions . It is also important to
note that some instructions do not result
in the flags being set so that if the program-
mer desires to have the program make
decisions based on the status of flags, the
programmer should ensure that the proper
instruction, or sequence of instructions
is utilized. It is particularly important to
note that load register instructions do not
by themselves set the flags. Since it is often
desirable to obtain a data word (that is ,
load it into the accumulator) and test its
status for such parameters as whether or
not the value is zero, or a negative number,
and so forth, the programmer must remember
to follow a load instruction by a logical
instruction (such as the NDA - "and the
accumulator") in order to set the flags before
using an instruction that is conditional in
regards to a flag's status.

The description of the various types of
instructions available using an 'SOOS ' CPU
which follows will provide both the machine
language code for the instruction given as
three octal digits, and also a mnemonic name
suitable for writing programs in "symbolic"
type language which is usually easier than
trying to remember octal codes! It may be
noted that the symbolic language used is the
same . as that originally suggested by Intel
Corporation which developed the 'SOOS'
CPU-on-a-chip. Hence users who may already
be familiar with the suggested mnemonics
will not have any relearning problems and
those learning the mnemonics for the first
time will have plenty of good company .
If the programmer is not already aware of
it, the use of mnemonics facilitates working

1 - 2

with an "assembler" program when it is
desired to develop relatively large and
complex programs. Thus the programmer is
urged to concentrate on learning the
mnemonics for the instructions and not
waste time memorizing the octal codes. After
a program has been written using the
mnemonic codes, the programmer can always
use a lookup table to convert to the machine
code if an assembler program is not avail-
able. It's a lot easier technique (and less
subject to error) than trying to memorize
the 170 or so three digit combinations which
make up the machine instruction code set!

The programmer must also be aware, that
in this machine, some instructions require
more than one word in memory.
"Immediate" type commands require two
consecutive words . JUMP and CALL
commands require three consecutive words.
The remaining types only require one word.

The first group of instructions to be
presented are those that are used to load
data from one CPU register to another, or
from a CPU register to a word in memory ,
or vice-versa. This group of instructions
requires just one word of memory. It is
important to note that none of the
instructions in this group affect the flags.

LOAD DATA FROM ONE CPU REGISTER
TO ANOTHER CPU REGISTER

MNEMONIC

LAA
LBA

LAB

MACHINE CODE

300
310

301

The load register group of instructions
allows the programmer to move the con tents
of one CPU register into another CPU regis-
ter . The contents of the originating (fro m)
register is not changed. The contents of the
destination (to) register becomes the same as
the originat ing register. Any CPU register can
be loaded into any CPU register. Note that
loading register A into register A is essen-
tially a NO P (no operation) command. When
using mnemonics the load symbol is the letter
L follo wed by the "to" register apd then the
"from" register. The mnemonic LBA means
that the con tents of register A (the accumu-
lator) is to be loaded into register B. The
mnemonic LAB states that register B is to
have its con ten ts loaded in to register A.
It may be observed that th is basic instruc-
tion has many variations. The mach ine lan -
guage coding for this instruction is in the
same fo rmat as the mnemonic code except
that the letters used to represen t the registers
are replaced by numbers that the computer
can use. Using octal code, the seven CPU
registers are coded as follows:

Register A = 0
Register B = 1
Register C = 2
Register D = 3
Register E = 4
Register H = 5
Register L = 6

Also, since the machine can only utilize
numbers, the octal number '3' in the most
significant location of a word signifies that
the computer is to perform a "load"
tion. Thus, in machine coding, the instruc-
tion for loading register B with the contents
o f register A becomes '310' (in octal form).
Or, if one wanted to get very detailed, the
actual binary coding for the eight bits of
information in the instruct ion word would
be ' 11 001 000.' It is important to note
that the load instructions do not affect any
of the flags .

1 - 3

LOAD DATA FROM ANY CPU REGISTER
TO A LOCATIO N IN MEMORY

LMA
LMB
LMC
LMD
LME
LMH
LML

370
371
372
373
374
375
376

This instruction is very similar to the
previous group of instructio ns except that
now the contents of a CPU register will be
loaded in to a specified memory location . The
memory location that will receive the con-
tents of the particular CPU register is that
whose address is specified by the conten ts of
the CPU Hand L registers at the time the in-
struction is executed. The H CPU register
spec ifies the HIGH portion of the address
desired, and the L CPU register specifies the
LOW portion of the address into which data
from the selected CPU register is to be loaded.
Note that there are seven different instruc-
tions in this group. Any CPU register can have

contents loaded into any location in mem·
ory. This group of instructions does not
affect any of the flags .

LOAD DATA FROM A MEMORY
LOCATION TO ANY CPU REGISTER

LAM
LBM
LCM
LDM
LEM
LHM
LLM

307
317
327
337
347
357
367

This group of instructions can be consid-
ered the opposite of the previous group .
Now, the contents of the word in memory
whose address is specified by the H (for
HIGH portion of the address) and L (LOW
portion of the address) registers will be
loaded into the CPU register specified by the
instruction. Once again, this group of in-
structions has no affect on the status of the
flags.

LOAD IMMEDIATE DATA INTO A
CPU REGISTER

LAI
LBI
LCI
LDI
LEI
LHI
LLI

006
016
026
036
046
056
066

An IMMEDIATE type of instruction
requires two words in order to be complet-
ely specified. The first word is the instruc-
tion itself. The second word, or " immed-
iately fo llowing" word, must contain the
data upon which "immediate" action is
taken. Thus, a load IMMEDIATE instruc-
tion in this group means that the contents
of the word immediately following the in-
struction wo rd is to be loaded into the speci-
fied register. For example, a typical load im-
mediate instruction would be LAI 001.
This would result in the value 001 (octal)
being placed in the A register when the in-
struction was executed. It is important to
remember that all IMMEDIATE type in-
structions MUST be followed by a data word.
An instruction such as LDI by itself would
result in improper operation because the
computer would assume the next word con-
tained data . If the programmer had mistaken-
ly left out the data word, and in its place had
another instruction, the computer would not
realize the operator's mistake. Hence the pro-
gram would be fouled-up' Note too, that the
load immediate group of instructions does not
affect the flags .

LOAD IMMEDIATE DATA INTO A
MEMORY LOCATION

LMI 076

This instruction is essentially the same as
the load immediate into the CPU register
group except that now, using the contents of
the Hand L registers as " pointers" to the de-
sired address in memory, the contents of the
"immediately following word" will be p laced
in the memory location specified. This in -

1 - 4

struction does not affect the status of the
flags.

The above rather large group of LOAD in-
structions permits the programmer to direct
the computer to move data about. They
are used to bring in data from memory where
it can be operated on by the CPU. Or, to
temporarily store intermediate results in the
CPU registers during complicated and ex·
tended calculations, and of course allow data,
such as results, to be placed back into mem-
ory for long term storage . Since none of them
will alter the contents of the four CPU flags,
these instructions can be called upon to set
up data before instructions that may affect
or utilize the flag's status are executed. The
programmer will use instructions from this
set frequently. The mnemonic names for the
instructions are easy to remem ber as they are
well ordered. The most important it"m to
remember about the mnemonics is that the
TO register is always indicated firs t in the
mnemonic, and then the FROM register.
Thus LBA equals "load TO register B FROM
register A.

INCREMENT THE V ALUE OF A
CPU REGISTER BY ONE

INB
INC
IND
INE
INH
INL

010
020
030
040
050
060

This group of instructions allows the pro·
grammer to add one to the present value of
any of the CPU registers except the accumu-
lator. (Note carefully that the accumulator
can NOT be incremented by this type of in·
struction. In order to add one to the accumu·
lator a mathematical addition instruction ,
described Illter , must be used.) This instruc·
tion for incrementing the defined CPU regi·
sters is very valuable in a number of appli-
cations. For one thing, it is an easy way to
have the L register successively "point" to a
string of locations in memory. A feature that
makes this type of instruction even more

powerful is that the result of the incremented
register will affect the Z, S, 'and P flags . (It
will not change the C or "carry"flag.) Thus,
after a CPU register has been incremented by
this instruction, one can utilize a flag test in-
struction (such as the conditional JUMP and
CALL instructions to be described later) to
determine whether that particular register has
a value of zero (Z flag) . or if it is a negative
number (S flag) , or even parity (P flag). It is
import ant to note that this group of instruc-
tions, and the decrement group (described in
the next paragraph) are the on ly instructions
which allow the flags to be manipulated by
operations that are not concerned with the
accumulator (A) register.

DECREMENT THE VALUE 0[<' A
CPU REGISTER BY ONE

DCB
DCC
DCD
DCE
DCH
DCL

Oll
021
031
041
051
061

The DECREMENT group of instructions
is simi lar to the INCREMENT group except
that now the value one will be subtracted
fro m the speci fi ed CPU register. This in-
struction will not affect the C flag. But , it
does affect the Z, S, and P flags. It should
also be noted that this group, as with the
increment group, does not include the
accumulator register. A separate mathemat-
ical instruction must be used to subtract one
from the accumulator.

ARITHMETIC INSTRUCTIONS USING THE
ACCUMULATOR

The fo llowing group of instructions allow
the programmer to direct the computer to
perform arithmetic operations between other
CPU registers and the accumulator, or be-
tween the contents of words in memory and
the accumulator. All of the operations for the
described addition, subtraction, and compare
instructions affect the status of the flags .

1 - 5

ADD THE CONTENTS OF A CPU
REGISTER TO THE ACCUMULATOR

ADA
ADB
ADC
ADD
ADE
ADH
ADL

200
201
202
203
204
205
206

This group of instructions will simply ADD
the present contents of the accumulator
register to the present value of the speci-
fied CPU register and leave the result in the
accumulator . The value of the specified
register is unchan ged except in the case of
the ADA instruction. Note that the ADA
instruction essentially allows the program-
mer to double the value of the accumulator
(which is the A register)! If the addition
causes an overflow or underflow then the
carry (C flag) will be affected.

ADD THE CONTENTS OF A CPU
REGISTER PLUS THE VALUE OF THE

CARRY FLAG TO THE ACCUMULATOR

ACA 210
ACB 2ll
ACC 212
ACD 213
ACE 214
ACH 215
ACL 216

This group is identical to the previous
group except that the content of the carry
flag is considered as an additional bit (MSB)
in the specified CPU register. The combined
value of the carry bit plus the contents of the
specified CPU register are added to the value
in the accumulator. The results are left in the
accumulator . Again, with the exception of
the ACA instruction, the contents of the
specified CPU register are left unchanged.
Again too, the carry bit (C flag) will be

affected by the results of the operation.

SUBTRACT THE CONTENTS OF A CPU
REGISTER FROM THE ACCUMULATOR

SUA
SUB
SUC
SUD
SUE
SUH
SUL

220
221
222
223
224
225
226

This group of instructions will cause the
present value of the specified CPU register to
be subtracted from the value in the accumu-
lator . The value of the specified register is not
changed except in the case of the SUA in-
struction. (Note that the SUA instruction
is a convenient instruction with which to
"clear" the accumulator.) The carry flag
will be affected by the results of a
SUBTRACT instruction .

SUBTRACT THE CONTENTS OF A CPU
REGISTER AND THE V ALUE OF THE

CARR Y FLAG FROM THE
ACCUMULATOR

SBA
SBB
SBC
SBD
SBE
SBH
SBL

230
231
232
233
234
235
236

This group is identical to the previous
group except that the content of the carry
flag is considered as an additional bit (MSB)
in the specified CPU register. The combined
value of the carry bit plus the contents of the
specified CPU register are SUBTRACTED
from the value in the accumulator. The re-
sults are left in the accumulator. The carry
bit (C flag) is affected by the result of the
operation . With the exception of the SBA
instruction the content of the specified CPU
register is left unchanged.

1 - 6

COMPARE THE V ALUE IN THE
ACCUMULATOR AGAINST THE

CONTENTS OF A CPU REGISTER

CPA
CPB
CPC
CPD
CPE
CPH
CPL

270
271
272
273
274
275
276

The COMPARE group of instructions
are a very powerful and somewhat unique
set of instructions. They direct the com-
puter to compare the contents of the
accumulator against another register and to
set the flags as a result of the comparing
operation. It is essentially a subtraction
operation with the value of the specified
register being subtracted from the value of
the accumulator except that the value of the
accumulator is not actually altered by the
operation. However, the flags are set in the
same manner as though an actual subtrac-
tion operation had occured . Thus, by sub-
sequently testing the status of the various
flags after a COMPARE instruction has been
executed, the program can determine whether
the compare operation resulted in a match or
non-match. In the case of a non-match, one
may determine if the compared register con-
tained a value greater or less than that in the
accumulator . This would be accomplished by
testing the Z flag and C flag respectively
utilizing a conditional JUMP or CALL in-
struction (which will be described later).

ADDITION, SUBTRACTION, AND
COMPARE INSTRUCTIONS THAT USE
WORDS IN MEMORY AS OPERANDS

The five types of mathematical operations:
ADD, ADD with CARRY, SUBTRACT,
SUBTRACT. with CARRY , and COMPARE ,
which have just been presented for the cases
where they operate with the contents of CPU
registers, can all be performed with words
that are in memory. As with the LOAD in-
structions that operate with memory, the H
and L registers must contain the address of

the word in memory that it is desired to
ADD , SUBTRACT, or COMPARE to the
accumulator . The same conditions for the
operations as was detailed when using the
CPU registers apply. Thus, for mathematical
operations with a word in memory, the fol-
lowing instructions are used.

ADD THE CONTENTS OF A MEMORY
WORD TO THE ACCUMULATOR

ADM 207

ADD THE CONTENTS OF A MEMORY
WORD PLUS THE VALUE OF THE

CARRY FLAG TO THE ACCUMULATOR

ACM 217

SUBTRACT THE CONTENTS OF A
MEMORY WORD FROM THE

ACCUMULATOR

SUM 227

SUBTRACT THE CONTENTS OF A
MEMOR Y WORD AND THE VALUE
OF THE CARRY FLAG FROM THE

ACCUMULATOR

SBM 237

COMPARE THE V ALUE IN THE
ACCUMULATOR AGAINST THE

CONTENTS OF A MEMORY WORD

CPM 277

IMMEDIATE TYPE ADDITIONS,
SUBTRACTIONS , AND COMPARE

INSTRUCTIONS

The five types of mathematical opera-
tions discussed above can also be performed
with the operand being the word of data

1 - 7

immediately after the instruction. This group
of instructions is similar in format to the
previously described LOAD IMMEDIATE
instructions. The same conditions for the
mathematical operations as discussed fo r the
operations with the CPU registers apply .

ADD IMMEDIATE

ADI 004

ADD WITH CARRY IMMEDIATE

ACI 014

SUBTRACT IMMEDIATE

SUI 024

SUBTRACT WITH CARRY IMMEDIATE

SBI 034

COMPARE IMMEDIATE

CPI 074

LOGICAL INSTRUCTIONS WITH THE
ACCUMULATOR

There are several groups of instructions
which allow BOOLEAN LOGIC operations to
be performed between the contents of the
CPU registers and the A (accumulator) regis-
ter. In addition there are logic IMMEDIATE
type instructions. The boolean logic opera-
tions are valuable in a number of program-
ming applications. The instruction set allows
three basic boolean operations to be per-
formed . These are: the LOGICAL AND, the
LOGICAL OR , and the EXCLUSIVE OR
operations. Each type of logic operation is
performed on a bit-by-bit basis between the
accumulator and the CPU register or memory
location specified by the instruction. A de-

tailed explanation of each type of logic
operation , and the appropriate instructions
for each type is presented below. The logic
instruction set is also valuable because all of
them will cause the C (carry) flag to be placed
in the zero condition. This is important if
one is go ing to per form a sequence of in-
stru ctio ns that will eventual ly use the status
of the C flag to arrive at a decision as it
allows the programmer to set th e C flag to
a known state at the start of the sequence.
All other flags are set in accordance with the
result of the logic operation. Hence , the group
often has value when the programmer desires
to determ ine the contents of a register that
has just been loaded in to a register. (Since
the load instru ctions do not alter the fl ags.)

THE BOOLEAN 'AND ' OPERATION
INSTRUCTION SET

When the boolean AND instruction is ex-
ecuted, each bit of the accum ulator will be
compared with the corresponding bit in the
register or memory location specified by the
instruction . As each bi t is compared a logic
resu lt will be placed in the acc umulator for
each bit comparison. The logi c result is de-
termined as follows. If both the bit in the
accumulator and the bit in the register with
which the operation is being performed are a
logic one, then the accumulator bit will be
left in the logic one condi tion. For all other
possible combinations (A bit eq uals one, X
bit equals zero; A bit equals zero, X bit eq uals
one; or A bit equals zero, X bit equals zero),
then the accumulator bit will be cleared to
the zero state . An examp le will illustrate the
logical AND operation .

INITIAL STATE OF THE ACCUMULATOR

101010 10

CONTENTS OF OPERAND REGISTER

11001100

FI NAL STATE OF THE ACCUMULATOR

10001 000

1 - 8

There are seven logical AND instructions
that allow any CPU register to be used as the
AND operand . They are as follows.

NDA
NDB
NDC
NDD
NDE
NOH
ND L

240
241
242
243
244
245
246

The conten ts of the operand register is
not altered by an AN D logical instruction.

There is also a logical AND instru ction
that allows a word in memory to be used as
an operand. The address of the word in mem-
ory that will be used is pointed to by the con-
tents of the H and L CPU registers.

NOM 247

And finally there is also a logical AND
IMMEDIATE type of instruction that will use
the contents of the word immediately follow-
ing the instruction as the operand.

NDI 044

The next group of boolean logic instruc-
tions direct the computer to perform the
logical OR operation on a bit-by-bi t basis
with the accumulator and the contents of a
CPU register or a word in memory . The
logical OR operation will resul t in the
accumulator havi ng a bit set to a logic one if
either that bit in the accumulator, or the
corresponding bit in the ope rand register is
a logic o ne. Since the case where both the
accumulator . bit and operand bi t are a one
also satisfies the cri teria, that condi tion will
also result in the accumulator bit being left
in the one state. If neither register has a logic
one in the bit position, then the accumulator
bit for that position remains in the zero
state . An example illustrates the results of

a logical OR operation.

INITIAL STATE OF THE ACCUMULATOR

10101010

CONTENT OF THE OPERAND REGISTER

11001100

FINAL STATE OF THE ACCUMULATOR

11101110

There are seven logical OR instructions
that allow any CPU register to be used as
the OR operand.

ORA
ORB
ORC
ORD
ORE
ORH
ORL

260
261
262
263
264
265
266

By using the Hand L registers as pointers
one can also use a word in memory as an 0 R
operand.

ORM 267

There is also the logical OR IMMEDIATE
instruction .

ORI 064

As with the logical AND group of instruc·
tions, the logical OR instruction does not
alter the contents of the operand register.

The last group of boolean logic instruc·
tions is a variation of the logic OR. The
variation is termed the EXCLUSIVE OR
logical operation. The EXCLUSIVE OR oper·

1 ·9

ation is similar to the 0 R except that when
the corresponding bits in both the accumu·
lator and the operand register are a one then
the accumulator bit will be cleared to zero.
Thus, the accumulator bit will be a one after
t.he operation only if just one of the registers
(accumulator register or operand register) has
a one in the bit position. (Again, the opera·
tion is performed on a bit·by·bit basis.) An
example provides clarification .

INITIAL STATE OF THE ACCUMULATOR

10101010

CONTENTS OF THE OPERAND REGISTER

11001100

FINAL STATE OF THE ACCUMULATOR

01100110

The seven instructions that allow the CPU
registers to be used as operands are shown
next.

XRA
XRB
XRC
XRD
XRE
XRH
XRL

250
251
252
253
254
255
256

The instruction that uses registers Hand L
as pointers to a memory location is:

XRM 257

And the EXCLUSIVE OR IMMEDIATE
type instruction is:

XRI 054

As in the case of the logical OR operation,
the operand register is not altered except for
the special case when the XRA instruction is
used. This instruction, which directs the com-
puter to EXCLUSIVE OR the accumulator
with itself, will cause the operand register,
since it is the accumulator, to have its con-
tents altered (unless it should happen to be
zero at the time the instruction is executed).
This is because, regardless of what value is in
the accumulator, if it is EXCLUSIVE OR'ed
with itself, the result will be zero! The
example below illustrates the specific
operation.

ORIGINAL VALUE OF ACCUMULATOR

10101010

EXCLUSIVE OR'ed WITH ITSELF

10101010

FINAL VALUE OF ACCUMULATOR

00000000

This only occurs when the logical
EXCLUSIVE OR is performed on the
accumulator itself. It can be shown that
the results of performing the logical OR or
logical AND between the accumulator and
itself will result in the original accumulator
value being retained.

INSTRUCTIONS FOR ROTATING THE
CONTENTS OF THE ACCUMULATOR

It is often desirable to be able to shift the
contents of the accumulator either right or
left . In a fixed length register, a simple shift
operation would result in some information
being lost because what was in the MSB or
LSB (depending on in which direction the
shift occured) would be shifted right out of

1 - 10

the register' Therefore, instead of just shifting
the contents of a register, an operation
termed ROTATING is utilized. Now, instead
of just shifting a bit off the end of the regis-
ter , the bit is brought around to the other end
of the register. For instance, if the register is
rotated to the right, the LSB (least significant
bit) would be brought around to the position
of the MSB (most significant bit) which
would have been vacated by the shifting of
its original contents to the right. Or, in the
case of a shift to the left, the MSB would be
brought around to the position of the LSB.

The carry bit (C flag) can be considered as
an extension of th e accumulator register. The
instruction set for this machine allows two
t.ypes of ROT ATE instructions. One con-
siders the carry bit to be part of the accumu-
lator register for the rotate operation. The
other type does not. In addition, each type
of rotate can be done either to the right or to
the left .

It should be noted that the rotate opera-
tions are particularly valuable when it is de-
sired to multiply a number or divide a num-
ber. This is because shifting the contents of
a register to the left effectively multiplies
a binary number by a power of two. Shifting
a binary number to the right provides the
inverse

ROTATING THE ACCUMULATOR LEFT

RLC 002

Rotating th e accumulator left with the
RLC instruction means the MSB of the
accumulator will be brought around to the
LSB position and all other bits will be shift-
ed one position to the left. While this in-
struction does not shift through the carry
bit, the carry bit will be set by the status
of the MSB of the accumulator at the start
of the ROTATE LEFT operation. (This
feature allows the programmer to determine
what the MSB was prior to the shifting opera-
tion by testing the C flag after the rotate

instruction has been executed.

ROTATING THE ACCUMULATOR LEFT
THROUGH THE CARRY BIT

RAL 022

The RAL instruction will cause the MSB
of the accum ulator to go into the carry bit.
The initial value of the carry bit will be
shifted around to the LSB of the accumu-
lator. All other bits are shifted one position
to the left.

ROTATING THE ACCUMULATOR
RIGHT

RRC 012

The RRC instruction is simi lar to the
RLC instruction except that now the LSB of
the accumulator is placed in the MSB of the
accumulator . All other bits are shifted one
position to the right. Also, the carry bit
will be set to the initial value of the LSB of
the accumulator at the start of the operation.

ROTATING THE ACCUMULATOR RIGHT
THROUGH THE CARRY BIT

RAR 032

Here, the LSB of the accumulator is
brought around to the carry bit. The initial
value of the carry bit is shifted to the MSB of
the accumulator. All other bits are shifted a
position to the righ t.

It should be noted that the C flag is the
only flag that is altered by a rotate instruc-
tion. All other flags remain unchanged .

JUMP INSTRUCTIONS

The instructions discussed so far have all
been "direct action" instructions. The pro-
grammer arranges a sequence of these types
of instructions in memory. When the program
is started the computer proceeds to execute

1 -11

the instructions in the order in which they
are encountered. The computer automati-
cally reads the contents of a memory loca-
tion, executes the instruction it finds there,
and then automatically increments a special
address register called a PROGRAM
COUNTER that will result in the machine
reading the information contained in the
next sequential memory location. However,
it is often desirable to perform a series of
instructions located in one section of mem-
ory, and then skip over a group of memory
locations and start executing instructions in
another section of memory . This action can
be accomplished by a group of instructions
that will cause a new address valu.e to be
placed in the PROGRAM COUNTER. This
will cause the computer to go to a new sec-
tion of memory and then execute instruc-
tions sequentially from the new memory
location.

The JUMP instructions in this computer
add considerable power to the machine's
capabilities because there are a series of
"conditional" JUMP instructions available .
That is , the computer can be directed to
test the status of a particular FLAG (C, Z,
S or Pl. If the status of the flag is the de-
sired one, then a JUMP will be performed.
If it is not, the machine will continue to
execute the next instruction in the current
sequence. This capability provides a means
for the computer to make "decisions" and
to modify its operation as a function of the
status of the various flags at the time that a
program is being executed.

In a manner similar to IMMEDIATE types
of instructions, the JUMP instructions require
more than one word of memory. A JUMP in-
struction requires three words to be proper-
ly defined. (Remember that IMMEDIATE
type instructions required two words.) The
JUMP instruction itself is the first word. The
second word must contain the LOW
ADDRESS portion of the address of the word
in memory that the PROGRAM COUNTER is
to be set to point to, which is the new loca-
tion from which the next instruction is to be
fetched. The third word must contain the

HIGH ADDRESS (sometimes referred to as
the PAGE) of the memory address that the
program counter will be set to. That is, the
high order portion of the address in memory
that the computer will JUMP to in order to
obtain its next instruction.

THE UNCONDITIO NAL JUMP
INSTRUCTION

JMP 1X4

Note: The machine code 1X4 indicates that
any code for the second octal digit of the
machine code is valid. It is recommend ed as a
standard practice that the code '0' be used.
Thus, the typical machine code would be 104.

Remember , the JUMP instruction must be
followed by two more words which contain
the LOW, and then the HIGH (PAGE) portion
of the address that the program is to JUMP
to'

JUMP IF THE DESIGNATED FLAG
IS TRUE (CONDITIONAL JUMP)

JTC
JTZ
JTS
JTP

140
150
160
170

As with the UNCONDITIONAL JUMP
instruction, the CONDITIONAL JUMP in-
structions must be followed by two words of
information. The LOW portion, then the
HIGH portion, of the address that program
execution is to continue from if the jump is
executed. The JUMP IF TRUE group of in-
structions will only jump to the designated
address if the condition of the appropriate
flag is TRUE (logical one). Thus, the JTC
instruction states that if the carry flag (C) is
a logical one (TRUE) then the jump is to be
executed. If it is a logical zero (FALSE) then
program execution is to continue with the

1 - 12

next instruction in the current sequence of
instructions. In a similar manner the JTZ
instruction states that if the ZERO FLAG is
TRUE then the jump is to be performed.
Otherwise the next instructio n in the present
seq uence is executed. Likewise for the JTS
and JTP instructions.

JUMP IF THE DESIGNATED FLAG
IS FALSE (CONDITIONAL J UMP)

JFC
JFZ
JFS
JFP

100
110
120
130

As with all J UMP instructions these in-
structions must be followed by the LOW
address then the HIGH address of the mem-
ory location that program execution is to
continue from if the jump is executed. This
group of instructions is the opposite of the
jump if the flag is true group. For instance,
the JFC instruction commands the com-
puter to test the status of the carry (C) flag.
If the flag is FALSE (a logic zero), then the
jump is to be performed. If it is TRUE, then
program execution is to continue with the
next instruction in the current sequence of
instructions. The same procedure holds for
the JFZ, JFS and JFP instructions .

SUBROUTINE CALLING INSTRUCTIONS

Quite often when a programmer is develop-
ing computer programs the programmer will
find that a particular algorithm (sequence of
instructions for performin g a function) can be
used many times in different parts of the pro-
gram. Rather than having to keep entering the
same sequence of instructions at different
locations in memory , which would not o nly
consume the time of the programmer, but
would also result in a lo t of memory being
used to perform one particular function , it is
desirable to be able to be able to put an often

used sequence of commands in just one
location in memory. Then, whenever the par-
ticular algorithm is required by another part
of the program, it would be convenient to
jump to the section that contained the often
used algorithm, perform the sequence of in-
structions, and th en return back to the main
part of the program. This is a standard prac-
tice in computer operations. A frequently
used algorithm can be dpsignated a
SUBROUTINE. A special set of instruct io ns
allows the programmer to CALL a
SUBROUTINE. In o the r words, specify a
special type of JUMP command that will
eventually allow the program to RETURN
to the original "jumping" point in th e pro-
gram. A second type of instruction is used to
terminate a SUBROUTINE . This special
terminator will cause th e program to revert
back and pick up the next sequential in-
struction in memory that immediately fol-
lows the original CALLING instruction . A
great deal of computer power is provided by
the instruction set in this machine that allows
one to CALL and RETURN from SUB-
ROUTINES. This is because, in a manner
similar to that provided for the CONDI-
TION AL JUMP instructions, there are a
number of CONDITIONAL CALL and
CONDITIONAL RETURN commands in the
instruction set.

Like the JUMP instructions, the CALL in-
structions all require three words in order to
be fully specified. The first word is the CALL
instruction itself. The next two words must
contain the LOW and HIGH portions of the
starting address of the subroutine that is
being "called."

When a CALL instruction is encountered
by the computer, the CPU will actually save
the current value of the PROGRAM COUNT-
ER by storing it in a special PROGRAM
COUNTER PUSH-DOWN STACK. This
stack is capable of holding six addresses plus
the current operating address. What this
means is that the machine is capable of
"nesting" up to seven subroutines at one
time. Thus , one can have a subroutine, that
in turn calls another subroutine, that in turn

1 - 13

calls another one, up to seven levels, and the
machine will still be able to return to the
initial calling location . The programmer must
ensure that subroutines are not nested more
than seven levels otherwise the P ROG RAM
COUNTER PUSH-DOWN STACK will push
the original calling addressees) completely out
of the push-down stack. The program could
th en no longer automatically return to the
initial calling location.

The RETURN instruction which termi-
nates a SUBROUTINE only requires one
word. When the CPU encounters a RETURN
instruction it causes the PROGRAM COUNT-
ER PUSH-DOWN STACK to " pop" up one
level. This effectively causes the address saved
in the stack by the calling routine to be taken
as the new program counter. Hence , program
execution returns to the calling location .

THE UNCONDITIONAL CALL
INSTRUCTION

CAL 1X6

This instruction followed by two words
containing the LOW and then the HIGH order
of the starting address of the SUBROUTINE
that is to be executed is an UNCONDITION-
AL CALL. The subroutine will be executed
regardless of the status of the FLAGS. The
next sequential address after the CAL in-
struction is saved in the PROGRAM COUNT-
ER PUSH-DOWN STACK.

THE UNCONDITIONAL RETURN
INSTRUCTION

RET OX7

This instruction directs the CPU
to unconditionally "pop" the program
counter push-down stack UP one level.
Program execution will continue from
the address saved by the subroutine
calling instruction.

CALL A SUBROUTINE IF THE
DESIGNATED FLAG IS TRUE

CTC
CTZ
CTS
CTP

142
152
162
172

In a manner similar to the conditional
JUMP IF TRUE instructions, these instruc-
tions (which must all be followed by the
LOW and HIGH portions of the called sub-
routine's starting address) will only perform
the "call" if the designated flag is in the
TRUE (logical one) state. If the designated
flag is FALSE then the CALL instruction is
ignored. Program execution then continues
with the next sequential instruction.

RETURN FROM A SUBROUTINE IF THE
DESIGNATED FLAG IS TRUE

RTC
RTZ
RTS
RTP

043
053
063
073

These one word instructions will cause a
SUBROUTINE to be TERMINATED only if
the designated flag is in the logical one
(TRUE) state.

CALL A SUBROUTINE IF THE
DESIGNATED FLAG IS FALSE

CFC
CFZ
CFS
CFP

102
112
122
132

These instructions are the opposit of the
previous group of calling commands . The sub-
routine is called only if the designated flag

1 - 14

is in tbe FALSE (logical zero) condition.
Remember, these instructions must be fol-
lowed by two words which contain the
LOW and HIGH part of the starting address
of the SUBROUTINE that is to be executed
if the designated flag is FALSE. If the flag
is TRUE, the subroutine will not be called
and program operation will continue with
the next instruction in the current sequence.

RETURN FROM A SUBROUTINE IF THE
DESIGNATED FLAG IS FALSE

RFC
RFZ
RFS
RFP

003
013
023
033

These one word instructions will termi-
nate a subroutine ("pop" the program count-
er stack UP one level) if the designated flag
is FALSE. Otherwise, the instruction is ig-
nored and program operation is continued
with the next instruction in the subroutine.

THE SPECIAL RESTART SUBROUTINE
CALL INSTRUCTIONS

There is a special purpose instruction avail-
able that effectively serves as a one word
SUBROUTINE CALL. (Remember that it
normally requires three words to specify a
subroutine call.) This special instruction
allows the programmer to call a subroutine
that starts at anyone of eight specially
designated memory locations. The eight
special memory locations are at locations:
000, 010, 020 , 030, 040, 050, 060 and 070
on page zero. There are eight variations of the
machine code for the REST AR T instruction.
One for each of the above addresses. Thus,
the one word instruction can serve to CALL a
SUBROUTINE at the specified starting loca-
tion (instead of having two additional words
to specify the starting address of a sub-
routine). It is often convenient to utilize a

RESTART command as a quick CALL to an
often used subroutine. Or, as an easy way to
call short "starting" subroutines for large pro-
grams . Hence. the name for the type of in-
struction. The eight RESTART instructions ,
in their mnemonic and machine code forms,
along with the starting address associated with
each one is listed below.

RST 0
RST 1
RST 2
RST 3
RST 4
RST 5
RST 6
RST 7

005
015
025
035
045
055
065
075

00000
00010
00020
00030
00040
00050
00060
00070

INPUT INSTRUCTIONS

In order to receive information from an ex-
ternal device the computer must utilize a
group of special signal lines. The typical
'8008' computer is designed to handle up to
eight groups (each group having eight signal
lines) of INPUT signals. A group of signals is
accepted at the computer by what is referred
to as an INPUT PORT. The computer con-
trols the operation of the INPUT PORTS.
Under program control, the computer can be
directed to obtain the information that is on a
group of lines coming in to any INPUT
PORT. When this is done the information
will be transferred to the accumulator.
Various types o f external equipment, such as
an electronic keyboard or measuring instru-
ments , can be connected to the INPUT
PORTS. The INP UT PORTS are typically re-
ferred to as having numbers from '0' to ' 7.'
The typ ical mnemonics and machine codes
for INPUT instructions are shown next.

INP 0
INP 1

INP 6
INP 7

101
103

115
117

1 - 15

It may be interesting to note that the
machine codes for input ports increase by a
factor of two for each port. Note too, that
while the mnemonic fo r an input instruction
has two parts, the machine code only requires
one word in memory. It is also important to
realize that while an input instruction brings
data into the accumulator it does not affect
the status of any of the CPU flags!

OUTPUT INSTRUCTIONS

In o rde r to output information to an ex-
ternal device the computer utilizes another
group of signal lines which are referred to as
OUTPUT PORTS. A Typical '8008 ' system
may be equipped to service up to twenty-four
OUTPUT PORTS. (Each OUTPUT PORT ac-
tually consists of eight signal lines.) An
OUTPUT instruction causes the contents of
the accumulator to be transferred to the sig-
nal lines of the designated OUTPUT PORT.
The output ports are normally designated by
octal numbers in the range 10 to 37. The list
below shows the typical mnemonics used to
specify an OUTPUT PORT along with the
associated machine code. (It may be
interesting to note again that the machine
code increases by a factor of two for each
port.)

OUT 10
OUT 11

OUT 21

OUT 36
OUT 37

121
123

141

175
177

An OUTPUT instruction only requires one
machine code word (even though the mne-
monic is typically specified in two parts).
OUTPUT PORTS are connected to external
devices that one desires to have the com pu ter
transmit information to, such as a CRT dis-
play, or machinery that is to be placed under
computer control.

THE HALT INSTRUCTION

There is one more instruction in the
'8008 ' instruction set. This instruction
directs the CPU to stop all operations and
to remain in that state until an INTERRUPT
signal is received. In a typical '8008' system
an INTERRUPT signal may be generated by
an operator pressing a switch or by an exter-
nal piece of equipmen t se nding an elec-
tronic signal to the CPU. This instruction
is normally used when the programmer

desires to terminate a program or when it
is desired to have the computer wait for an
operator or external device to perform some
action. There are three machine codes that
may be used for the HALT command.

HLT
HLT
HLT

000
001
377

The HALT instruction does not affect
the status of the CPU flags.

INFORMATION ON INSTRUCTION EXECUTION TIMES

When programming fo r "real-time" appli-
cations it is important to know how much
time each type of instruction requires to be
executed. With this information the pro-
grammer can develop "timing loops" or de-
termine with substantual accuracy how much
time it will take to perform a particular series
of instructions. This information is espec-
ially valuable when dealing with programs
that control the operations of external
devices which might require events to occur
at specific times.

The following table provides the nominal
instruction execution time for each cate-
gory of instruction used in an '8008' system.
The precise time needed for each instruction

depends on how close the master clock has
been set to a nominal value of 500 kilo-
hertz. The table shows the number of cycle
states required by t he type of instruction
followed by the nominal time required to
perform the entire instruction. Since each
state executes in four microseconds, the
total t ime required to perform the instruc-
tion as shown in the table was obtained by
multiplying the number of states by four
microseconds. By knowing the number of
states required for each instruction the pro-
grammer can often rearrange an algorithm
or substitute different types of instructions
to provide programs that have events occur-
ing at precisely timed intervals .

INSTR UCTION EXECUTION TIME TABLE

LOAD DATA FROM A CPU REGISTER TO ANOTHER CPU REGISTER 5 20 Us

LOAD DATA FROM A CPU REGISTER TO A LOCATION IN MEMORY 7 28

LOAD DATA FROM MEMORY TO A CPU REGISTER 8 32

LOAD IMMEDIATE DATA INTO A CPU REGISTER 8 32

LOAD IMMEDIATE DATA INTO A LOCATION IN MEMORY 9 36

1 - 16

INSTRUCTION EXECUTION TIME TABLE (CONCLUDED)

INCREMENT OR DECREMENT A CPU REGISTER 5 20 Us.

ARITHMETIC/COMPARE BETWEEN ACCUMULATOR & A CPU REGISTER 5 20

ARITH/COMPARE BETWEEN ACCUMULATOR & A WORD IN MEMORY 8 32

IMMEDIATE ARITHMETIC AND COMPARE 8 32

BOOLEAN OPS BETWEEN ACCUMULATOR AND CPU REGISTERS 5 20

BOOLEAN OPS WITH ACCUMULATOR & A WORD IN MEMORY 8 32

IMMEDIATE BOOLEAN OPERATIONS 8 20

ROTATE THE ACCUMULATOR 5 20

JUMP AND CALL COMMANDS (UNCONDITIONAL) 11 44

JUMP/CALLS WHEN CONDITION NOT SATISFIED (CONDITIONAL) 9 36

JUMP/CALLS WHEN CONDITION SATISFIED (CONDITIONAL) 11 44

RETURN (UNCONDITIONAL) 5 20

RETURN WHEN CONDITION NOT SATISFIED (CONDITIONAL) 3 12

RETURN WHEN CONDITION SATISFIED (CONDITIONAL) 5 20

RESTART COMMAND 5 20

OUTPUT COMMAND 6 24

INPUT COMMAND 8 32

HALT COMMAND 4 16

1 - 17

INITIAL STEPS FOR DEVELOPING PROGRAMS

The first task that should be done prior
to starting to write the individual instruc-
tions for a computer program is to decide
exactly what it is that the computer is to
perform and to write the goal(s) down on
paper! This statement might seem unneces-
sary to some because it is such an obvious
one. It is stated because the majority of
people learning to develop programs will
realize its significance when they discover,
halfway through the writing of a large mach-
ine language program, that they left out a
vital step. Such an error can typically result
in the programmer having to start back at
the beginning and rewrite the entire pro-
gram. The practice of writing down just
what tasks a particular program is to perform
and the steps in which they are to be done ,
will save a lot of work in the long run. The
written description should be as complete
and detailed as necessary to ensure that
exactly each step of the program will be
clear when actually writing the program in
machine language. It is generally wise for
the novice programmer to take pains to be
quite detailed in the initial description.

The act of actually writing down the
proposed operation of the program desired
serves several valuable purposes . First, it
forces one to carefully review what is
planned. In doing so, it often vividly
reveals flaws In original mental ideas .
Secondly, it serves as a guide and a check
list as the machine language program is
developed. Remember, it will often take
a number of hours to write a fair sized
program. These hours might be spread over
several days or weeks. In this period of time
the human mind can easily forget original
intentions and plans if the human memory
is not refreshed by written notes. A pro-
gram that is not kept carefully organized
as it is developed can become a real mess .
This is especially so if one keeps forget-
ting key concepts or has to constantly
add in forgotten routines. The time wasted
by such sloppy procedures can be avoided

2 - 1

if proper work habits are developed from
the beginning.

Once one has written a description of
the general task(s) to he performed, and
has ascertained that there are no flaws to
the overall concepts or ideas, it is a good
idea to draw up a set of FLOW CHARTS
for the proposed program . FLOW CHARTS
are detailed written and symbolic descrip-
tive diagrams of the flow of operations
that are to occur as t he program is executed .
They also show the interrelationships he-
tween different portions of a program.

Over the years a variety of symbols and
methods have been developed for creating
flow charts. All of the varieties have the same
basic purpose and most of the differences are
the result of individuals pushing their own
preferences. Most people can do admirably
well using just a few basic symbols to denote
fundamental types of operations in a com-
puter program. The small group to be pre-
sented here will enable most microcomputer
programmers to develop flow charts rapidly,
with little confusion, and without having to
learn a host of special symbols.

A CIRCLE may be used as a general
purpose symbol to specify an entry or exit
point in a routine or subroutine. Information
may be printed inside the circle. This in-
formation might denote where the routine
is corning from or going to (such as the page
number and location on a page for a program
that requires several sheets of paper to be
flow charted) . It might contain transfer
information . Or, it could denote the starting
and stopping points within a program . Some
typical examples· of the CIRCLE symbol
are illustrated next .

r:::\
'0
(;;\ v
G
8

A square or rectangel may be used to
denote a general or specific operation. The
ty pe of operation may be described inside the
box such as illustrated in the follow ing
examples.

J CLEAR THE ACCUMULATOR J

STORE THE
INCOMING
MESSAGE

SET
I/O

FLAGS

A diamond form may be used to symbolize
a decision or branching point in a program.
The determining factor(s) for the decision or

2-2

branching operation may be indicated inside
the symbol. The two sid e points of the
diamond are used to illustrate t he path
taken when a decision has been made. The
diamond symbol is illustrated next .

NO

NO

IS
X > Y

INFO
READY?

YES

YES

Lines with arrows may be used to inter-
connect the three types of symbols pre-
sented. In thi s way, the symbols may be
connected to form readily understood FLOW
CHARTS of operations that are to occur
in a program and to show how various
operations relate to each other. Flow charts
are extremely valuable references when
developing programs as well as when one
wants to update o r expand a program and
needs to quickly review t he operatio n of the
program of specific interest.

An example of a fl o w chart for a relatively
simple program will be sho wn next. The pro-
gram illustrated by the fl o w chart is to accept
characters from an ASCII encoded electric
typewriter and send out the equivalent
character to a BAUDOT cod ed device. In
this illustration it is assumed that the I/O
interfaces to the machines are parallel inter-
faces (versus the possibility of being bit-
serial interfaces). Thus, complex timing
operations do not have to be discussed in
the example . A written description of the
example program could be stated as follows .

The computer is to mo nitor bit B7 of
INPUT PORT 01 , which is the control port

fo r an interface to an ASCII encoded elec-
tric typewriter_ Whenever bit B7 on INPUT
PORT 01 goes low (logic '0') it indicates a
new character is waiting in parallel format
fro m t he typewriter at INPUT PORT 00_
The computer is to immediately obtain the
character that is waiting at INPUT PORT 00
and as soon as it has obtained the data it is

to send a logic '1' (high) signal to bit BO of
OUTPUT PORT 11 to signal the ASCII in-
terface that the character has been accepted
by the computer. (The receipt of this signal
by the ASCII interface w ill then cause the
ASCII interface to restore the control signal
on bit B7 of INPUT PORT 01 to a high
(logic '1') condition_)

- 8 -r

NO IS B7 YES
OF INP PORT 01

A LOGIC 'O'?

GET ASCII
CHARACTER
FROM INPUT

PORT 00

SEND A LOGIC '1 ' ON BO
OF OUTPUT PORT 11 TO

CLEAR THE ASCII
INTERFACE

GO TO LOOK-UP TABLE
ROUTINE AND FIND

THE EQUIV ALENT BAUDOT
CHARACTER

SEND THE BA UDOT CODE
TO OUTPUT PORT 10 IN

BITS B5 THROUGH BO

2 - 3

Whenever a character has been received
from the ASCII typewriter on INPUT PORT
00, the computer is to compare the charac-
ter just received against an ASCII to
BAUDOT look-up table which is stored in the
computer's memory until it finds a match. It
will then obtain the equivalent BAUDOT
character from the conversion table. It will
then send the BAUDOT code for the charac-
ter in bit positions B5 through BO of
OUTPUT PORT 10. Bit B5 will serve to in-
dicate to the BAUDOT interface whether
the code in bits B4 through B'O is to be pro-
cessed by the BAUDOT device when it is in
the LETTERS or FIGURES mode. It is
assumed that the character rate (but not
necessarily the baud rate) is the same for both
machines so that the example may be simpli-

fied by eliminating the requirement for
character buffering or stacking in the memory
of the computer . However, in practical appli-
cations such capability might be required.
The feature could be added to the program.
However, for this case, as soon as the
BAUDOT code has been transmitted ' (in
parallel format) to the BAUDOT device, the
computer will simply go back to waiting for
the next character to come in from the ASCII
machine. The written description of the pro-
gram just presented is ruccinctly rummarized
in the flow chart shown on the previous page!

The flow chart of the program shown on
the previous page could be considered an
outline of the program . Portions of that flow
chart could be expanded into more detailed

INITIALIZE POINTERS TO
START OF LOOK-UP TABLE

COMPARE THE CONTENTS OF THE
CURRENT LOCATION IN THE LOOK-UP

T ABLE AGAINST THE CHARACTER
PRESENTLY IN THE ACCUMULATOR

NO .--_-<

ADVANCE THE
TABLE POINTER
BY TWO WORDS.

ARE THEY
THE SAME?

YES

2-4

HA VE FOUND THE DESIRED
CHARACTER. ADVANCE THE

POINTER TO THE NEXT WORD
IN THE TABLE AND FETCH

THE BAUDOT EQUIVALENT .

flow charts to present a detailed view of
special operations. For instance, the rectangle
labeled GO TO LOOK-UP TABLE ROUTINE
AND FIND THE EQUIVALENT BAUDOT
CHARACTER really refers to a portion of the
program that consists of a number of opera-
tions. Those operations could be described
in a separate flow chart such as the one just
presented .

The reader can see that the expanded
flow chart illustrates the operation of the
table look-up routine portion of the program.
With a little study o ne can discern that the
look-up table co nsist of an area in memory

ADDRESS

PAGE: XX LOC: Z
PAGE: XX LOC: Z+1
PAGE: XX LOC: Z+2
PAGE : XX LOC : Z+3

PAGE: XX LOC : Z+2(N-1)
PAGE: XX LOC: Z+2(N-1)+1

that has an ASCII encoded character in one
word, followed in the next word by the
same character in BAUDOT code. This
sequence continues for all the possible
characters as illustrated below. The flow
chart illustrates how the data in the look-up
table is scanned by skipping over every other
memory location (which contains the
BAUDOT codes) until the proper ASCII
character is located. When that is located,
the routine simply extracts the proper
BAUDOT code from the next memory
locaction in the table. The flow chart makes
the sequence easier to understand than a
purely verbal explanation of the routine.

MEMORY CONTENTS

ASCII code for letter A
BAUDOT code for letter A
ASCII code for letter B
BAUDOT code for letter B

ASCII code for N'th letter
BAUDOT code for N'th letter

ILLUSTRATION OF LOOK-UP TABLE ORGANIZATION FOR THE EXAMPLE PROGRAM

It is strongly recommended that beginning
programmers develop the habit of first writing
down the function(s) of the desired program
they intend to create. Next, one should draw
up flow chart s as detailed as one feels is neces-
sary to clearly show the operation of the pro-
gram that is to be developed. A novice pro-
grammer will be wise to prepare quite detailed
flow charts. More experienced programmers
may prefer to leave out details of operations
that they tho roughly understand. Flow charts
should serve as ready references when the pro-
grammer goes on to actually develop the step-
by-step machine language instruction sequen-
ces for the computer.

Flow charts are also an excellent method

2-5

for communicating programming concepts
to fellow computer technologists.
Remember that general flow charts do not
have to be machine specific!) Learning how
to prepare and read flow charts is an
important (yet easy) skill for all computer
programmers to acquire. It can also be fun
and a highly creative process. Using the
technique, one may review the overall
operation of a program under development
and gain new insights into where to
interconnect routines, where common loops
exist (which can save valuable memory room
if they are subroutined), and find other ways
in which to enhance a program's
capabilities.

FUNDAMENTAL PROGRAMMING SKILLS

Before one can effectively develop machine
language programs for a computer, one must
be thoroughly familiar with the instruction
set for the machine . It is assumed for the re-
mainder of this manual that the reader has
studied the detailed information for the in-
struction set of the 8008 CPU which was
provided in the first chapter. The programmer
shou ld become intimately familiar with t he
mnemonics (pronounced kneemonics) for
each type of instruction. Mnemonics are
easily remembered symbolic representations
of machine language instructions. They are far
easier to work with than the actual numeric
codes used by the computer when the pro-
grammer is developing a program. While the
programmer will develop programs and think
in terms of the mnemonics, t he programmer
must eventually convert the mnemonics to
the machine codes used by the computer .
This, however, is almost purely a look-up
procedure. In fact, as will be seen shortly ,
this task can actually be performed by t he
computer through the use of an ASSEMBLER
program.

Machine language programmers should also
be familiar with manipulating numbers in
binary and octal form. It is assumed that

readers are familiar with representing numbers
as binary values. However, there may be a few
readers who are not used to the convention of
representing binary numbers by their octal
equivalents. The technique is quite simple.
It co nsists merely of grouping binary digits
into groups of three and representing their
value as an octal number. The octal num-
bering system only uses the digits 0 through
7. This is exactly the range that a group of
t hree binary digits can represent. The octal
numbering system makes it a lot easier to
manipulate binary numbers. For instance,
most people find it considerably more con-
venient to remember a t hree digit octal num-
ber such as 104 than the binary equivalent
01000100. An octal number is easily ex -
panded to a binary number by simply placing
the octal value in binary form using three
binary digits.

The information in an eight bit binary re-
gister can be readily converted to an octal
number by grouping the bits into groups of
three starting with the least significant bits.
The two most significant bits in the register
which form the last group will only be able to
represent the octal numbers 0 to 3 . The dia-
gram below illustrates the convention.

EIG HT CELL REGISTER

o

* * t * * t * * *
*0 *ltO*0*Ot1*0*0*
* * t * * t * * *

1 o 4

CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS

3 - 1

Note in the diagram how an imaginary ad-
ditional binary digit with a value of zero was
assigned to the left of the most significant bit
so that the octal convention for the two most
significant bits could be maintained.

A table illustrating the relationship
between the binary and octal systems is
provided for reference below.

BINARY
PATTERN

000
001
a 1 a
all
100
101
110
111

REPRESENTATIVE
OCTAL NO.

a
1
2
3
4
5
6
7

A person who desires to develop machine
language programs for computers should
become familiar with standard conventions
used when dealing with closed registers
(groups of binary cells of fixed length such as
a memory word or CPU register). One very
simple point to remember is that when a
group of cells in a register is in the all ones
condition:

11111111

and a count of 1 is added to the register, the
register goes to the value:

00 000 000

Or, if a count of: 10 (binary) was added to a
register that contained all ones, the new value
in the register would be as shown:

11111111
+00 000 010

00 000 001

Similarly, going the opposite way, if one sub-
tracts a number such as 100 (binary) from a

3-2

register that contains some lesser value, such
as 010 (binary), the register would contain
the result shown below :

00 000 010
00 000 100

11111110

It may be noted that if one uses all the bits
in a fixed length register, one may represent
mathematical values with an absolute magni-
tude from zero to the quantity two to the
Nth power, minus one (0 to (2**N - 1))
where N is the number of bits in the register .
If all the bits in a register are used to
represent the magnitude of a number, and it is
also desired to represent the magnitude as
being either positive or negative in sign, then
some additional means must be available to
record the sign of the magnitude . Generally,
this would require using another register or
memory location solely for the purpose of
keeping track of the sign of a number.

In many applications it is desirable to es-
tablish a convention that will allow one to
manipulate positive and negative numbers
without having to use an additional register
to maintain the sign of a number. One way
this may be done is to simply assign the most
significant bit in a register to be a sign in-
dicator. The remaining bits represent the
magnitude of the number regardless of
whether it is positive or negative. When this is
done, the magnitude range for an N cell re-
gister becomes a to (2**(N-1))-1 rather than
a to (2**N) - 1. The convention normally
used is that if the most significant bit in the
register is a one then the number represented
by the remaining bits is negative in sign . If
the MSB is zero, then the remaining bits
specify the magnitude of a positive number.
This convention allows computer
programmers to manipulate mathematical
quantities in a fashion that makes it easy for
the computer to keep track of the sign of a
number. Some examples of binary numbers in
an eight bit register are shown next.

BINARY
REPRESENTATION OCTAL DECIMAL

00 001 000 010 + 8

10 001 000 210 8

01 III III 177 + 127

1 1 111 1 1 1 377 - 127

00 000 001 001 + 1

10 000 001 201 1

While the signed bit convention allows the
sign of a number to be stored in the same re-
gister (or word) as the magnitude, simply
using the signed bit co nvention alone can still
be a somewhat clumsy method to use in a
computer. This is because of the method in
which a computer mathematically adds the
contents of two binary registers in the accum-
ulator. Suppose, for example , that a computer
was to add together positive and negative
numbers that were stored in registers in the
signed bit format.

PLUS
00001000
10001000

(+ 8 decimal)
(- 8 decimal)

EQUAL 10010000 (This is not O!)

The result of the operation illustrated
would not be what the programmer intended!
In order for the operation to be performed
correctly , it is necessary to establish a method
for processing the negative number called the
two's complement convention. In t he two's
complement convention, a negative number is
represented by complementing what the value
for a positive number would be (comple-
menting is the process of replacing bits
that are ' 0' with a '1,' and those that are '1'
with a 0) and then adding the value one (1) to
the complemented value. As an example , the
number minus eight (-8) decimal would be
derived from t he number plus eight (+8) by
the fo llow ing operations.

3-3

00 001 000 (Original + 8)

11 110 1 1 1 (Complemented)
a 0 a a a 001 (now add +1)
-- --- ---------- ------
11111000 (2's complement

form of - 8)

Some examples of numbers expressed in
two 's complement notation with the signed
bit convention are shown below.

BINARY
REPRESENTATION OCTAL DECIMAL

00 001 000 010 + 8

1 1 III 000 370 8

01 III III 177 + 127

10 000 a 01 201 - 127

00 000 001 001 + 1

11 III III 377 1

00 000 000 000 + a
10 000 000 200 - 128

Note that when using the two's comple-
ment method, one may still use the conven-
tion of having the MSB in the register estab-
lish the sign. If the MSB = 1 , as in the above
illustration, the number is assumed to be
negative. Since the number is in the two's
complement form, the computer can readily
add a positive and a negative number and
come up with a result that is readily inter-
preted. Look!

a 0 a a 1 0 0 0 (+ 8 decimal)
ADD 1 1 1 1 1 a a 0 (- 8 dec as 2's camp)

o a a a 0 a a 0 (Correct answer = 0)

Another estab lished co nvention in handling
numbers with a computer is to assume that '0'
is a positive value. Because of this co nvention ,

the magnitude of the largest negative number
that can be represented in a fixed length re-
gister is one more than that possib le for a
positive number.

The various means of storing and mani-
pulating the signs of numbers as just dis-
cussed have advantages and drawbacks, and
t he method used d epend s on the specific
application . However , for most user 's, the
two 's complement signed bit co nvention will
be the most convenient , mo st often used,
m ethod . The prospective machine language
programmer should make sure that the co n-
vent ion is well understood.

Another area that the machine language
programmer must have a thorough knowledge
of is t he co nversion of numbers between the
decimal numbering system that most people
work with on a daily basis, and the binary and
octal numbering system utilized by computer
technologist s. Programmers wo rking with
microcomputers will generally find the octal
numbering system most convenient. Becau se
the conversion from octal to binary is simply
a matter of grouping binary bits into groups
of three as discussed at the start of t his
chapter I it is easier to remember octal codes
than long strings of binary digits. However,
most people are used to thinking in decimal
terms, which the computer does not use at
the machine language level. Thus, it is nec-
essary for programmers to be able to convert
back and forth between the various num-
bering systems as programs are· developed.

ORIGINAL NUMBER 1234

LAST Q UOTIENT BECOMES
NEW DIVIDEND 154

LAST QUOTIENT BECOMES
NEW DIVIDEND 19

LAST QUOTIENT BECOMES
NEW DIVIDEND 2

The conversion process that is generally the
most troublesome for peo ple to learn is from
decimal to binary, or decimal to octal (and
vice-versa)! It is usually a bit easier for people
to learn to convert from d ecimal to octal, and
then use the simple octal to binary expansion
technique , than to co nvert directly from
decimal to binary . The easier method will be
presented here. It is assumed that the read er
is already familiar with going from octal to
binary (and vice-versa). Only the conversions
between decimal and octal (and the reverse)
will be presented at th is po int.

A decimal number may be converted to its
octal equivalent by the fo llow ing technique:

Divide the decimal number by 8. Record
the remainder (note that IS the RE-
MAINDER") as the least significant digit
of the octal number being d erived . Take t he
quotient just obtained and use it as the new
dividend. Divide the new dividend by 8.
The remainder from this operation becomes
the next significant digit of the octal number.
The quotient is again used as the new divi-
dend. The process is continued until the quo-
tient becomes '0 .' The number obtained from
placing all the remainders (from each division)
in increasing significant order (first remainder
as the least significant digit , last remainder as
the mo st significant digit) is the octal number
equivalent of the original decimal. The
process is illustrated below for clarity.

The octal equivalent of 1234 decimal is:

I 8 154 2

I 8 19 2 .

I 8 2 3 .

I 8 2 .

Thus the octal eq uivalent of 1234 d ecimal is: 2 3 2 2

3-4

The above method is quite easy and
straightforward. Since a majority of the time
the user will be interested in co nversions of
decimal numbers less than 255 (the maximum
decimal number t hat can be expressed in an

ORIGINAL NUMBER

LAST QUOTIENT BECOMES
NEW DIVIDE ND

LAST QUOTIENT BECOMES
NEW DIVIDE ND

255

31

3

Thus the octal equivalent of 255 is:

For numbers less than 63 decimal (and
"-lch numbers are used frequently to set
cou nters in loop routines) the above method
reduces to one division with the remainder
being the LSD and the quotient the MSD.

/

/

eight bit register) only a few divisions are
necessary:

The octal equivalent of 255 decimal is:

QUOTIENT REMAINDER

8 31 7

8 3 7

/ 8 3
-----_.----------

377

This is a feat most programmers have little
difficulty doing in their head !

The octal equivalent of 63 decimal is:

ORIGINAL NUMBER 63 / 8 7 7

LAST QUOTIENT BECOMES
NEW DIVIDEND 7 / 8

Thus the octal equivalent of 63 is:

7

77

Going from octal to decimal is quite easy
too. The process consists of simply multi-
plying each octal digit by the number 8 raised
to its positional (weighted) power, and then

adding up the total of each product for all
the octal digits:

2322 Octal

· 2 X (8*0) (2 X 1) 2

· .. 2 X (8*1) (2X8) 16

· . 3 X (8*2) (3 X 64) 192

2 X (8*3) (2 X 512) 1024
- ------------

Thus the decimal equivalend of 2322 Octal is : 1234

3-5

Besides the basic mathematical skills in-
volved with using octal and binary numbers,
there are some practical bookkeeping consid-
erations that machine language programmers
must learn to deal with as they develop pro-
grams_ These bookkeeping matters have to do
with memory usage and allocation.

As the reader who has read chapter one in
this manual know s, each type of instruction
used in the 8008 CPU requires one , two, or
three words o f memory. As _a general rule,
simple register to register or register to
memory commands require but one memory
word. Immediate type commands require two
memory locations (the instruction code
followed immediately by the data or oper-
and). Jump or call instructio ns require three
word s of memory storage . One word for the
instruction code and two more words for the
address of the location specified by the in-
struction. The fact that different types of in-
structions require different amounts of
memory is important to the programmer.

As programmers write a program it is often
necessary for them to keep tabs on how many
word s of memory the actual operating por-
tion of the program will require (in addition
to controlling the areas in memory that will
be used for data storage) . One reason for
maintaining a count of the number of
memory word s a program requires is simply
to ensure that the program w ill fit into the

MEMORY TOTAL
WORDS WORDS
THIS THIS
INSTR. ROUTINE

2 2
2 4
2 6
1 7
1 8
1 9
1 10

In t he example the total number of words
used in co lumn was kept using decimal num-

available memory space.

Often a program that is a little too long to
be stored in an available amount of memory
when first developed can be rewritten, after
some thought, to fit in the available space.
Generally, the trade-off between writing com-
pact programs versus not-50-compact routines
is simply the programmer's development time.
Hastily constructed programs tend to require
more memory storage area because the pro-
grammer does not tak e the time to consider
memory conserving in stru ction combinations.

However, even if o ne is not concerned
about co nserving t he amount of memory used
by a particular program , one still often needs
to know how mu ch space a group of in-
structions will co nsume in memory. This is
00 that one can tell wh ere another program
might be placed without interfering with a
previous program.

For these reason s, programmers often find
it advantageous to develop the habit of
writing down the number of memory word s
utilized by each instruction as they write the
mnemonic sequences for a routine. Addition-
ally, it is often desirable to maintain a column
showing the total number of word s required
for storage of a routine . An example of a
work sheet with this practice being followed
is illustrated here :

MNEMONICS COMMENTS

LAIOOO
LHI001
LLI150
ADM
INL
ADM
RET

Place 000 in accumulator
Set Register H to 1
And Regis L to 150
Add t he content s of memory

- Locations 150 & 151 on page 1
Adding second number to first
End of rub routine

bers. Many programmer s prefer to maintain
this column using octal numbers because of

3-6

the direct correlation between the total num-
ber of words used, and the actual memory
addresses used by the 8008.

The example just presented can be used to
introduce another consideration during pro-
gram development. That is memory alloca-
tion. One must distinguish between program
",orage areas in memory, and areas used to
hold data that is operated on by the program.
Note that the sample subroutine was designed

PC LOC MACHINE CODE LABELS
01 000 ADD,
01 010
01 020
01 030
01 040
01 050
01 060
01 070
01 100
01 llO
01 120
01 130
01 140
01 150
01 151
01 152
01 153
01 154
01 155
01 156
01 157
01 160
01 170
01 200

to have the computer add the contents of
memory locations 150 and 151 on page Ol.
Thus , those two locations must be reserved
for data. One must ensure that those
specific memory locations are not inadver-
tantly used for some other purpose. In a
typical program, one may have many lo-
cations in memo ry assigned for holding or
manipulating data . It is important that one
maintain some sort of system of recording
where one plans to store block s of data and

MNEMONICS COMMENTS
Add no 's @ 150 & 151

Number storage
Number storage

MEMORY USAGE MAP

3-7

where various operating routines will reside
as a program is developed. This can be readily
accomplished by setting up and using memory
usage maps (often commonly referred to as
core maps). An example of a memory usage
map being started for the subroutine just dis-
cussed is shown on the previous page.

The same type of form may also be used as
a program development sheet as shown below.
One may observe that the form provides for

PG LOC MACHINE CODE LABELS
01 000 006 000 ADD,
01 002 056 001
01 004 066 150
01 006 207
01 007 060
01 010 207
01 all 007

memory addresses, the actual octal values
of the machine codes , labels and mnemonics
used by the programmer, and additional in-
formation.

Memory usage maps are extremely valuable
for keeping large programs organized as they
are developed, or for displaying the locations
of a variety of different programs that one
might desire to have residing in memory at
the same time. It is suggested that the person

MNEMONICS COMMENTS
LA! 000 Set ACC = 000
LHI 001 Set pntr PG = 1
LL! 150 Set pntr LOC = 150
ADM Add l'st no. to ACC
INL Adv pntr to 2 'nd no .
ADM Add 2 'nd no. to l 'st
RET Exit subroutine

PROGRAM DEVELOPMENT WORK SHEET

3-8

intending to do even a moderate amount of
machine language programming make up a
supp ly o f such forms (using a ditto or mimeo-
graph machine) to have on hand .

There are so me important factors about
machine language programming that should
be pointed out as they have considerable im-
pact on the total efficiency and speed at
which o ne can develop such programs and get
them operating correctly. The factors relate
to one simple fact. Peop le d eveloping machine
language programs (especially beginners) are
very pro ne to making programming mistakes!
Regardl ess o f how carefully one proceeds, it
always see ms t hat any fair sized program
need s to be revised befo re a properly
operating program is achieved. The impact
that changes in a program have on the de-
velopment (or redevelopment) effort vary
accord ing to where in the program such
changes mu st be made. The reason for the
seriousness of the problem is because program

MEMORY
PAGE LOC CONTENTS

01 000 006
01 001 000
01 002 056
01 003 001
01 004 066
01 005 150
01 006 207
01 007 060
01 010 207
01 011 066

** 01 012 160
** 01 013 370
** 01 014 007

The ** locations denote the additio nal
memory locations required by the modified
subroutine . If the programmer had already
developed a routine that resided in locations
012, 013, o r 014, the change would requ ire
that it be moved!

If o ne was using a program development

changes generally result in t he addresses of
the instructions in memory being altered.
Remember, if an instruction is added, or de-
leted, then all the remaining instructions in
the routine being altered mu st be moved to
different locations! This can have multiplying
effects if the instructions t hat are moved are
referred to by other routines (such as call and
jump command s) because t hen the addresses
referred to by those types of commands must
be altered too I To illustrate the situation, a
change will be made to the sample program
presented several pages ago. Suppose it was
decided that the subroutine should place the
rerult of the addition calculat io n in a word in
memory before exiting t he subroutine,
instead of simply having the resu lt in the ac-
cumulator. The original program, fo r
example , could have been residing in t he
locations shown on the program development
work sheet on the previous page. Changing
the program would result in it occupying t he
following memory locations:

MNEMONICS COMMENTS

3-9

LAIOOO Place 000 in accumulator

LHI001 Set Reg H to 1

LLI150 Set Reg L to 150

ADM Add contents of memory
INL Locations 150 & 151
ADM Add 2nd to 1 st
LLI160 Set Reg L to 160

LMA Save answer @ 160
RET End of subroutine

work sheet, one would have had to erase t he
original RET instruction at the end of the
routine and then written in the two new
command s, and added the RET instruction
at the end . The effects would not be too de-
vestating since the change was inserted at t he
end of the subroutine. But, suppose a similar
change was necessary at the start of a rub-

routine that had 50 instructions in it? The
programmer would have to do a lot of
erasing!

The effects of changes in program source
listings was recognized early as a problem in
developing programs. Because of this people
developed programs called EDITORS that
would enable the computer to assist people in
the task of creating and manipulating source
listings for programs. An EDITOR is a
program that will allow a person to use a com-
puter as a text buffer. Source listings may be
entered from a keyboard or other input
device and stored in the computer's memory .
Information that is placed in the text buffer is
kept in an organized fashion, usually by lines
of text. An Editor program generally has a
variety of commands available to the operator
to allow the information stored in the text
buffer to be manipulated. For instance, lines
of information in the text buffer may be
added , deleted, moved about or inserted
before other lines, and so forth . Naturally, the
information in the buffer can be displayed to
the operator on an output device such as a
cathode ray tube (CRT) or electromechan-
ical printing mechanism. Using this type of
program, a programmer can rapidly create a
source listing and modify it as necessary.
When a permanent copy is desired, the
contents of the text buffer may be punched
on paper tape or written on a magnetic
tape cassette . It turns out that the copy
placed on paper tape or a cassette can often
be further processed by another program to
be discussed shortly which is termed an
ASSEMBLER program. However, an
important reason for making a copy of the
text buffer on paper tape or magnetic cassette
tape is because if it is ever necessary to make
changes to the source listing, then the old
listing can be quickly reloaded back into the
computer. Changes may then be rapidly made
using the Editor program, and a new clean
listing obtained in a fraction of the time that
might be required to erase and rewrite a large
number of lines using pencil and paper.

3 - 10

Relatively small programs can be developed
using manual methods. That is, by writing the
source listings with pencil and paper. But,
anyone that is planning on doing extensive
program development work should obtain an
Editor program in order to substantually
increase their overall program development
efficiency . Besides, an Editor program can be
put to a lot of good uses besides just making
up source listings' Such as enabling one to
edit correspondence or prepare written
documents that are nice and neat in a fraction
of the time required by conventional
methods .

Changes in source listings naturally result in
changes to the machine codes (which the
mnemonics simply symbolize). Even more
important, the addresses associated with
instructions often must be changed due to
additions or deletions of words of machine
code . For instance, in the example routine
being used in this section, memory address
PAGE 01 LOCATION 011 originally
contained the code for a RET (RETURN) in-
struction which is 007. When the subroutine
was changed by adding several more
instructions (so the answer could be stored in
a memory location), the RET instruction was
shifted down to the address PAGE 01
LOCATION 014. The address where it
formerly resided was changed to hold the
code for the first part of the LLI 160
instruction which is 066 . Had changes been
made earlier in the routine , then many more
memory locations would need to be assigned
different machine codes. However, the
changes caused by adding on to the sample
program previously discussed are not as far
reaching as the one presented on the follow-
ing page. There the changes result in the
addresses of subroutines referred to by other
routines being changed, so that it is then
necessary to go back and modify the machine
codes in all of the routines that refer to the
subroutine that was changed!

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS

00 000 026 OVER, LCI100 Load reg C with 100
00 001 100
00 002 106 CAL NEWONE Call a new subroutine
00 003 013
00 004 000
00 005 106 CAL LOAD And then another
00 006 023
00 007 000
00 010 104 JMPOVER Jump back & repeat
00 Oll 000
00 012 000
00 013 056 NEWONE, LH I OOO Load reg H with zeroes
00 014 000
00 015 066 LLI200 And L with 200
00 016 200
00 017 317 LBM Fetch mem contents to B
00 020 010 INB Increment the value in B
00 021 371 LMB Place B back into memory
00 022 007 RET End of subroutine
00 023 056 LOAD, LHI003 Set H to PG 03
00 024 003
00 025 361 LLB Place register B into L
00 026 370 LMA Place ACC into memory
00 027 021 DCC Decrement value in reg C
00 030 013 RFZ Return if C is not zero
00 031 000 HLT Halt when C = zero

Suppose it was decided to insert a single mand in the above program. The new program
word instruction right after the LCI 100 com- would appear as shown next.

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS

00 000 026 OVER, LCI100 Load reg C with 100
00 001 100
00 002 250 XRA Clear the accumulator

• 00 003 106 CAL NEWONE Call a new subroutine
* 00 004 •• 014
• 00 005 000
• 00 006 106 CAL LOAD And then another

• 00 007 •• 024
• 00 010 000
• 00 Oll 104 JMP OVER Jum p back and repeat

• 00 012 000
• 00 013 000

3 - II

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS

, 00 014 056 NEWO NE,
, 00 015 000
, 00 016 066
, 00 017 200
, 00 020 317
* 00 021 010
* 00 022 371
, 00 023 007
, 00 024 056 LOAD,
, 00 025 003
, 00 026 361
, 00 027 370
, 00 030 021
, 00 031 013
, 00 032 000

Note in the illustration how not only the
addresses of all the instructions beyond
location 002 (denoted by the *) change, but
even more important , that parts of the in-
structions themselves (the address portion
of the CAL instructio ns, denoted by the ")
must now be altered _ The essential point
being made here is that if the start ing address
of a routine or subroutine that is referred to
by any other part of the program is changed,
then each and every reference to that routine
must be located and the address portion
corrected I This can be an extremely formi-
dable, time co nsum ing, tedio us, and down
right frustrating task if all the references mu st
be found and corrected by manual means in a
large program I

Early computer technologist soon became
disgusted with making such program correc-
tio ns by hand methods after learning that it
was almost impossible to d evelop large pro-
grams without making a few error s_ They
went to work on find ing a method to ease the
task of making such co rrections and came up
with a type of program called an ASSEM-
BLER that could utilize the computer it-
self to perfo rm such exacting task s.
ASSEMB LER programs are types of programs
that are able to process source listings when
they have been written in mnemonic (sym-

LHI 000 Load Reg H with zeroes

LLI 200 And L with 200

LBM Fetch mem co ntents to B
INB Increment the value in B
LMB Place B back into memory
RET Exit
LHI003 Set H to PAGE 03

LLB Place reg B in to L
LMA Place ACC into memory
DCC Decrement value in reg C
RFZ Return if C is not zero
HLT Halt when C is zero

bolic) form and t ranslate them into the
OBJECT cod e (actual machine language code)
that is util ized directly by t he computer . An
ASSEMBLER also keeps t rack of assigning
the proper addresses to references to rout-
ines and subroutines. Th is is acco m plished
through a process initiated by the program-
mer assigning LABELS to routines in t he
source listing. One may now see t hat the
combination of an Editor and an Assembler
program can greatly ease t he task of d e-
veloping machine language programs over
that of the purely manual method. The use
of such programs is almost mandatory when
programs become large because the manual
method becomes highly unwieldy. A pr imary
reason t hat an Editor and Assemb ler are so
useful is because if a mistake is made in the
program, one can use the relatively quick
method of ut il izing the Editor program to
revi se the source list ing. Then, one may use
the Assembler program to reprocess the
corrected source listing and produce a new
version of the machine cod e assigned to new
addresses if appropriate.

For quite small programs, say less than
100 instru ctions, t he use of Ed itor and
Assemb ler programs are not mandato ry.
In fact, even if o ne uses these aids for small
programs, o ne should know how to manually

3 - 12

convert mnemonic listings to object code.
This is because it may occasionally be de-
sirable to make minor program changes
(patches) without having to go through
the process of using an Editor and Assem-
bler. This is particu larl y true when one
is DEB UGG ING large programs and wants
to ascertain whether a minor co rrection will
correct a problem. The process of convert-
ing from a mnemonic listing to actual mach-
ine code is not difficult in concept. Many
readers will have discerned the process from

MNEMONIC

LHI 001
LLI 000

AGAIN, LMIOOO

INL

JFZ AGAIN

HLT

To convert the so urce listing to machine
(object) code the programmer must first
decide where the program is to reside in
memory. In this particular case it would
certainly not be wise to place the program
anywhere on PAGE 01 as the program would
self-destruct' The program could safely be
placed anywhere else . For the sake of demon-
stration it will be assumed that it is to reside
on PAGE 02 starting at LOCATION 100, To
co nvert the source listing to machine code the
programmer would simply make a list of the
addresses to be occupied by the program.
Then the programmer would simply look up
the machine code corresponding to the
mnemonic for each instruction and place this
number next to the address in which it
will reside. (The machine code for each

the examples already provided. However, for
any who are in doubt, the process will be
explained for the sake oi clarity.

Suppose a person desired to produce a
small program that would set the contents
of all the words in PAGE 01 of memory to
000. The programmer would first develop
the algorithm and write it down as a mne-
monic (source) listing. Such an algorithm
might appear as follows.

COMMENTS

Set the high address register to PAGE Ol.
Set the low address register to the first
location on the page assigned by reg. H.
Load the contents of the memory location
specified by registers H & L to 000.
Advance register L to the next memory
location (but do not change the page) .
If the value of register L is not 000
after it has been incremented then JUMP
back to the part of the program denoted by
the label AGAIN and repeat the process.
If the value of register L is 000, then have
the computer stop as the program is done'

3 - 13

mnemonic used by the '8008' CPU is
provided in Chapter ONE of this manual.)
Since some instructions are location
dependent in that they require the actual
address of referenced routines, it is often
necessary to assign the machine code in two ·
processes. The first process consist of
assigning the machine codes to specific
memory addresses wherever possible. When
the machine code requires an address that
has not yet been determined, the memory
location is left blank. The second process
consist of going back and filling in any blanks
once the addresses of referenced routines have
been determined. In the example being used
for illustration, only one process is required
because the address specified by the label
AGAIN is defined before the label (address) is

referenced by the JFZ
sample program when

instruction. The
converted to

ORIGINAL MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS

LHI001 02 100 056
02 101 001

LLIOOO 02 102 066
02 103 000

AGAIN, LMI 000 02 104 076

02 105 000
INL 02 106 060
JFZ AGAIN 02 107 110

02 110 104

02 111 002

HLT 02 112 377

Once the program has been put in machine
language form the actual machine code may
be placed in the assigned locations in memo
ory. The programmer may then proceed to
verify the algorithm 's valid ity. For small
programs such as the example just illustrated
the machine code can simply be loaded into
the correct memory locations using manual
methods typically provided on microcom·
puter systems. Such small programs can then
be easily checked out by stepping through
the program one instruction at a time.

If the program is relatively large then a
special loader program which is typically
provided with an ASSEMBLER program
could be used to load in the machine code.

Checking out and DEBUGGING large
programs can sometime s be difficult if a

3·14

machine language code would appear as
shown next.

COMMENTS

Machine code for LHI mnemonic
Immediate part of LHI mnemonic
Machine code for LLI mnemonic
Immediate part of LLI mnemonic
Machine code for LMI mnemonic
Note that the label AGAIN now
defines an address of LOCATION
104 on PAGE 02
Immediate part of LMI mnemonic
Increment low address here
Machine code for JFZ mnemonic
Low address portion of the CONDI·
TIONAL JUMP instruction as
defined by label AGAIN above
PAGE address portion of the
CONDITIONAL JUMP instruction
defined by label AGAIN
Alternately , the code 000 or 001
could have been used here as the
machine code for a HALT command

few simple rules are not followed. A good
rule of thumb is to first test out each sub·
routine independently. One may choose to
STEP through a subroutine, or else to place
HALT instructions at the end of each sub·
routine. Then one may verify that data was
manipUlated properly by a particular sub·
routine before going on to the next section
in a program. The use of strategically located
HALT instructions in a program initially
being tried out is an important technique
for the programmer to remember. When a
HALT is encountered the user may check the
contents memory locations and examine
the contents of CPU registers to determine
if they contain the proper values at that
point in the program. (U sing the manual
operator controls and II1d icator lamps typi·
cally provided with microcomputer develop·
ment systems.) If all is well at a check point

then the programmer may replace the
HALT instruction with the actual In-

struction for that point. One may then
continue checking the operation of
the program after mak ing certain that
any registers that were altered by the
examination procedure (typically
registers Hand L in an '8008' system)
have been reset to the desired values
if they will effect operation of the
program as it continues!

It is often help ful to use a utility pro-
gram known as a MEMORY DUMP pro-
gram to check the contents of memory
locations when test ing a new program.
A memory dump program is a small utility
program that will allow the contents of
areas in memo ry to be displayed on an
output device. Naturally, the memory dump
program must re side in an area 0 f memory
outside that being used by the program
being checked. By using t his type of pro-
gram the operator may read ily verify the
content s of memory locations before and
after specific operations occur to see if
their contents are as expected. A memory
dump program is also a valuable aid in
determining whether a program has been
properly loaded o r that a portion of a
program is still intact after a program
under test has gone errant.

One will find that having flow charts
and memory maps at hand during the
DEBUGGING process is also very help-
ful. They serve as a refresher on where
routines are supposed to be in memory
and what the routines are supposed to
be doing .

If minor co rrectio ns are necessary or

MNEMONIC
MEMORY

ADDRESS
MEMORY

CONTENTS

LAI 200 03 000
03 001

006
200

3 - 15

desired, then one may often make program
corrections, or PATCHES as they are co m-
monly referred to by software people, to
see if the corrections believed appropriate
w ill work as planned . An easy way to make
a PATCH to a program is to replace a CALL
or JUMP instruction with a CALL to a new
subroutine that contains the desired cor-
rections (plus the original CALL or J UMP
instruction if necessary). If a CALL or
JUMP instructio n is not available in the
vicinity of the area where a correction must
be made then one can replace three words
of instruction s with a CALL patch provided
that o ne is very careful not to sp lit up a
multi-word in struction. If this cannot be
avoided, then the remaining portion of
a split-up multi-word instruction must be
replaced with a NO-OPERATION instruc-
tio n such as a LAA command (in an '8008'
system). One must also make certa in that
the instructions displaced by the inserted
CALL instruction are placed in the patch-
ing subroutine (provided that they are not
being removed purposely) . An example
of several patches being made to the small
example program previously discussed will
be illustrated next.

Suppose, in the example just presented,
that the operator decided not to clear (set
to 000) all the word s in PAGE 01 of mem-
ory, but rather to only clear the locations
000 to 177 (octal) o n the page . The pro-
gram could be modified by rep lacing the
JFZ AGAIN instruction which started at
LOCATION 107 on PAGE 02 with the
co mmand CAL 000 003 (CALL the sub-
routine starting at LOCATION 000 on
PAGE 03 which will be the PATCH).
Now at LOCATION 000 on PAGE 03
one could put:

COMMENTS

Put value 200 into the ACC
Note value of 200 used because
contents of register L has
been incremented

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS

CPL 03 002 276

JFZ AGAIN 03 003 110
03 004 104
03 005 002

RET 03 006 007

Suppose instead of filling every word on
PAGE 01 with zeroes the programmer de-
cided to fill every other other word? A patch
could be made by replacing the LMI 000

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS

LMIOOO 03 000 076
03 001 000

INL 03 002 060
INL 03 003 060

RET 03 004 007

Finally, to illustrate a patch that splits a
multi-word command, consider a hypo-
thetical case where the programmer decided
that prior to doing the clearing routine, it
would be important to save the contents
of register H before setting it to PAGE 01 .
If a three word CALL command is placed
starting at LOCATION 100 on PAGE 02 in
the original routine to serve as a PATCH, it
may be observed that the second half of the
LLI 000 instruction would cause a problem
when the program returned from the patch .

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS

LEH 03 000 345
LHI001 03 001 056

03 002 001
LLIOOO 03 003 066

03 004 000
RET 03 005 007

3 - 16

COMMENTS

Compare contents of the ACC
with the contents of register L
If accumulator and L do not
match then continue with the
original program
End of PATCH ,.,broutine

command at LOCATION 106 on PAGE 02
and again inserting a CAL 000 003 command
to a patch ,.,broutine that might appear as
illustrated below.

COMMENTS

Keep the LMI instruction
as part of the PATCH
Keep original increment L
And add another increment
L to skip every other word
Exit from PATCH subroutine

(The value of 000 at LOCATION 103 on
PAGE 02 in the example program would be
interpreted as a HLT command by the com-
puter when it returned from the patch sub-
routine.) In order to avoid this problem the
programmer could place a LAA (effectively a
NO-OPERATION command) at LOCATION
103 on PAGE 02 after placing the patch
command CAL 000 003 instruction beginning
at LOCATION 100 on PAGE 02. The actual
patch subroutine might appear as shown
below.

COMMENTS

Save register H in register E
Now set register H to point
to PAGE 01
And set the low address
pointer to LOCATION 000
End of PATCH subroutine

In the balance of this manual numerous
techniques for developing machine language
programs will be presented and discussed.
Many of the exa mples used will be presented
as subroutines that the reader may use when
developing custo mized programs. It is im-
portant for the new programmer to learn
to think of programs in term s of routines
or subroutines and then learn to combine
9.lbroutines into larger programs. This prac-
tice makes it easier for the programmer to
initially develop programs. It is generally
much easier to create small algorithms and
then combine them, in the form of sub-
routines, into larger programs. Remember,
subroutines are sequences of instructions
that can be CALLED by other parts of a
program. They are terminated by RETURN
or CONDITIONAL RETURN command s.
It is also wise when developing programs to
leave some room in memory between sub-
routines so that patches can be inserted

or routines lengthened without having to
rearrange the contents of a large amount of
memory. Finally, while speaking of sub-
routines, it will be pointed out that the
user would be wise to keep a note book
of subroutines that the ind ividual develops
in order to build up a reference library
of pertinent routines. It takes time to think
up and check out algorithms. It is very easy
to forget just how one had solved a par-
ticular problem six months after one init-
ially accomplished the task. Save your
accrued efforts. The more routines yo u
have to utilize, the more valuable your
machine becomes. The power of the machine
is all determined by WHAT YOU PUT IN ITS
MEMORY'

Before going on to the next section of
this manual, the essential steps in the process
of creating a program will be presented fo r
review and to serve as a reference .

l. First, the programmer should clearly define and write down on paper exactly
what the program is to accomplish.

2. Next, flow charts to aid in the complex task of writing t he mnemonic (source)
listings are prepared. They should be as detailed as necessary for the program-
mer's level of experience and ability.

3. Memory maps sho uld be used to distr ibute and keep track of program storage
areas and data manipu lating regions in available memory.

4 . U sing the flow charts and memory maps as guides, the actual source listings of
the algorithms are written using the symbolic representations of the instructions.
An Editor program is frequently used to good advantage at this point.

5. The mnemonic ,purce listings are co nverted into the actual machine language
numerical codes assigned to specific addresses in memory. An Assembler pro-
gram makes this task quite easy and should be used fo r large programs.

6. The prepared machine code is loaded into the appropriate addresses in the
computer's memory and operation of the program is verified. Often the initial
check out is done using the STEP mode of operation, or by exercising indiv i-
dual sub routines. The judicial use of inserted HALT instructions at key loca-
tions will often be of value during the initial testing phase.

7. If t he program is not performing as intended then problem areas must be iso-
lated. Program PATCHES may be utilized to make minor corrections. If serious
problems are fou nd it may be necessary to return to step no . 3, o r step no. I'

3 - 17

BASIC PROGRAMMING TECHNIQUES

The first section o f this chapter wi ll be d e-
voted to illustrating a number of simple in-
structions and sequences o f instructio ns that
may be used to ac co mplish co mmonly
required func tion s. Novi ce programmers need
to build up a reperto ire o f such rout ines in
their mind so that they can learn to thin k in
terms of t he fun ctions they perform as t hey
prepare to develop programs of th eir own.
Alternative ways of performing functions will
sometimes be presented to illustrate ad -
vantages and disadvantages of o ne method
over another. There will often be many other
ways of performing the d esired function other
than that presented and the reader should feel
free to think of other ways and loo k at pos-
sible advantages and negative aspects of such
alternatives .

CLEARING THE ACCUMU LATOR

It is often desirable to set the contents of
the accumulator (ACC for abbreviation in this
text) to zero before starting an operation,
such as a mat hematical calculation . One
obvio us way to d o this is to use an LA! 000
instruction _ A less o bvious way is to use an
XRA (EXCLUSIVE OR the contents of the
ACC with itself)! The XRA method o nly re-
quires one word, whereas the LAI 000 re-
quires two. Also, the XRA method will set
all the CPU flags to known states as any
Boolean Logic instruction causes the Sand
P flags to be affected and the C flag to be
set to the zero state. (Whenever necessary
the reader should refer to t he appropriate
section in Chapter One of this programming
manual to review the detailed fun ction(s)
of each type o f instruction available in an
8008 based microcomputer). Since the XRA
instruction will set the ACC to all zeroes, then
the Z and P flags will be placed in the '1'
condition, and the S flag to the '0' state at
the conclusion of the instruction 's execution .
It is im portan t to remember the types of ins-
tructio ns that affect the o peration of the CPU

4 - 1

flags . This is because it is often necessary to
use the status of a flag or flags to control the
a peration a f a program. Or, to see if a flag 's
status has changed . To do this, o ne must at
so me time kn ow what the condition o f a flag
was. That is often achieved by using an in-
struction such as the XRA that will force
them to d esired states. On t he other hand,
while the LA! 000 method of clearing the
ACC requires two memory words, t he
execution of an LAl 000 instruction does
not affect the status of the CPU flags. This
fact should be remembered , because there
may be ti mes when it is desirab le to set the
ACC to the zeroes condition without altering
the CPU flags '

SETTING THE ACCUMULATOR
TO ALL ONES

This function can be accomplished with
several types of instructions, such as the
LAl 377 o r ORI 377 . Both these instruc-
t ions requ ire two words of memory . It
should be noted again that the LA! 377
type will not affect the status of the CPU
flags, while t he ORr 377 one will result in
the C and Z flags being set the the '0' state,
and the Sand P flags set to the '1 ' co ndition.
If a particular program requires the accumu-
lator to be set to the all o nes state frequently,
then it may be worthwhile to set up a CPU
register to contain 377 . Then one may use a
one word instruction, such as LAX (X = a
CPU Register) or an ORX, depending on
whether o r not one wants to save the status
of the CPU flags.

COMPLEME NTING THE ACCUMULATOR

Often it is desirable to COMPLEMENT the-
value in the accumulator . That is to change
all the bits set to a ' 1 ' to be 'a' and vice-
versa. This can be readily accomplished by
using an XRr 377 instruction . Again, if the

function must be performed often in a rou-
tine, it may be worthwhile to keep the value
377 in a CPU register and use a XRX in-
struction . The complement function is often
utilized when performing mathematical op-
erations using signed numbers (as explained
in the previous chap ter) in order to o btain the
two 's complement form of a number. The
two's complement of a num ber is obtained
by first complementing the value and then
addi ng one to the complemented value. Thus,
this fun ction could be qbtained by per-
forming two kinds of instructions in
sequence. First an XRI 377, and then an
AD I 000 command.

FORMING BIT MASKS

When utilizing a computer , it is frequently
desirable not to use all the bit positions with-
in a word, or to isolate and determine the
status of a particular bit within a register.
This technique may be used to quickly de-
termine whether a number in a register is odd
or even (by examining just the least sig-
nificant bit). Or, whether a number has
reached a certain size (by sampling the most
significant bit of interest) . Or, whether some
part icu lar external event has occurred (by
checking a specific bit on an input port).

The process of ridding a register of un-
wanted data in selected bit positions is
commonly referred to by computer tech-
nologists as MASKING. Masking can be ac-
complished in several ways depending on
what the programmer desires . Suppose , for
instan ce, that one desired to determine
whether a number in the accumulator was
odd or even. One way to do t his would be to
simply execute an ND I 001 instru ction . Then
test to see if the accumulator was zero (using
a JT Z or JFZ command) . Suppose the o riginal
number in the accumulator had been 251.
(Remember that this text is using octal num-
bers un less otherwise stated!) The result of
performing the logic AND operation between

4-2

the accumulator con taining 251 and the
number 001 is illustrated below .

ACC = 1 0 1 0 1 0 0 1 = Octal 251

AN I 001 = a 0 0 0 0 0 0 1 = Octal 001

RESULT = 0 0 000 001 = Octal 001

It may be observed that all the bit positions
ANDED with a '0' will go to the '0' condition
regardless of whether they were a '1 ' o r a '0 .'
Thus , t he seven most signifi cant bit positions
in the example have been e ffectively elimi-
nated. However , a bit position ANDED
against a '1' will be a '1 ' if , and only if, the
position under test co ntains a '1.' In the
above case, a '1' was present in the test posi-
tion and thus the resul t was a'!.' A JFZ
instruction would quickly direct the program
to proceed o n the basis that the original
number in the ACC had been an odd number .

Note that the above particular masking
method was destructive to the original value
in the accumulator. Had it been important ,
the original num ber could have been saved in
a CPU regist er or a memory location. A
slightly different approach could have been
taken. The number to be masked could be
placed in a memory location , or a CPU
register. Then the accumulator could be filled
with the appropriate MASK . Finally, a simple
one word NDM or NDX instruction could
be utilized . The result of the masking
operation would be left in t he accumulator
after the execution of the instruction . The
original number would be available for further
manipulation. This different approach IS

pointed out as an example of h ow a pro-
grammer should look for the best method to
approach a particular problem . The co m puter ,
with its variety of instructions, provides many
different methods to choose from [or such
problems.

Masking is most effective when there are
several bits in a register to be isolated, or
when a bit of interest is in the middle of a

word. Or, when it may not be expedient to
bring a piece of data into the accumulator.
For if one desires to examine the status of a
bit in the ACC that is at either end of a
register, o ne may do this by using a rotate
instruction such as RAL or RAR to put
the bit of interest into the CARRY position
of the ACC (represented by the CARRY
FLAG) . Then use a JTC or JFC instruction to
determine the status of the bit. Naturally,
if the programmer wanted to · retain the
original setting of the accumulator after
the test, the program would have 'to execute
the reverse rotate instruction (to the one
originally used). This would bring the ACC
back to its original position.

SETTING UP POINTERS AND COUNTERS

In many applications it is desirable to per-
form a particular sequence of operations a
precise number of times. The number of times
an operation is performed can be controlled

in a routine by forming a program loop .
A program loop is established by setting up a
counter system that keeps track of how many
times an operation is performed and including
a program test to ascertain when a particular
value has been reached so that program
control can be branched out of the loop.

In an 8008 system, CPU registers make
handy loop counters as they not only can be
directly incremented or decremented by one
word commands, but they also directly
affect the status of the Z, S, and P CPU
flags after each increment or decrement.
It is thus an easy matter to use anyone of
the conditional type instructions immediately
following a CPU register increment or decre-
ment to see if a critical value has been
reached!

For instance, suppose register B is initially
set to the value 012 (10 decimal) by a LBI
012 instruction prior to execution of the
fo llowing program loop.

MORE, LMA
INL
DCB

Load contents of ACC into memory
Advance memory pointer
Decrement the loop counter

JFZ MORE
DONE, HLT

If reg B is not = 000, continue loop
Exit subroutine when counter = 000

As may be observed, the above subroutine
would loop upon itself and load data into
consecutive words in memory until the value
placed in register B (prior to starting the sub-
routine) reached zero. In the above example,
B was loaded with 012 so 12 octal (10
decimal) locations in memory would have
been loaded with data. (It can be assumed
that the calling routine set up registers Hand
L to point to the proper memory locations,
and placed the correct data into the accumu-
lator!)

To illustrate how powerful the simple con-

4-3

cept of a program loop is, a second example
will be used to illustrate how such a loop
technique may be used to perform multipli-
cation of small numbers . (There are much
more efficient programming techniques avail-
able for use with large numbers.) Since
multiplication is really just repeated addition,
one could multiply two numbers, designated
X and Y, by performing the following
operations. Assume X is the multiplicand
and it has been loaded into CPU register C.
The number Y is the multiplier, and it has
been placed in register B. The following
routine containing a program loop will
multiply the two numbers.

START,
CONTIN,

XRA
ADC
DCB

Clear the accumulator

EXIT,
JF Z CONTIN
RET

Add contents of register C to ACC
Decrement value of the multiplier
Repeat addition if multo is not = zero
Exit subrtn with multo answer in ACC

As read ers know, the CPU registers Hand L
are able to serve as ordinary CPU registers and
also have the special function of being able to
point to addresses in memory whenever
memory reference instructions are used. The
H register holds the high address or page
portion of the pointer. The L register holds
the low address or locat ion on a page.
Naturally , when one desires to operate on
data at a location in memory via a memory
reference command , one must first set up the
Hand L registers to contain the desired

address. This is readily done with a LHI XXX
and LLI YYY combination of instructions.
However, many times it is desirable to do a
who le sequence of operations that operate
upon sequential locations in memory. In this
case, once the initial starting address has been
loaded into the memory pointer registers, all
that is needed is a subroutine that can be re-
ferred to that will increment the address held
in the two registers . A simple subroutine to
accomplish that objective is presented here.

ADV, INL
RF Z
INH
RET

Increase value of register L by 1
Exit subrtn if not going to new page
Increment H by 1 if on new page
Exit subrtn

The above subroutine takes care of the case
where the address crosses page boundaries.
Each time register L is advanced, the RFZ in-
struction is used to test whether or not
register L went to 000. This would occur if
the last value in the register had been 377.
That is the largest octal address that can be re-
presented in an 8 bit register. Consequently,
it is the highest address that can be assigned
on a page of memory. If the RFZ instruction
is executed (because the contents of L did not
go to 000) then the routine is immediately
exited. If the RFZ command is not followed ,
then the subroutine continues and advances
t he contents of register H to update the
pointer to a new page .

Fine . But what about the opposite case
when a programmer might desire to process
areas of memory in descending order? Well, a
similar subroutine to decrement the memory

4-4

pointer registers could be used . But, the pro-
grammer will have to be careful when going to
a new page . In the previous case, when the L
register was advanced beyond location 377 to
000 , it was an easy matter to check for the
000 condition to see if it was necessary to
advance the H register too. Now, however,
when the L register goes from 000 to 377 it
will be necessary to decrement the H register
to the next lower page. Testing for this
condition is not quite as easy . Remember, the
status of the CPU flags are set by the
co nditions in the register immediately after
they have been incremented or decremented,
not before. While o ne may use a JTZ or RFZ
type of instruction to quickly determine if a
register went to 000, the case where it did not
go to 000 does not mean it is necessarily at
377. It cou ld be at any non-zero value. How-
ever, the case can be handled. One way to
handle the problem would be with the sub-
routine shown next .

DEC, XRA Clear ACC to 000
CPL
JTZ DECH
DCL

Compare contents of ACC with L
If 000 now, then DECR both H & L
Otherwise just decrement L

RET And exit subroutine
DECH, DCL

DCH
RET

For this case decrement L
And register H
Then exit subroutine

While the above subroutine will" accomplish
the objective, it does have several minor flaws
that the programmer might want to consider.
First, it alters the contents of the accumu-
lator. Remember that the above subroutine
might often be used in a program that is mani-
pulating data between the accumulator and
memory. The above subroutine would require
that the programmer make sure any valuable
data in the accumulato r is saved elsewhere
before the subroutine is called. This is one
more burden on the programmer who is de-

veloping a large program and many have a lot
of other details to think about. Secondly , the
above routine requires 10 decimal memory
storage locations . It is always a good practice
to try and develop routines that operate in a
minimum amount of memory. Lets take a
look at another subroutine that accomplishes
exactly the same objective, that saves 20 per-
cent of memory space, and that will not inter-
fere with the original contents of the accum-
ulator.

DECR, DCL Decrement contents of L
INL N ow check to see if it had been 000
JFZ NOTa
DCH

NOTa, DCL
RET

If not 000 then not going to new page
If 000 then DECR H to next lower page
Decrement L to complete subroutine
Exit subroutine

The above subroutine used a little pro-
gramming creativity to come up with a
method of accomplishing the desired
objective. Register L was decremented and
then incremented back to its original value.
The process of incrementing it back to its
original value would cause the CPU flags to be
set so that a flag testing instruction could be
used to see if the original value was 000. If
that was the case, decrementing it would
cause it to go to 377, and thus register H
shou ld be decremented to the next lower
page. That is done if necessary . Then register
L is decremented to its final value whether or
not the address is going to a new page!

While registers Hand L are the only re-
gisters that may be used to point to memory
locations when using memory reference in-

4-5

structions in an 8008 machine, it is often
necessary to use other CPU registers to tem-
porarily hold memory addresses. It may be
desirable, for instance, to transfer blocks of
data from one area in memory to another.
This must be done one word at a t ime. First
a word must be extracted from memory
location M by say a LAM instruction , with
registers Hand L pointing to address M. Then
Hand L must be altered to an address, lets
call it N, where the data is to be deposited.
An LMA instruction could then be used to
place the data in the new memory location.
Often a string of data words might be trans-
ferred in such a fashion. It would be rather
cumbersome if one had to keep using
LHI MMM and LLI MMM commands
followed by LHI NNN and LLI NNN in-
structions in order to keep altering the

memory pointer registers between the two
areas in memory. However, if Hand L were
initially set to point to memory location M,
and CPU registers D (say for the page address)
and E (for the address on the page) were set

to point to memory location N , then a
switching program to exchange the contents
of H with D and L with E could be developed
to considerably ease the task. Such a sub-
routine might be as follows.

SWITCH, LCH
LHD
LDC
LCL
LLE
LEC
RET

Load contents of H into C temporarily
Now load D into H
Move original H from C into D
Similarly load L into C temporarily
Put E into L
And store original L in E
Exit subroutine

Now, by simply calling the subroutine to
switch the contents of the registers, the pro-
grammer has a means of changing the memory
pointer registers between two different areas
in memory. To illustrate how quickly a
library of small subroutines starts developing
into real potential, two subroutines illustrated
on the last several pages will be used in a small

program to accomplish the task just discussed,
which is that of moving data from one area of
memory to another. Let's assume that a pro-
grammer desired to move the data in 100
(octal!) words of memory starting at location
000 on page 02 up to an area starting at
location 200 on page 03. The following pro-
gram would do the job nicely.

SETUP, LHI002
LLI 000
LDI 003
LEI 200
LBI100

MOVIT, LAM
CALADV
CAL SWITCH
LMA
CAL ADV
CAL SWITCH
DCB
JFZ MOVIT
RET

Set up H to page of 1st memory area
And L to starting location of 1st area
Set D to page of 2nd memory area
And E to starting location of 2nd area
Set up a counter in CPU register B
Get contents of word from 1st mem area
Advance memory pointer (in 1st area)
Change H & L to point to 2nd area
Deposit word in 2nd area
Advance memory pointer (in 2nd area)
Change back to point to 1 st mem ory area
Decrement counter
If counter not = 000, then continue moving
Exit RTN (or HLT , JMP, etc.)

USING MEMORY LOCATIONS TO STORE
POINTERS AND COUNTERS

necessary to hold the values of counters and
pointers in memory locations so that the CPU
registers can· be opened up for other uses . This
practice does have a drawback . Since the con-
tents of memory locations cannot be directly
incremented, the contents must first be
loaded into a CPU register, then the incre-
ment or decrement performed. Then the new
value put back into its memory storage

While CPU registers make ideal storage
places for pointers and counters because they
can be directly incremented and decremented,
there are simply not enough of them to store
all the pointers and counters that might be
used in a fair sized program. It then becomes

4-6

location. This takes a lot of extra instru ctions
over that required if the counter or pointer
can be kept permanently in a CPU register .
This is especially so since to even o btain the
counter from memory. it will always be
necessary to first set up the H & L registers
to point to the memory location where the
counter or pointer is stored ! However, since
that is what has to be done in all but small
programs. the best thing to do is to try and
organize the process using subroutines that
will reduce the amount of memory used by
the operating program.

Perhaps the first item to consider is wh ere
to sto re the counters and pointers for a
program. We ll . it is generally a good idea to
set aside a section of memory to be used
exclusively for storing counters and pointers
for the program. Preferably this should be on
one page of memory (versus crossing page

boundaries). While essentially any page may
be used . it may be that for large programs
having the pointers and counters o n page 00
will save a bit of programming room. This is
because whenever the program needs to refer
to a counter. register H (as well as L) must be
set up to point to the page where the counter
is stored. It seems that there is often a zero
register (one set to 000) arou nd among the
CPU registers. Thus a LHX one word in-
struction can be used to set H to the page
instead of having to use a LHI XXX command
as will generally be the case if the pointers
and counters are not stored in an area on
page 00.

Once o ne has decided where particular
counters are to be stored. a subroutine to
retrieve anyone of them and increment or
decrement the value. then restore it back to
memory. is quite straigh t-forward .

CNT UP. LCM
INC
LMC
RET

Fetch CNTR indicated by H & L
Increment value of the counter in reg C
Restore new counter value to memory
Exit subroutine

CNTDWN. LCM
DCC
LMC
RET

Fetch counter
Decrement value
Return counter to storage
Exit subroutine

The two subroutines just illustrated can be
called as desired to o btain a counter and in-
crement or decrement the value once registers
Hand L have been loaded with the address of
the co unter. Note. too. that the subro utine
would also allow the result of the increment
or decrement to be tested by a co nditional in-
struction after the subroutine is finished. This
is because there are no instructions after the
INC or DCC that affect the status of the CPU
flags!

Storing pointers in memory is generally a
little more complicated than sto ring counters
because pointers generally require two storage
locations. One word fo r the page address. and
one fo r the locatio n on the page. In add itio n.

4-7

since the H & L registers will have to be used
to point to where t he pointers are stored in
memory. and since the pointers stored in
memory cannot be used as pointers until they
are placed in the H & L registers . a method of
first obtaining the new pointer into unused
CPU registers. then swapping it with the H &
L registers. must be used. The process is not
so difficult if use is made o f some of the sub-
routines (such as SWITCH) which have al-
ready been presented in this chapter.

The example illustrated next shows a
general subroutine that will obtain a two
word po inter stored in memory . Then use the
pointer obtained to put the cont ents of the

accumulator into a memory location speci-
fied by the pointer just o btained _ Next, it will
increment the pointer , then restore it back to
its storage place in memory. The routine
assumes that the H & L registers will be set to

the page address of the location where the
pointer is stored by the calling program, and
that the pointer is stored in two consecutive
words . First the page, and then the location
on the page.

POINT1, LDM
INL
LEM

Fetch po inter page addr into reg D
Advance to pick up contents of next word
Get location addr into register E

CAL SWITCH
LMA

Put new pointer into H & L

CAL ADV
CAL SWITCH
LM E

Put ACC in to mem indicated by new pointer
Increment the new pointer

DCL
LMD

Restore new pointer storage address
Deposit pointer location addr in mem
Decrement back to page addr storage wo rd
Deposit pointer page addr in mem

RET Exit subroutine

The reader should note a nice feature of
the above subrout ine. When the subroutine is
finished the contents of H & L are set to
point to the storage area of the pointer stored
in memory . Thus , the subroutine could now
be called again if desired without having to
set up the H & L registers. Furtherm ore , when

the routine is exited , CPU registers D & E
will contain the latest value of the poin ter
stored in memory . This might be valuable in
cases where further processing was to be done
in the section of memory wh ere the stored
pointer was o perating. For instance, examine
the small program illustrated next .

BUFFIN , LHI 000
LLI 240

INAGN, CAL INPUT
CAL POINTl
CPI215

Set page where huffer pointer stored
Set locatio n on page of buffer po inter
Get a character from input device
Put the character into mem buffer area
See if char was ASCII code for CR

JF Z INAGN
RET

If not, get another character
Exit rtn when find a CR character

The above program, as short and simple as
it looks, is really quite powerful. The reader
may observe that it is a program that will
store a string of characters receiveci fro m an
inpu t device into a buffer area in memory .
It will continue p lacing characters into the
memory buffer area until it detects a CR
(carriage-return) character. The location of
the memory buffer area is stored in a pointer
that is located at locatio ns 240 (page) and

4-8

241 (iocation on the page) o n page 00. Of
course, befo re th e above routine was used,
t he programmer would want to put the
proper address for t he buffer area into those
locations. The above ro utine is reall y a general
purpose routine to accept text sentences and
store them in a memory buffer. To expand
the above subroutine into a complete program
requires very little additional effort. The fol-
lowing example illustrates this point.

DATAIN, LHIOOO
LLI240
LMI003
INL
LMIOOO
LLI250
LMI012

Set page where POINTI pointer stored
And address o n the page for POINTI
Set start of memory buffer area (PAGE)
Advance to next wo rd
Set start of memory buffer area (LOCATION o n PAGE)
Address of a LINE COUNTER

MO RIN, CAL BUFFIN
LHIOOO
LLI250

Set LINE COUNTER to 10 (decimal)
Get a line of text

CA L CNTDWN
J FZ MORIN
HLT

Setup storage address of line counte r
Setup storage address of line counter
Decrement LINE COUNTER value
If not 10 (decimal) lines then get another line
End o f program (could be JMP, RET, and so fo rth)

The above program first. initia lizes the
starting location of the text buffer to PAGE
03 LOCATIO N 000 by setting those values
into the POINTI memory storage words.
It also initializes a counter stored in mem ory
to a value determined by the programmer.
Then the subroutine that inputs lines of text
is called. Each time a line of text is obtained,
the LINE CO UNTE R is decremented and a
decision made as to whether or not another
line of text should be obtained . When a pre-
determined number of lines of text have been
obtained , the program sto ps. Instead of halt-
ing, however, the program could have been
directed to proceed e lsewhere by using a JMP
command . Or. the entire program could have
been made a subrou tine by using a RET as the
last instru ction in the routine!

It is ho ped that the reader is rapidly begin-
ning to understand how qu ickly small, general
purpose subrou tines. start developing tremen-
dous potential as they are team ed with other
routines. Also, the read er should begin to see
how t he use of memory augments th e capa-
bility of t he CPU registers. By using memory
locations to store po inters and counters, the
programm er opens a whole new dimension in
the world of programming. It is hoped the
novice programmer beco mes a little bit
excited as these co ncepts are grasped and
understood . These co ncepts are just the
beginning! A little excitement stimulates the
imagination and gives one incentive to go for-
ward , investigate, and learn more!

4-9

Before going furt her , ho wever , it might be
wise to slo w things down for just a moment
and reiterate the importance of keeping a pro-
gram organized as it is developed. In the last
several pages, a number of subro utines were
presented . They were then combined to form
larger subroutines. Finally a small TEXT
BUFFE R INP UT PROGRAM was presented.
The program presented used memory storage
in a variety of ways. First the program itself
had to be stored in memory . Secondly, opera-
tional portions of the program required
memory storage areas for pointers and count-
ers. Last, but not least, the program required
the use of memory for manipulating DATA in
the area called the TEXT BUFFER. Further-
more . the TEXT BUFFER INPUT
PROGRAM really consisted of a whole group
of small subroutines. Subroutines that could
be stored in different areas in memory. What
is needed, as has been discussed in the prev-
ious chapter. is a MEMORY MAP to help the
programmer plan the allocation of memory.
It m ight be worthwhile practice for the
reader to develop a memory map for the pro-
gram that has just been developed . A good
method to fo llow would be to set aside room
fo r the main part of the program (perhaps
leaving a good amount of space for ex panding
the program if desired) . Then the various sub-
routines may be assigned to areas, possibly
leaving sonle room between each one in the
event future modifications are desired or re-
qu ired. One might use a separate memory
map for each page of memory in which sub-

routines are stored. In areas where counters
and pointers are stored, the maps might be

PG LOC MACH INE CODE LABELS
00 240 BUFPTH,
00 241 BUFPTL,
00 242
00 243
00 244
00 245
00 246
00 247
00 250 COUNT,
00 251
00 252
00 253
00 254
00 255
00 256
00 257
00 260
00 261
00 262
00 263
00 264
00 265
00 266
00 267

expanded to show the actual individual
addresses of where the information is stored.

MNEMONICS COMMENTS
Pg addr of pointer
Low addr of pointer

Text LINE COUNTER

EXPANDED MEMORY MAP SHOWING LOCATIONS OF POINTERS AND COUNTERS
FOR THE TEXT BUFFER INPUT PROGRAM

The sample maps illustrated here show
one way the program could be assigned to
memory locations. The pointers and counters
are placed on PAGE 00 as originally de-
fined . The subro utines have been assigned
to various areas in memory on PAGE 02.

4 - 10

Some space has been left between each sub-
routine in case modifications to the program
should be desired at some later time. Note
how the use of the memory maps gives a
coherence to the program that was not
readily discernable when one simp ly tried

to maintain the mental image of the organi-
zation of the program. (PAGE 03 is assumed
to be used so lely as the TEXT BUFFER

PG LOC MACHINE CODE LABELS
02 000 DATAIN,
02 010
02 020
02 030
02 040

02 200 BUFFIN ,
02 210
02 220
02 230 POINTl,
02 240
02 250
02 260 SWITCH,
02 270 ADV,
02 300 CNTDWN,

storage area for the program and a memory
map for the usage of that area is not illus-
trated .)

MNEMONICS COMMENTS
Input 10 decimal lines of
text into buffer area - PG
03. Main rtn uses abt 30
octal locations - but leave
room for expansion.

Input 1 line of text, a CR
ends line of input.

Fetch pntr locs in memory
designated by calling rtn -
dep ACC in memory , etc.
Exch H&L with D&E
Incr value in H&L
Decr cntr stored in memo

SAMPLE MEMOR Y MAP OF THE TEXT BUFFER INPUT PROGRAM ILLUSTRATING
THE MAIN RO UTINE AND SUBROUTINES ASSIGNED TO MEMORY AREAS ON PAGE 02

Once the memory maps have been made up
and the starting addresses of all the subrout-
ines assigned, it is an easy matter to co nvert
the mnemonics to machine code. An assem-
bler program may be used if availab le. For

4 -11

practice, the reader might want to try de-
veloping the machine code for the TEXT
BUFFER INPUT PROGRAM just pre-
sented by hand. For comparison purposes
the object code for the program would

appear as listed below if the subroutines
are assigned to the addresses as shown

02000 056 DATAIN , LHI 000
02001 000
02002 066 LLI240
02003 240
02004 076 LMI003
02005 003
02006 060 INL
02007 076 LMIOOO
02010 000
02011 066 LLI250
02012 250
02013 076 LMI012
02014 012
02015 106 MORIN, CAL BUFFIN
02016 200
02017 002
02020 056 LHI 000
02021 000
02022 066 LLI250
02023 250
02024 106 CAL CNTDWN
02025 300
02026 002
02027 110 JFZ MORIN
02030 015
02031 002
02032 000 HLT

02200 056 BUFFIN, LHI 000
02201 000
02202 066 LLI240
02203 240
02204 106 INAGN, CAL INPUT
02205 ttt
02206 ttt
02207 106 CAL POINT1
02210 230
02211 002
02212 074 CPI 215
02213 215
02214 110 JFZ INAGN
02215 204
02216 002
02217 007 RET

4· 12

in the example memory map presented
on the previous page.

Set page where POINT1 pointer stored

And address on the page for POINT1

Set start of memory buffer area (page)

Advance to next word
Set start of mem buff area (lac on page)

Address of a LINE COUNTER

Set LfNE COUNTER to 10 (decimal)

Get a line of text

Setup storage address of LINE COUNTER

Setu p storage address of LINE COUNTER

Decrement LINE COUNTER value

If not 10 (dec) lines, get another line

End of pgm (could use RET, JMP , etc.)

Set page where buffer pointer stored

Set location on page of buffer pointer

Get a character from input device

Put the character into mem buffer area

.
See if char was ASCII code fo r CR

If not, get another character

Exit rtn when fi nd a CR character

02230 337 POINT 1 , LDM
02231 060 INL
02232 347 LEM
02233 106 CAL SWITCH
02234 260
02235 002
02236 370 LMA
02237 106 CALADV
02240 270
02241 002
02242 106 CAL SWITCH
02243 260
02244 002
02245 374 LME
02246 061 DCL
02247 373 LMD
02250 007 RET

02260 325 SWITCH, LCH
02261 353 LHD
02262 332 LDC
02263 326 LCL
02264 364 LLE
02265 342 LEC
02266 007 RET

02270 060 ADV, INL
02271 013 RFZ
02272 050 INH
02273 007 RET

02300 327 CNTDWN, LCM
02301 021 DCC
02302 372 LMC
02303 007 RET

ORGANIZING AND MANIPULATING
TABLES

A very powerful feature of a digital com -
puter is its ability to store data and to process
it as t he programmer desires. The programmer
may desire, perhaps, to have the data arranged
into some specific kind of order, or to obtain
some mathematical information such as the

4 - 13

Fetch pointer page addr into register D
Adv to pick up contents of next word
Get location address into register E
Put new pointer into H & L

Put ACC into mem indicated by pntr
Increment the new pointer

Restore new pointer storage address

Deposit pntr location address in mem
Decr back to page addr storage word
Deposit pointer page addr in memory
Exit subroutine

Load contents of H into C temporarily
N ow load D into H
Move original H from C into D
Similarly load L into C temporarily
Put E into L
And store original L in E
Exit subroutine

Increase value of register L by one
Exit subroutine if not going to new page
Increment H by one if on new page
Exit subroutine

Fetch COUNTER
Decrement value
Return COUNTER to storage
Exit subroutine

average of a group of data values. Or, one
might desire to have the computer condense
raw data into some sort of compact form by
directing it t o scan the data for relevant
information. The digital computer is well
suited for rapidly extracting information
of particular interest from a memory
storage area by performing such functions
as matching similar types of data. Or, it
may be used as a converting machine whereby

data in one type of form (code) can be quick-
ly changed to a different representation . In
such applications as these , it is frequently
necessary to develop programs that organize
data into TABLES or to create programs
that can process information stored in tab le-
like fo rmat .

There are a variety of ways to organize
tab les fo r computer processing. The reader
has already , whether it has been realized or
not, been introduced to several types of
TABLES in this manual. In the first chapter
mention was made of using a LOOK-UP
TABLE to convert between ASCII and
BA UDOT cod es used in various kind s of
electric typing machines. In this chapter , th e
discussion and programming consideratio ns
for a text buffer were actually concerned with
a FREE-FORM type of table.

F or the purposes of the following discus-
sio n , two basic types of table organizations
will be discussed. One will be referred to as
FIXED-FORMAT, t he other as FREE-FOR-
MAT. The fixed-format type o f table refers
to tables that are fixed by programming co n-
siderat ions into strict, unchanging patterns
of organization . The free-format kind use
different programming techniques to allow
the storage of data in rand om length sections
of memory. There are advantages and dis-
advantages to each format. The choice of
which one to use is generally a function of t he
type o f task that is to be performed. Free-
format organization is generally more suitab le
to text handling tasks. Fixed-format organi-
zation is generally the choice for conversion
tables . There are also cases where the choice
is a relatively minor one, and it becomes a
matter of the programmer 's p reference .

To begin delving into the subject , a table
with many practical applications will be dis-
cussed. Programming consideratio ns for d e-
veloping it in both types of formats will be
presented. In many situat ions, it is desirable
for a computer program to have a CONTROL
TABLE . That is, a table that will interpret
commands from an input device , and, de-
pending on what is received, perform a

4 - 1 4

specific type of fu nction. For the purposes
of this illustratio n , it will be assumed that an
operator will type in commands from a key-
board . The commands will be in the form of
words that may vary in length from '2' to '6'
characters. Wh enever a word has been in-
putted to the computer, the computer will
check to see if the co ntrol table co ntains a
matching word. If so, the computer will ob-
tain the address of a routine that it is to per-
fo rm , and execute the fu nction. When it is
through performing the routine , or if a match
for t.he command was not found, the program
will return to the COMMAND MODE. It will
then wait for a new keyboard entry (after
sending a respo nse on a output device to
notify the operator it is ready for a new
entry) . For this example, the output device
will be assu med to be an electric typewriter.

For a hypothetical example , it will be pro-
posed that the co nt rol words consist of the
fo llowing: GO, LIST, MEDIAN, AVG,
COUNT , and ERASE. These control words
might be associated with a program that is
to be used by a scientist co nducting some
type of experiment . Suppose the control
command GO indicated the computer was to
start a 10 seco nd timing loop . At the start of
the 10 second time period, the program
would send a reset pulse to some sort of ex -
ternal counting device. The device might be
co unt ing the events that occurred in some
kind of experiment . When the 10 seco nd
period was over, the computer would im-
mediately obtain the value registered by the
external counter . It would t hen store the
number obtained in a data buffer. The LIST
command might direct the computer to print
ou t all the data values stored in the data
buffer. (Perhaps the scientist could look for
patterns or just have a copy of the raw ex-
perimental data .) The MEDIAN command
could direct the computer to determine the
median, or Itliddle value ou t of all the values
stored in the data buffer , and print ou t t hat
number. Similarly, the AVG directive could
signify that the program was to execute a rou-
tine to calculate the average value of the data.
The COUNT command might be used to have
the computer indicate how many 10 seco nd

experiments had been conducted. And, the
ERASE command cou ld signify that the data
buffer was to be cleaned out for a new set of
experiments.

would direct the computer to the proper rou-
tine to be executed. The control table could
be constructed by sett ing aside an area in
memory _ That area could contain the proper
code for the letters in each contro l word,
followed by two memory words contain ing
the page and low address of where the appro-
priate routine resided. If the contro l table was
constructed in FIXED-FORMAT, it might
appear as follows.

The contro l tab le needs to be constructed
so that the program can search for a word
that is the same as that entered on the key-
board. If a match is found, then the table
would contain information (an address) that

FIXED-FORMAT CONTROL TABLE

02000 307 Code for letter G
02001 317 Code for letter 0
02002 000 Not used for this command
02003 000 Not used for this command
02004 000 Not used for this command
02005 000 Not used for this command
02006 001 Page where GO routine starts
02007 100 Lac on pg where GO starts
02010 314 Code for letter L
020ll 3ll Code for letter I
02012 323 Code for letter S
02013 324 Code for letter T
02014 000 N at used for this command
02015 000 Not used for this command
02016 001 Pg where LIST routine starts
02017 140 Lac on pg where LIST starts
02020 315 Code for letter M
02021 305 Code for letter E
02022 304 Code for letter D
02023 311 Code for letter I
02024 301 Code for letter A
02025 316 Code for letter N
02026 001 Pg where MEDIAN rtn starts
02027 200 Lac on page for MEDIAN
02030 301 Code for letter A
02031 326 Code for letter V
02032 307 Code for letter G
02033 000 Not used for this command
02034 000 N at used fo r this command
02035 000 Not used for this command
02036 001 Pg where A VG routine starts
02037 240 Lac on page where A VG starts
02040 303 Code for letter C
02041 317 Code for letter 0
02042 325 Code for letter U
02043 316 Code for letter N

4 - 15

02044 324 Code for letter T
02045 000 Not used for this command
02046 001 Pg where COUNT rtn starts
02047 300 Loc on pg where COUNT starts
02050 305 Code for letter E
02051 322 Code for letter R
02052 301 Code for letter A
02053 323 Code for letter S
02054 305 Code for letter E
02055 000 Not used for this command
02056 001 Pg where ERASE starts
02057 340 Loc on pg where ERASE starts
02060 000 **End of table marker* *

It may be noted that the fixed-format table
occupies memory from location 000 to 060
(including an end of table marker which will
be discussed later). Observation of the table
shows that there is a lot of wasted space
where memory locations are filled with zeros

when the command word did not require six
characters. More characteristics of the above
format will be presented shortly. First , two
similar free-format versions of the same
control table will be illustrated.

FREE-FORMAT CONTROL TABLE - VERSION NO.1

02000 307 Code for letter G
02001 317 Code for letter 0
02002 000 *End of command word marker*
02003 001 Page where GO routine starts
02004 100 Loc on pg where GO starts
02005 314 Code for letter L
02006 311 Code for letter I
02007 323 Code for letter S
02010 324 Code for letter T
02011 000 *End of command word marker*
02012 001 Pg where LIST routine starts
02013 140 Loc on pg where LIST starts
02014 315 Code for letter M
02015 305 Code for letter E
02016 304 Code for letter D
02017 311 Code for letter I
02020 301 Code for letter A
02021 316 Code for letter N
02022 000 *End of command word marker*
02023 001 Pg where MEDIAN rtf> starts
02024 200 Loc on pg for MEDIAN
02025 301 Code for letter A
02026 326 Code for letter V
02027 307 Code for letter G
02030 000 *End of command word marker*
02031 001 Pg where A VG routine starts

4 - 16

02032 240 Lac on page where A VG starts
02033 303 Code for letter C
02034 317 Code for letter 0
02035 325 Code for letter U
02036 316 Code for letter N
02037 324 Code for letter T
02040 000 'End of command word marker'
02041 001 Pg where COUNT rtn starts
02042 300 Lac on pg where COUNT starts
02043 305 Code for letter E
02044 322 Code for letter R
02045 301 Code for letter A
02046 323 Code for letter S
02047 305 Code for letter E
02050 000 'End of command word marker'
02051 001 Pg where ERASE starts
02052 340 Lac on page where ERASE starts
02053 000 "End of table marker"

FREE-FORMAT CONTROL TABLE - VERSION NO.2

02000 307 Code for letter G
02001 317 Code for letter 0
02002 001 Page where GO routine starts
02003 100 Lac on pg where GO starts
02004 314 Code for letter L
02005 311 Code for letter I
02006 323 Code for letter S
02007 324 Code for letter T
02010 001 Pg where LIST routine starts
02011 140 Lac on pg where LIST starts
02012 315 Code for letter M
02013 305 Code for letter E
02014 304 Codr for letter D
02015 311 Code for letter I
02016 301 Code for letter A
02017 316 Code for letter N
02020 001 Pg where MEDIAN rtn starts
02021 200 Lac on pg for MEDIAN
02022 301 Code for letter A
02023 326 Code for letter V
02024 307 Code for letter G
02025 001 Pg where A VG routine starts
02026 240 Lac o n page where A VG starts
02027 303 Code for letter C
02030 317 Cod e for letter 0
02031 325 Code for letter U
02032 316 Code for letter N
02033 324 Code for letter T

4 - 17

02034 001 Pg where COUNT rtn starts
02035 300 Lac on page where COUNT starts
02036 305 Code for letter E
02037 322 Code for letter R
02040 301 Code for letter A
02041 323 Code for letter S
02042 305 Code for letter E
02043 001 Pg w here ERASE starts
02044 340 Lac on page where ERASE starts
02045 000 **End of table marker**

The read er may immediately notice that
both o f the free-format organizations tak e
less memory storage for the table itself than
the fixed-format arrangement. This is
generally the case when there are large
variations in the length of the data strings
(number of m emory words to a FIELD, such
as the control words in the tables) that are
held in the table. For fixed-format tables,
each BLOCK (in the example being discussed
a BLOCK would be 8 memory words) must
be long enough to contain the largest possible
field that could be encountered in the applica-
tion. (In the present illustration, the fields in
a block would be the control word field, and
the address field. The largest control word
field requires 6 memory words. All the
address fields require 2 words. Thus each
block must have 8 memory locations avail-
able.) Note that a fixed-format table may not
require more room than a free-format table of
the type shown in version no. 1 if there is not
a large variation in the length of data within
fields . For instance, had all of the control
words been selected to be 5 and 6 letters in
length, then version no. 1 would have actually
required more memory space for the table
than the fixed-format configuration.

However , the amount of memory space oc-
cupied by the table itself is not t he only pro-
gramming point to be considered when
cho osing the table format to be used in a

ADDRESS LOCATION

WORD NO.1
WORD NO.2

4 - 18

particu lar program. One must also look at
some other parameters that will have an effect
on the total size of the program. One subtle
parameter , for instance, is how will the in-
putted character string for a control word be
delimited. Suppose, for example , that a
control word character string is inputted via
an ASCll keyboard su broutine and stored in
a small buffer area in memory. One may
assume that the actual input string was de-
limited (ended) by a special character such as
a carriage return. The carriage return would
inform the input routine to cease accepting
characters and return to the calling program.
However, since the character string that was
received mu st also be used by some other
routine (when searching the control table for
a match), and since the character string may
vary in length , then so me means must be
provided for telling the table search routine
just how many characters are in the parti-
cular string of characters stored in the buffer'

This can be done in several different ways.
One way would be to have the carriage return
code received by the ASCII input routine be
stored as the last character in the character
string buffer. The table search routine cou ld
use the CR sy mbol as a delimiter to signify
the end of the character string. The character
string buffer would then co ntain information
stored as shown here:

CONTENTS

Code for character No.1
Code for character No.2

WORn NO.3

WORn NO. N
WORn NO. N + 1

Note , t he n , that the character bu ffer would
have to be a block of locations in memory
long enough to hold (N + 1) characters where
N is the max imum number of characters
allowed in a control wo rd.

A second way to delimit the character
string in the buffer would be to set up a
counter t hat increased in value each time a
character was accepted into the buffer. The
value in the counter could t hen be used by
the table search routine to indicate how long
the character string was.

Still another technique would be to utilize
a buffer address pointer that would point to
the actual address of the last character in the
buffer.

The seco nd and third schemes allow the
character buffer to be just N characters in
length (instead of N + 1). However, the
savings in buffer space is hardly enough to be
concerned with, particularly since some other
location(s) would have to be set aside for
storing the value of the counter or buffer
address pointer.

The different methods are mentioned , how-
ever, to demonstrate the important fact that
there is more than one way to approach the

MNEMONIC

Code for character No.3

Code for character No. N
Code for carriage-return

problem. The programmer must develop the
practice of examining alternative ways. While
the differences are often subtle, certain
cho ices may be of particular value in certain
applications.

An idea that should be mentioned at this
point co ncerns the practice of trying to de-
velop programs that are goof-proof, or
human-engineered. The importance of this
factor should not be overlooked. For those
that do will often find themselves spending
many hours reworking programs that have
sudden ly gone beserk while in operation. The
ability to plan programs that take this impor-
tant parameter into consideration generally
distinguishes the novice from the experienced
programmer. What is meant by human-
engineering can be demonstrated by the
following discussion.

Suppose, for t he example being developed
here, that the programmer elected to develop
the character string input routine using
scheme no. 1 presented above by setting aside
a character buffer N + 1 words in length.
(Which would be 7 in this case, as the
maximum size of a control word in the
example is 6 characters .) Now, a novice, or
unwary beginner might proceed to develop
the routine along the following lines.

CO MMENTS

INCTRL, LHI XXX
LLIYYY

INCHAR, CAL INPUT
LMA

Set page add r of start of char buffer
Set loc on page of start of char buffer
Get a character from input subroutine
Store in character string buffer

CPI 215
RTZ
CAL AnV
JMP INCHAR

See if character was a CR
Exit subroutine if CR
Advance buffer pointer
Loop to get next character

4 - 19

An experienced programmer would more likely have the subroutine appear like:

MNEMONIC COMMENTS

INCTRL, LHI XXX
LLI YYY
LBI006

Set page addr of start char buffer
Set lac on page of start of char buffer
Set SAFETY counter

INCHAR, CAL INPUT
CPI215

Get a character from input subroutine
See if character was a CR

JFZ CHECK
LMA

If no t CR go to safety check routine
If CR then store in buffer

RET And exit su broutine
CHECK, INB

DCB
Exercise register B to set flags
For its original contents

JTZ INCHAR
DCB
LMA

If B was 000, ignore present character
Otherwise, decrement value of B
Store character in buffer

CAL ADV
JMP INCHAR

Advance buffer pointer
And loop to get next character

What does the second subroutine do that
the first did not? It guarantees that if some-
body types in a character string more than six
characters long, that the buffer will not
expand beyond its intended length, possibly
resu lting in characters being loaded into por-
tions of memory that contain program
instructions or other data, the altering of
which might eventually result in a program
blow-up!

Still another way to delimit an input char-
acter buffer, and a method particularly suited
to dealing with a fixed format tab le, is to
clear out the buffer prior to the start of
entering a character string by inserting all zero
words into the buffer. When using this
method, it is not desirable to insert a CR at
th e end a f the string, bu t rather to sim p ly
allow the presence of a zero word denote the
end a f the character string.

MNEMONIC

Once the input character buffer has
received a character string and a method of
delimiting the string been selected, one may
proceed to develop methods to search the
control table for a contro l word that matches
the character string in the buffer. The search
routine will reflect the method used to or-
ganize the table, as well as the delimiting
format used in the character string buffer.
The various ramifications of what is meant by
this can perhaps best be clarified by con-
sidering a few programming examples.

Examine the following portion of a search
routine designed to look for a match between
the characters in a buffer (terminated by a
zero word) and the characters contained in
the control word fields of the blocks making
up the table.

COMMENTS

SEARCH, LDI 002
LEI 000

INITBF, LHI XXX
LLI YYY

Set pointers to starting addr of table
Set pointers to starting addr of table
Set pointers to start of char buffer
Set pointers to start of char buffer

4 - 20

CMATCH,

**

NXWORD,

SETNXW,

LBI006
LAM
CAL ADV
CAL SWITCH
CPM
JFZ NXWORD
DCC
JT Z FOUNDW
CAL ADV
CAL SWITCH ,.
JMP CMATCH
DCB
JT Z SETNXW
CAL ADV
JMP NXWORD
CAL ADV
CAL ADV
CAL ADV
CAL SWITCH
JMP INITBF

Set contro l word field size counter
Get char fm buffer (form char match loop)
Subroutine to advance buffer pointer
Exchange buffer pntr for table pointer
See if have a match condition
If no match, go to next block in table
If match, decr field size counter
All chars in field matched if cntr = a
Char match but not finished, adv pntr
Exchange table pntr for buffer pointer
Loop to see if next character matches
Decr field size cntr to find end of
Current control word field, JMP when find
Otherwise advance table pointer
And loop to look for end of CW field
At end of control word field need to
Advance pntr over the address field
To the start of next co ntrol word field
And then exchange table for buffer pntr
And form loop to check next block in table

Remember, the above routine assumes that
the input character buffer is cleared before a
new input character str ing is accepted . Thus,
the input buffer would contain zeros in the
locations from N + 1 to the end of the buffer
(where N is the last character of the input
string). If, for example, the input buffer con-
tained the following:

WORD NO.

1
2
3
4
5
6

CONTENTS

Code for A
Code for V
Code for G

000
000
000

WORD NO. CONTENTS

1 Code for G
2 Code for 0
3 000
4 000
5 000
6 000

then the routine just presented would find a
match in the fir st block of the fixed format
table described several pages earlier. When the
match with the control word in the table was
found , the routine would jump to the as yet
undefined FOUNDW routine to extract the
address of the GO routine from the table.
However , had the input character contained:

4 - 21

then the routine would fail to find a match
in the first control word field. When the
match failed it would jump to the NXWORD
portion of the program to advance the table
pointer to the start of the next control word
field in the table. Then jump back to the
INITBF portion to initialize t he character
buffer pointer and proceed to look for a
match in the next block of the table . This
loop would continue until the matching con-
t ro l word A VG was found about halfway
down the table.

Had some smart-aleck operator keyed in
the following to the input character buffer:

WORD NO. CONTENTS

1 Code for S

2
3
4
5
6

Code for I
Code for L
Code for L
Code for Y

000

routine denotes a point where an end of table
test might be inserted in the above routine.

then the program would eventually bomb!
Reason? (Here comes human engineering
again!) Simp ly that the above routin e has no
way of determining where the end of the
table exists in memory. The handling of that
problem will be discussed shortly after some
more examples related to the current topic
have been presented. The reader should note
here that the ** * mark near the end of the

It is desirable at . this point to illustrate
several other search routines to demonstrate
how they are affected by the table organi-
zation and the method used to delimit the
input character buffer . Suppose one is still
using the fixed-format table, but instead of
clearing out the input buffer before accepting
a new character string (so that it is delimited
by locations containing zeros), one uses an
input routine that delimits the buffer by using
a CR symbol. The routine to look for a match
between the contents of the buffer and a co n-
trol word in the table might appear as follows.

SEARCH, LDI 002
LEI 000

INITBF, LHI XXX
LLI YYY
LBI006

CMATCH, LAM
CPI215
JTZ LCHAR
CALADV
CAL SWITCH
CPM
JFZ NXWORD
CAL ADV
CAL SWITCH
DCB
JMP CMATCH

LCHAR, XRA
CAL SWITCH
CPM

** JTZ FOUNDW
INB
DCB

** JT Z FOUNDW
NXWORD, DCB

JTZ SETNXW
CAL ADV
JMP NXWORD

SETNXW, CAL ADV
CALADV
CAL ADV
CAL SWITCH
JMP INITBF

Set pointer to starting addr of table
Set pointer to starting addr of table
Set pointers to start of char buffer
Set pointers to start of char buffer
Set control word field size counter
Get char fm buffer (form char match loop)
See if symbol for CR
If so, go to last character routine
Otherwise, advance buffer pointer
Exchange buffer pntr for tab le pointer
See if have match condx in table
If no match, go to next block in table
If match, advance table pointer
Exchange table pointer for buffer pntr
Decrement counter value (for nxword rtn)
Loop to see if next character matches
If CR in buffer, clear accumulator
Exchange buffer pointer for table pntr
And see if have 000 code in table
If so,.all chars in field matched
If not, see if counter is at 000
Indicating max control word field
Encountered so have control word match
If not, decr field size counter
If cntr = 0, at end of contro l word fld
If not, advance table pointer
And loop to look for end of field
At end of control word field need to
Advance pntr over the address field
To the start of next control word field
And then exchange table for buffer pntr
And form loop to check next block in tbl

4 - 22

The above routine is a bit more compli-
cated than the previous one . This is because
one must still keep track of the number of
characters that have been examined within a
control word field in the table section (for use
by the NXWORD routine) , and also make an
addit ional test for the end of the charader
string in the input buffer which is signified by
the code for a carriage-return. It" is assumed in
the above routine that the routine , that
accepts a character string into the input
buffer limits the string to a maximum of six
characters. Note that one must also make
special provisions for the case when the char-
acter string is six charaders in length by

testing the counter in the LCHAR portion
of the above routine.

The combination of using a CR terminated
buffer and a free-format table (such as the
free-format version No.1 illustrated earlier)
is less complicated to search because one can
drop the maintenance of the table control
word field counter. Instead, one may test for
the end of buffer marker (CR) and use the
end of field marker (000) in the table when a
match fails and it is necessary to advance to
the next control word in the table . This
search routine is illustrated next .

SEARCH, LDI 002 Se t pointer to starting addr of table
LEI 000 Set pointer to starting addr of table

INITBF, LHIXXX Set pointer to start of char buffer
LLI YYY Set pointer to start of char buffer

CMATCH, LAM Get char fm buffer (form char match loo p)
CPI215 See if symbol for CR
JTZ LCHAR [f so, go to last character routine
CAL ADV Advance buffer pointer
CAL SWITCH Exchange buffer pntr for table pointer
CPM See if have match condition in table
JFZ NXWORD If not, go to next block in table
CAL ADV If yes, advance table pointer
CAL SWITCH Exchange table pntr for buffer pointer
JMP CMATCH Loop to test next character

LCHAR , XRA Clear accumulator if have CR in buffer
CAL SWITCH Exchange buffer pointer for table pntr
CPM See if also have end of field marker

** JTZ FOUNDW [f so , have found matching control word
NXWORD , LAM If not, see if have end of field marker

NDA ***Trick to set nags after a load op***
JTZ SETNXW Found marker, go to next block
CAL ADV Marker not found, advance table pointer
JMP NXWORD And continue looking for marker

SETNXW, CAL ADV After marker found, advance table pntr
CAL ADV Over the address field to the start
CAL ADV Of the next control word field

*** CAL SWITCH Exchange table pntr for buffer pointer
JMP [NITBF And form loop to check next block in tbl

At first glance , developing a search routine
for the fixed-format table version No . 2 ,
would appear rather difficult because there is
no apparent end of control word field

marker' However, that table was organized to
take advantage of a particular fact that the
developer was aware of that would enable the
first part of the address field to be used as an

4 - 23

end of control word field marker. This fact is
that all of the character codes that might be
used in the co ntrol word field (which consists
of ASCII formatted symbols) have a 'I ' bit
in one or both of the two most significant
bits within a memory word that contains the
character. Additionally , it is known that the
maximum page address that can be utilized in
a typical 8008 system is 077 (octal) which
means that a memory word containing a
memory page address cannot have a 'I' con-

dition in either one of the two most signifi-
cant bits of the memory word that holds the
page address! Thus, by making a simple test,
using a masking operation described earlier
in this section, a routine can be developed
that will safely utilize the page address part of
the address field to serve as an end of a con-
trol word field! Thus, to search version No.2
of the free-format table , one could replace the
routines LCHAR and NXWORD used above
with the following substitute:

LCHAR, CAL SWITCH
LAM

Exchange buffer pointer for table pntr
Test for end of control field

NDI 300 By seeing if two MSB's are both 0
JTZ FOUNDW

NXWORD, LAM
If so, have found matching control word
Test for end of control field

NDI 300
JTZ SETNXW
CAL ADV
JMPNXWORD

By seeing if two MSB 's are both 0
If so, have marker, go to next block
Otherwise advance table pointer
And continue looking

As mentioned earlier, some means of de-
termining when the entire table has been
searched in the event a non-existent term is
placed in the input buffer must be incor-
porated in the search routine . Again, this task
can be accomplished in several different ways.
One way would be to set a counter at the
start of the search routine that contained the
total number of blocks in the table and decre-
ment it each time a block was checked. The
counter could be tested for a zero condition
to signify that the table had been searched.
Another way to accomplish the objective
would be to test the value of the table pointer
to see if it had reached a specific value which
would denote the end of the table . These two
methods have several drawbacks. One is that
the counter method would require storage
space. A CPU register could be used , but more
than likely one would have to resort to main-
taining a counter in a memory location in
order to conserve CPU registers. This would
require a somewhat more lengthy routine to
handle the updating and testing of the
counter. Testing to see if the table pointer ad-
dress had reached a certain value could be
done with an immediate type comparison

4 - 24

thus avoiding the maintenance of a storage
location. But, the method (along with the
counter method) is more cumbersome if the
programmer decides to expand the size of the
table at some future time_ This is because the
program would have to be modified at two
different points, the table itself, and the por-
tion of the routine that signifies the end of
the table, either the counter value, or the
address pointer value.

A method that is generally more con-
venient is to place a zero word at the end of
the "table as was shown for the example tables.
Then, at the start of each new block , the
search routine can conduct a simple test to
see if a zero word is present ind icating the end
of the table. (Naturally, in special cases
where, for instance, a data block might con-
tain a zero word at the first location in a
block , the n:tethod would not be appropriate
and one could resort to one of the above
techniques.) The method of using a zero
word also makes it easy to expand the size of
the table without having to modify any part
of the search routine. More blocks can simply
be added (replacing the former zero word)

and a new zero word added after the addition-
al blocks. The search routine, using the al-
gorithm presented below, would then auto-
matically be able to find the new ending

point of the table. The following instructions
could simply be inserted at the point in-
dicated by the three asterisks in the search
routines presented earlier.

LAM
NDA
JTZ NOSUCH

Fetch first character in new block
Trick to set flags after load op
If zero, end of table, no match found

The routine NOSUCH referred to by the
end of table test might be a small routine to
display a message to the operator ind icating
that there was no such command in the table.
Or, the JTZ instruction might be replaced by
an RT Z instruction that would return the pro-
gram to the calling routine. The calling rou-
tine could simply direct the program back to
the routine which fetches a new string of
characters into the input buffer.

One other portion of the search routine
that has not been touched upon is what the
program would do once a match was found
between the characters in the input buffer,
and a co ntrol word field in the table . This
portion of the routine was referred to as
FOUNDW in the previous examples.
FOUNDW would simply be a routine that
would advance the table pointer to the end

of the current control word field (where the
match occurred. Then extract the address
from the address field to enable the program
to jump to the locat ion given by the address
and proceed to perform a specific function.
The routine FOUNDW as given in the
example that follow s, contains an intrigueing
portion that illustrates one of the powerful
aspects about a computer. That is, a program
may be designed to alter the execution of
the program itself! This is done in the ex-
ecution of the FOUNDW routine. When the
program extracts t he address from the table,
it inserts it in a portion of the program for
the address portion of a jump instruction
which the program then proceeds to execute!
Care must be taken when developing such a
program to ensure that exactly the right
locations are modified by the program. This
will be apparent after examination of the
following routine.

FOUNDW,

FNDEND,

INB
DCB
JTZ SETJMP
CAL ADV
DCB

Check to see if the field counter is 000
Ind icating end of the control word field
If 0, set up the jump address

SETJMP,

NNN
MMM

JMP FNDEND
CAL ADV
LDM
CAL ADV
LEM
LHI MMM
LLI NNN
LME
INL
LMD
JMP NNNMMM
AAA
BBB

Otherwise advance table pointer
Decrement field counter
And keep looking for end of field
Advance pointer to 1st part (page) of address
And extract page address & store temp
Now advance pointer to location on page address
And store it temporarily
Now set memory pointer (H & L) to point to the
2nd byte of the jump instr. coming up
Put the LOW order address in byte 2
Advance the memory po inter
And the PAGE address in byte 3 of the JUMP
Now jump to the addr just loaded into
These two (LOW address)
Bytes (PAGE address)

4 - 25

The above FO UNDW routine was for the
case where the table was in the fixed-format
organization and a counter was used to find
the end of the control word field. Had the
free-format table been used, then the be-
ginning portion of FOUNDW would be ap-
propriately modified to find the end of the
co ntrol field. This could be do ne using the
techniques illustrated in the NXWO RD por-
tion of the previously illustrated routines
for that type of table.

variety of routines have been presented
showing various parts of the process. It might
be beneficial to the reader to present a nicely
packaged summary by presenting two table
search rou t ines. One using the fixed-format
table coupled with an input character string
buffer (that is cleared prior to accepting a
new character string), the other u sing a free-
format table (version No.2) coupled with an
input buffer that is delimited by a carriage
return. (The actual routine that accepts
characters from an 1/0 device will simply be
noted as a subroutine call in the following
examples. That routine would be a function
of t he 1/0 device used.)

The discussion of handling tables has ex-
tended over quite a few pages of text. A

NEXCMD, CALCLEARB
CALINCTRL
CAL SEARCH
JMP NEXCMD

CLEARB, LHI 003
LLI 372
LBI006
XRA

CLEARN, LMA
INL
DCB
JFZ CLEARN
RET

INCTRL, LHI 003
LLI372
LBI006

INCHAR, CAL INPUT
CPI215
RTZ

CHECK , INB
DCB
JTZ INC HAR
DCB
LMA
CALADV
JMP IN CHAR

Main program calling seq uence
Clear the input character string buffer
Fetch the command string from input device
Search tab le & perform command inputted
Repeat loop for next command by o perator

Clear input buffer subroutine
Set page pointer to start of buffer
Assumed to be at location 372 of page 003
Set clearing counter
Clear the accumulator
Put 000 into buffer position
Advance buffer pointer
Decrement counter
If not through, put 000 in next locatio n
When through return to calling routine

F etch input command string
Set page address of start of character buffer
Set location on page of start of character buffer
Set counter for maximum size of buffer
Call subroutine to input character from 1/0
See if character was a CR
If 00, make no entry
Exercise register B (Counter) to set flags
According to original contents
Ignore new character if counter wa s 000
Otherw ise decrement value of counter
And store character in buffer
Advance buffer po inter
And loop to fetch next character from 1/0

4 - 26

SEARCH,

INITBF ,

CMATCH,

NXWORD,

SETNXW ,

FO UNDW ,

NNN
MMM

LDI 002
LEI 000
LHI 003
LLI 372
LBI006
LAM
CAL ADV
CA L SWITCH
CPM
JF Z NXWO RD
DCB
JT Z FOUNDW
CAL ADV
CAL SWITCH
JMP CM ATCH
DCB
JT Z SETNXW
CA L ADV
JMP NXWORD
CA L ADV
CAL ADV
CAL ADV
LAM
NDA
RTZ
CAL SWITCH
JMP INITBF
CAL ADV
LDM
CA L ADV
LEM
L HI MMM
LLI NNN
LME
INL
LMD
JMP NNNMMM
AAA
BBB

Table search routine - compares character
String in input buffer against entries in
The control word fields of fixed -format
Table (six locations in the fi eld)

Set pointers to starting address of table
Set pointers to starting address of table
Set pointers to start of character buffer
Set pointers to start of character buffer

" Set control word field size counter
Get character from buffer (form char match loop)
Subrou tine to advance buffer pointer
Exchange buffer pointer for table pointer
See if have a character match condition
If no match, go to next block in table
If match, decrement field size counter
If counter = 0, all characters in field matched
Character match but not fini shed , advance pointer
Exchange table poi nter for buffer pointer
Loop to see if next character matches
Decrement field size counter to find end of
Current control word field , jump when fi nd
Otherwise advance table po inter
And loop to look fo r end of con trol word field
At end of control word field need to
Advance pointer over the address field
To the start of next control word fi eld
And then fetc h 1st character in new block
Set t he flags after the load operatio n
Return if end o f tab le (no match found)
Otherwise exchange table pointer for buffer
And form loop to check next block in table
Advance pointer to 1st part (page) of address
And extract page address to store tern p
Advance pointer to location on page address
And store it temporarily
Now set memory pointer (H & L) to point to the
2nd byte of the jump instruction coming up
Put the low order address in byte 2
Advance the memory pointer
And the PAGE address in byte 3 of the J UM P
Now jump to the address just loaded into
These two (LOW address)
Bytes (PAGE address)

At the conclusion of the routine that
The search rou tine jumps to when a
Match is found, a RET instruction
Should be executed to re turn the program
To t he main calling routine

4 - 27

The subroutines SWITCH and ADV have
been detailed earlier in this chapter, and are
not repeated in the previous example.

The next example is for the case where
the input buffer is delimited by a CR and a
free-format table (version No.2) is used .

NEXCMD , CALINCTRL
CAL SEARCH
JMP NEXCMD

INCTRL, LHI 003
LLI371
LBI006

INC HAR , CAL INPUT
CPI 215
JFZ CHECK
LMA
RET

CHECK, INB
DCB
JT Z INCHAR
DCB
LMA
CAL ADV
JMP INCHAR

SEARCH, LDI 002
LEI 000

INITBF, LHI003
LLI371

CMATCH, LAM
CPI215
JTZ LCHAR
CAL ADV
CAL SWITCH
CPM
JFZ NXWORD
CAL ADV
CAL SWITCH
JMP CMATCH

LCHAR , CAL SWITCH
LAM
NDI 300
JTZ FOUNDW

NXWO RD , LAM
NDI 300
JT Z SETNXW
CAL ADV
JMP NXWORD

Main program calling sequence
Fetch the command string from input device
Search table & perform command inputted
Repeat loop for next command by operator

Set page address of start of character buffer
Set location on page of start of buffer (N + 1)
Set counter for maximum number usable characters
Call subroutine to input character from I/O
See if character was a CR
If not, check for buffer overflow
If yes, store CR as last character in buffer
And return to calling routine
Exercise register B (counter) to set flags
According to original conten ts
Ignore new character if counter was 000
Otherwise decrement value of counter
And store character in buffer
Advance buffer pointer
And loop to fetch next character from I/O

Table search routine
Set pointers to starting address of table
Set pointers to starting address of table
Set pointers to start of character buffer
Set pointers to start of character buffer
Get character from buffer (form char match loop)
See if sym bol for CR
If so, go to last character routine
Otherwise, advance buffer pointer
Exchange buffer pointer for table pointer
See if have match condition in table
If not , go to next block in table
If yes, advance table pointer
Exchange table pointer for buffer pointer
Loop to test next character
Exchange buffer pointer for table pointer
Test for end of control field
By seeing if two MSB 's are both a
If so, have found matching control word
Test for end of control field
By seeing if two MSB's are both a
If so, have marker, go to next block
Otherwise, advance table pointer
And cont inue looking

4 - 28

SETNXW, CAL ADV
CAL ADV
LAM

A t end of control word field need to
Advance po inter over the address field

NDA
And then fetch 1st character in new block
Set the flags after the load operation

FOUNDW ,

RT Z
CAL SWITCH
JMP INITBF
LDM
CAL ADV
LEM

Return if end of table (no match found)
Otherwise, exchange table pointer for buffer
And form loop to check next block in table
Extract page address and sto re temp
Advance table pointer
Store location on page temporarily

LHI MMM
LLI NNN.
LME

Now set memory pointer (H & L) to point to the
2nd byte of the JUMP instruction coming up
Pu t the low order address in byte 2

INL Advance the memory pointer

NNN
MMM

LMD
JMP NNNMMM
AAA

And the page address in byte 3 of the JUMP
Now JUMP to the address just loaded into
These two (LOW address)

BBB Bytes (PAGE address)

After processing command, return to main routine

SORTING OPERATIONS

Another particularly powerful capability of
a mini -computer is its ability to rapidly mani-
pulate and organize info rmation . A typical
operation is to sort data into some d esired
form, such as to arrange a list of names into
alphabetical order. Or, possibly , to arrange a
list of addresses by zip code zo ne numbers.

The key ingredient in developing a program
to perform sorting operations is to plan the
organization of the storage of the data in
memory so that the operating portion of t he
program is rel atively simple. A simple tech-
nique involves justifying the data into fields
so that simple comparing algorithms may be
utilized.

As an example of a sorting program,
assume one had a list of names that one
wished to have the computer place in alpha-
betical order. A hypothet ical list might con-
sist of the following names:

4 - 29

JONES, R . M.
SMITH, C.
WILLIAMS , P. K.
DAVIS, Z. T .
THOMPSON, A. R.
THOMAS, F.
ALLISON, A. B.
SMITH , T . P.

It may be supposed that the names will be
inputted and stored in the computer in the
order shown above . The first objective of the
program would be to have t he inco ming
names stored in a manner that would be easy
for the sort routine to operate on . A good
technique to use would be to set up fields for
the information being stored . In this case,
one would want to set up three fields . One for
the last name, one for the first initial, and one
for the middle initial. The size of each field
would need to be determined. Fo r the
example list shown above, the lo ngest last
name encountered has eight letters . Thus, the
field for the last names must have space for

at least eight characters since one computer
word in memory will store the code for one
letter in the name . However , in order to make
the program flexible, one could select a longer
field length to allow longer names to be
stored. For illustrative purposes, a last name
f ield of 14 (decimal) units will be planned .
(Note that this a purely arbitrary selection.)
The field length for each initial would only
have to be 1 memory word. Thus, the total
length of the three fields making up a block
would be 16 (dec imal) or 20 (octal) memory
words. Note that in selecting the field lengths
for this example, space was not included for
the comma (,) sign after the last name , or
the periods (.) after each initial. This is
because since these signs are repititious) one
can save valuable memory space by deleting

these marks duril).g the input operation. Then
simply add them back in at the appropriate
point when the data is displayed by the out-
put device.

The input routine would need to always
start inserting characters at the beginning of
a field. Then insert spaces or some special
code (such as a 000 word) in all of the unused
memory words in a field so that the names
could be co nsidered as being left justified in
each field. The reason for this will be made
clear shortly.

The following routine might be used to
accept information from a keyboard device
and store the names in memory in the desired
format.

ACCEPT , LHI 004
LLIOOO

NOTFND, LAM
NDA
JTZ FNDEND
LAI020
ADL
LLA

CKPAGE, CTZINCRH
LAI010
CPH

* JTZ TOMUCH
JMP NOTFND

FNDEND, LBI016
CAL INPUT
CPI252
JFZ NOTDON
XRA
LMA
RET

NOTDON, CPI215
JTZ FNDEND
CPI256
JTZ FNDEND
CPI254
JTZ FNDEND
LMA
DCB
INL

** NEXTIN, CAL INPUT
CPI 215

Initialize names storage area pointer
To start of storage area
Now fetch 1st location in a block
Set flags after load operation
And test for end of storage area
If not end, then advance pointer
To next block by adding 20 octal
To memory pointer address & restore pointer
Advance page address of pointer if required
Now text to see if still
In storage area (pages 04 - 07 octal)
Optional display message if storage filled
Keep looking for end of storage area
Setup last names field counter
And fetch a character from input routine
Check for * code (finished indicator)
Proceed if not * code
If * code , then place a 000 word at
Start of block as an ending marker
And exit subroutine
Test for carriage-return code
And ignore if 1st character in field
Test for period (.) code
And ignore if 1st character in field
Test for comma (,) code
And ignore if 1st character in field
If none of above, put character in field
Decrement the field size counter
Advance the storage pointer
And fetch the next character in last name
Test for carriage-return

4 - 30

JTZ HAVECR Finished block if have CR here
CPI254 Test for comma
JTZ HAVECM Finished last name field if have comma
LMA Otherwise place character in last name field
INL Advance the storage pain ter
DCB Decrement last names field size counter
JTZ FULFLD And see if field is filled
JMP NEXTIN If not, get next character in last name

HAVECR, XRA If have CR put a 000 in memory words
LMA For rest of current block
LAL Fetch memory pointer to accumulator
NDI 017 Mask off 4 most significant bits
CPI017 Test for end of block
JTZ NEXBLK Prepare for next block if done
INL Otherwise advance pointer
JMP HAVECR And continue putting 000 words in block

HAVECM, XRA If have comma, put 000 words in rest
LMA Of last name field
lNL Advance field pointer
DCB Decrement last names field counter
JTZ FULFLD Go process initials when done
JMP HAVECM Else continue to clear rest of field

NEXBLK, INL Advance memory pointer to start of next block
JMP CKPAGE And prepare for next name entry

** FULFLD, CAL INPUT Get character for 1st initial of name
CPI254 Test for comma
JTZ FULFLD Ignore comma at this point
CPI215 Test for CR
JFZ SAVINI If not CR, store character
XRA But, if CR, put in 000 word
LMA For both initial fields
INL By above instruction, then advance pointer
JMP SAVIN2 And then following this jump command

SAVINI, LMA Store 1st initial in 1st initial field
INL Then advance storage pointer

** INITF2, CAL INPUT Look for 2nd initial
CPI256 Check for period
JTZ INITF2 Ignore a period
CPI 215 Test for CR
JFZ SAVIN2 If not CR then store 2nd initial
XRA But if was CR, place 000 word in memory

SAVIN2, LMA Store the character or 000 substitute
INL Advance pointer to new block
CTZ INCRH Advance page address of pointer if required
LAI010 Now test to see if still in
CPH Storage area (Pages 04 - 07)
JTZTOMUCH Optional display message if storage filled
JMP FNDEND Go process next input

INCRH, INH Subroutine to increment register H
RET And then return to calling routine

4 - 31

The above routine has a number of special
factors included in it to illustrate considera-
tions that programmers must learn to take
into account when developing such programs.
Some of these factors are poin ted out in the
following discussion of the above routine.

The first function the above routine per-
forms is to look for the end of the name
storage area. Th is is done by testing the first
character in each block to see if it contains
a 000 word . As shown later in the routine,
a 000 word will be entered at that location
whenever the operator has fin ished entering
a series of names that will be sorted . It should
be noted that whenever it is desired to
initialize the name storage area so that it
appears to the program that the storage area is
empty, a subroutine that will place a 000
word at page 04, location 000 should be exe-
cuted. (That simple subroutine is not shown
above.) The above routine also makes a test
each time the memory pointer is advanced to
a new block, to determine whether the
pointer is still in the alloted names storage
area. For this example the storage area was
planned to reside in locations from page 04
location 000 to page 07 location 377. Should
the routine go beyond the designated storage
area before an end of table marker is found,
the routine would jump to a routine termed
TOMUCH. TOMUCH migh t print out a
message to the operator indicating that the
storage area was already filled with names.
(That routine is not included in the examp le
above.) The reference to the routine
TOMUCH is noted by an asterisk in the above
program source listing.

When the routine has found the end of the
names storage area, indicating where addi-
tional incoming names can be stored (pro-
vided the storage area has not been ex-
hausted), the routine then proceeds to accept
data from an input su broutine . The first char-
acter accepted at the start of a new name
(block) is tested to see if it is a special code
(an asterisk in this case) that. the operator
could use to signify to the program that all
the desired names had been entered. If this
code was received, then a 000 code would be

4 - 32

placed in the first memory word for the block
as the end of table marker mentioned above.
The routine would then exit the above
routine .

[f the first character in a new block is not
th e special end code , a check is made to see if
it is a carriage-return, comma, or period sign.
Anyone of those codes would be ignored as
the first character in a block for the following
reasons. The receipt of a carriage-return or
comma would obviously be invalid at this
point because no letters for a name have been
entered. The acceptance of either of those
operators would cause the last name to be
completely filled with 000 words, incl uding
the first location . This action would result in
an effective end of storage area marker being
placed at the location of the current block.
The receipt of a period sign would most likely
be the period sign from the last initial field
entered (which is to be ignored) and certainly
would not be a valid letter for the beginning
of a last name. The incorporation of these
checks act as safeguards for human operator
errors, and are another example of human
engineering factors in the development of a
program .

If the first character is not one of the
above , it is stored in the first location in the
last name field . After t he first character has
been stored, each character received from the
input routine is tested to see if it is a carriage
return or comma. If it is a comma, signifying
the end of the last name field , any unfilled
locations in the field are filled with zeros. The
program then proceeds to the initial fields.
However, if a carriage return is noted, the pro-
gram fills the entire remainder of the current
block. including the initial fields, with zero
words . This is because a carriage return sig-
nifies the completion of a name entry . An
additional safeguard is built into the routine
in this section to prevent too many characters
from being entered into the last nam e field.
When the field has been filled, the pointer is
not advanced until a carriage return or comma
is received.

Once the last name field has been pro-

cessed , the routine will accept characters as
initials. However, it ignores the period signs
after the init ial s. When an entire name has
been processed, the program loops to accept
another name block after checking to make
sure the storage area is not filled. It then re-
peats the process described.

The above routine could be modified to in-
clude an operator convenience-the ability to

erase a current entry if the operator made a
mistake while typing in a name. This could be
done by executing a routine immediately
after the points designated in the program by
a double asterisk (**). The routine could be
used to check for a special erase code. If this
code was detected, the program could reset
the pointers to the start of the current name
block, and allow re-entry of the name. Such a
routine might be as shown here:

ERRORT, CPI377
JF Z AWAY
LAL

Check for a rubout code
Exit routine if not a rubout

NDI 360
LLA
JMP FNDEND

AWAY , * **

If have a rubout then fetch pointer
Remove 4 least significant bits
And restore pointer to start of block
Jump to re-enter name
* **Next instruction in current sequence

While the previous routine seems a bit long
at first glance, one must remember that it is
doing quite a few functions, and is quite
general purpose in over-all design. The pro-
gram enables one to build up a list of names
in a designated area of memory, place the
data in formatted fields, check for selected
operator errors, and bound or limit the
storage area. The program, using the basic
concepts presented, can be modified to serve
as a basic structure for inputting a variety of

types of data into justified fields. To provide
a clear mental picture of how the list of
names given several pages earlier would appear
when inputted to memory using the program
illustrated, a diagram showing memory lo-
cations and their contents is provided below.
The diagram shows addresses (on page 04)
with the contents of the memory location
shown beneath it, followed by the alpha-
betical representation for the code where
applicable.

ADDR:
CONT:
LETR:

ADDR:
CONT:
LETR:

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017
312 317 316 305 323 000 000 000 000 000 000 000 000 000 322 315
JONES RM

020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037
323 315 311 324 310 000 000 000 000 000 000 000 000 000 303 000
S MIT H C

ADDR: 040
CONT : 327
LETR: W

041 042 043 044 045 046 047 050 051 052 053 054 055 056 057
311 314 314 311 301 315 323 000 000 000 000 000 000 320 313
ILLIAMS PK

ADDR :
CONT :
LETR:

060 061
304 301
D A

062 063
326 311

V I

064 065 066 067 070 071 072 073 074 075 076 077
323 000 000 000 000 000 000 000 000 000 332 324

S Z T

4 - 33

ADDR: 100 101 102 103 104 105 106 107 110 III 112 113 114 115 116 117
CONT: 324 310 317 315 320 323 317 316 000 000 000 000 000 000 301 322
LETR: T H 0 M P S 0 N A R

ADDR: 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137
CONT: 324 310 317 315 301 323 000 000 000 000 000 000 000 000 306 000
LETR: T H 0 M A S F

ADDR: 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157
CONT: 301 314 314 311 323 317 316 000 000 000 000 000 000 000 301 302
LETR: A L L I S 0 N A B

ADDR: 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177
CONT: 323 315 311 324 310 000 000 000 000 000 000 000 000 000 324 320
LETR: S M I T H T P

ADDR : 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217
CONT : 000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
LETR: DON'T CARE ABOUT MEMORY CONTENTS BEYOND HERE

Once the data has been organized in a suit-
able manner in memory, one can proceed to
develop a relatively simple sort routine to
arrange the names in alphabetical order. The
technique to be illustrated consists of com-
paring the letter, starting with the left-most
position in a block (as seen in the memory
diagram above) against the letter in the same
position in the next block in memory. By
letter what is actually meant is the ASCII
code (in this example) for a letter. It so
happens that the ASCII code is arranged such
that the alphabet goes in ascending numerical
order. The letter A is represented as 301, the
letter B as 302, C as 303, and so forth on up
to the letter Z which has an octal represen-
tation of 332. How convenient' This means
that if the value in a memory word (represent-
ing a letter in ASCII format) is compared
against another memory word contain ing an
ASCII coded letter, that the lower valued
entry contains a lower order letter in the
alphabet.

With this information one may quickly dis-
cern that one can quite easily develop an al-
gorithm to arrange names alphabetically . If
the value of a memory location in the first
position of say the first block (the Nth block)
is compared against the value of the first

4 - 34

position in the next block (N+1 block) and
found to be greater in value, then the first
(Nth) block has a name that is higher alpha-
betically than the name in the second (N+1)
block. Thus one can immediately proceed to
exchange the contents of the two blocks to
arrange the names in ascending alphabetical
order. If, however, the code in the first
block is less in value than the second block,
then the present order is correct , and the
program can proceed to check the second
block against the third one. If the letters in
the first position checked are equal in value,
then one cannot yet make a decision about
the alphabetical order, but rather must go on
to compare the values of the second letter
within the two blocks!

To further complete the algorithm, one
must also consider the possibility that when
one exchanges the contents of blocks Nand
N + 1 that the new contents of N will now be
of lesser order than that contained in block
N - 1. Th"s, whenever one performs an ex-
change of two blocks, one must have the pro-
gram go back and do a comparison between
the Nand N-1 blocks. One can envision the
algorithm as proceeding in a see-saw manner.
comparing the Nth block against the N+1
block until an exchange is necessary. Then

switching to compare between the Nth and
N-1 block until an exchange is not necessary.
At that point the process reverts back to com-
paring the Nth and N+1 blocks until another
exchange is required . Looked at another way,
the data blocks could be viewed as rippling
upwards or downwards in memory as the
process proceeds. Higher ordered names
getting shoved to higher addressed blocks,
lower ordered names being pushed to lower
addressed blocks.

the same job, some of which are faster when
large data bases are involved (but more co m-
plicated programming-wise) . Such algorithms
generally have considerable value on larger
machines. However, the above algorithm is
quite suitable for typical sorting jobs that a
microcomputer might be called upon to per-
form. For those who might want to investi-
gate other algorithms, they might consider the
co ncept of having a program that immediately
classifies a name into , say , the first, second , or
third section of the alphabet.

This type of algorithm is not the only way
one co uld proceed to sort the data. There are
other types of algorithms that can perform

A program for the ripple sorting algorithm
discussed above is presented below.

SORT, LHI004
LLI 000

INITBK, LBI 020
LCM
LAL
AD! 020
LLA
CPI020
CTCINCRH
LAM
NDA
RTZ
CPC
.rrC XCHANG
.rrZ CKNEXT
JMPFNDEND

CKNEXT, DCB
JFZ NOTFIN

BACKER, LAL
ND! 360
LLA
JMP INITBK

NOTFIN, LAL
NDA
SUI017
LLA
CTC DECRH
LCM
LAL
AD! 020
LLA
CPI020
CTC INCRH
LAM

Initialize pointer to start
Of names block storage area
Set block length counter
Get 1st character from block N into C register
Fetch N block pointer
Advance pointer to block N + 1
Restore pointer
Check to see if going to new page
Advance page pointer if required
Get 1st character from block N+1 into accumulator
Set flags after loading operation
End of storage - sort operations completed
Compare N + 1 letter to N letter
N greater than N+ 1 so exchange block contents
N = N+l so check next letter in block
N less than N+l so order O.K., do next block
Decrement block length counter
Continue if not finished block
Fetch N+1 pointer to ACC
Reset pointer to N bloc k
Restore pain ter
Go to compare next block
Fetch N+1 block pointer
Clear the carry flag with this no-op
Decrease pointer to N block
Restore pointer
If underflow then decrement page pointer
Fetch character from N block to register C
Fetch N block pointer
Increase pointer to N+1 block
Restore pain ter
Check to see if going to new page
Advance page pointer if required
Get character ·from N+l block

4 - 35

CPC
JTC XCHANG
JTZ CKNEXT

FINEND, DCB
JT Z BACKER
INL
JMP FINEND

XCHANG, LAL
ND! 360
LLA
LEI 020

NOTYET, LCM .
LAL
NDA
SUI 020
LLA
CTC DECRH
LDM
LMC
LAL
AD! 020
LLA
CPI020
CTCINCRH
LMD
INL
DCB
JFZ NOTYET
LAL
NDA
SUI 060
LLA
CTC DECRH
LAH
CPI003
JFZ INITBK
JMPSORT

Compare N + 1 letter to N letter
N greater than N+l so exchange block contents
N = N+l so check next lett.er in block
N less than N+l so order O.K., do next block
At end of block N+l reset pointer for N
Advance pointer
And loop to look for end of block
Fetch N+l pointer
Mask off LSB '5 to restore pointer
To start of N + 1 block
Set block length counter
Fetch N+l into register C
Fetch N+l pointer to accumulator
Clear the carry flag
Decrease pointer to N block
Restore pointer
Decrement page pointer if req uired
Fetch N into register D
Place former N + 1 into N
Fetch N pointer to accumulator
Increase pointer to N+l block
Restore poin ter
Check to see if going to new page
Increment page pointer if required
Place former N into N+l
Advance N+l pointer
Decrement block length counter
Continue if not finished exchanging
If finished exchanging, fetch N+l pointer
CI ear carry flag
Back pointer from N+l to N-1 block
Restore pointer
Decrement page pointer if required
Fetch current page
Make sure still in storage area
Yes - do an effective N -1 to N test
Went back too far - go to starting block!

The INCRH referred to by the sort routine
was presented earlier as part of the routine
that accepted names into the storage area .
The DECRH routine not shown should be a
snap for anyone who has reached this point
in the manual. (If it is not, for Heavens sake,
go back and review!)

originally stored in memory, o ne should be
able to clearly discern the operation of the
sort program. For example, for the first
three names the program encounters in the
original example setup, the program will only
have to test the first letter in each block .
When the name in the 4th block is exam ined,
an exchange will have to be made with the
name in the third block. Then the program
will find when checking the N-1 block (which
was the original second block) that the name

If one mentally proceeds through the sort
routine while referring to the diagram given
several pages earlier showing the names as

4 - 36

Davis, Z. T. has to be exchan ged again. This
will happen again until the name Davis, Z. T .
arrives at the fi rst bloc k in the storage area.
A t this po in t t he program goes back to
checking against the N+1 block . The names
would then appear in memory in the
fo llowing order.

Block No. 1:
Block No.2:
Block No.3:
Block No.4:
Block No.5:
Block No.6:
Bloc k No.7:
Block No.8:

Davis, Z. T.
Jpnes , R. M.
Smith, C. '
Williams, P. K.
Thompson, A. R.
Thomas, F.
Allison, A. B.
Smith, T. P.

Now the program would get down to block
five before it found it necessary to exchange
block five with block four. The next N-1 test
would fail , however, and the program would
proceed back up to block six. There it would
find the nam e Tho m as, F. and have to ex -
change it again with Thompson, A. R. At
that po in t , the names storage area would
appear as:

Block No. 1 :
Block No.2:
Block No.3:
Bloc k No .4:
Block No.5 :
Block No.6:
Block No. 7 :
Block NO . 8:

Davis , Z. T.
Jones, R . M.
Smith , C.
Thomas, F.
Thompson, A. R .
Williams, P. K.
Allison, A. B.
Smith, T. P.

At that point the program would get up
to block num ber seve n where it would find
Allison , A. B. It would then have to exchange
names all the way back down the line to get
it into block number one. Finally , the pro-
gram would find t hat Smith , T. P. had to be

4 - 37

moved back ending up in block number five.
All of th e above would have happened in a
mere fraction of a second as the CPU
executed the instructions at m icro -second
speeds , reSUlting in the names organized in the
fo ll owing desired manner.

Bloc k No.1:
Block No.2:
Bloc k No.3:
Block No. 4:
Block No.5:
Bloc k No.6:
Block NO. 7:
Block No.8:

Allison , A. B.
Davis, Z. T.
Jones, R. M.
Smith, C.
Smith, T. P.
Thomas , F .
Thompson, A. R .
Williams, P. K.

Similar types of sorting or arranging op-
erations can also be done with numbers in
BCD or binary form, or with other types of
data.

One could com bine a control tab le, such as
one of the types discu ssed earlier in this
chapter, with the necessary input, formatting,
and sort subroutines just discussed. Thus, one
could make up a powerful, yet easy to use,
operating package suited to the user's specific
requirements.

By utilizing the concepts (as well as som e
of the specific routines) presented in this sec-
tion, the reader should be able to see the way
towards developing some sophisticated pro-
grams capab le of perfo rming functions
tailored to the individual's o wn requirem ents .

For t hose interested in uti lizing the mathe-
matical capabilities of the digital computer
(perhaps combining such operations with
som e of those already discussed) simply pro-
ceed on to study the next chapter.

MATHEMATICAL OPERATIONS

The ability of a digital computer to handle
mathematical operations combined with its
ability to manipulate text gives the machine a
unique combination of power that partially
acco un ts fo r its growing popularity.
Programming a computer using machine
language to perform mathematical functions
is perhaps a bit more co mplicated than having
it perform routine text manipulations. But, it
is not as difficult as so me people tend to
think before being introduced to the subject .
Like most other programming tasks, the key
to success is organization of the program into
small routines that can be built upo n to form
more powerful functions.

The instruction set of the ' SOOS' and simi-
lar CPU's contain a number of primary mathe-
matical instructions that are the basis for de-
veloping mathematical programs. The groups
used most often include the ADDITION,
SUBTRACTION and ROTATE instructions.
(Do you recall that rotating a binary number
to the left effectively doubles, or multiplies
the original value by two , and rotating it to
the right essentially divides the original value
in half?)

Dealing with numbers of small magnitude
using a microprocessor is simplicity itself. For
instance , if one wanted to add t he numbers
'2 ' and '7 ,' one could load one number into
register B in the CPU and load the other into
the accumulator. The simple directive:

ADB

wo uld result in the value 'all ' (octal) being
left in the accumulator. Subtraction is just as
easy. If one placed '7' in the accumulator and
'2' in register B and executed a:

SUB

instruction the value' 5 ' would be left in the
accumulator.

5 - 1

Multiplication of small numbers may be
readily accomplished using a simple algo-
rithm. That is to add the multiplicand to it-
self the number of times dictated by the
multiplier. Suppose one desired to have the
computer multip ly ' 2' times '3.' Placing the
value '2 ' in register Band '3' in register C and
executing the following instruction sequence:

START,
MULTIP ,

STOP,

XRA
ADB
DCC
JFZ MULTIP
HLT

would result in the value '6' ending up in
the accumulator. As shall be discussed further
on, the above algorithm is not very efficien t
when the numbers become large. More effi-
cient multiplication algorithms are based on
rotate operations which effectively multiply
a number by a power of two . For instance,
multiplying a number by '32' (decimal) would
require 32 loops through the above routine.
It would only require five rotate operations !
However , the above routine illustrates how a
number can be multiplied even though the
computer does not have a specific "multi·
ply" instruction .

One may also divide small valued numbers
that have integer results using a similarly
simple algorit hm that subtracts instead of
adds. For instance, a reverse of the previous
example would be to d ivide the number '6' by
the value '2 .' The subtraction algorithm could
appear as:

START,
DIVIDE,

STOP,

LCIOOO
NDA
JTZ STOP
SUB
INC
JMP DIVIDE
HLT

In the algorithm just presented, the routine
starts with the number '6' in the accumu-
lator. The divisor is in register B. Register C
is used as a counter to count how many times
the value in B can be subtracted before the
contents of the accumulator reaches zero.
As pointed out previously, the algorithm
only works properly if the result is an in-
teger value. Division is perhaps the most
difficult basic mathematical function to
perform on a digital computer because of
mathematical peculiarities (involving the
manipulation of fractional values). However,
as will be illustrated later , there are ways
around the above limitation . The above
illustration is merely to give the novice
enco uragement. It illustrates that suc h opera-
tio ns are possible even though a specific
divide command is not part of a typical
microprocesso r's instruction set!

The discussion so far has been limited to
numbers of relatively small magnitude.
Specifically, numbers small enough to be
contained in a single eight bit binary register
or memory location in a microprocessor.
Many user's who want to use the digital
computer to perform mathematical opera-
tions seem to get stumped when first coming
across a requirement to manipulate numbers
that are too large in magnitude to fit in one
memory word or CPU register. With an '8008'
based machine, and indeed most micro-
computers available at present, such a require-
ment typically arrives shortly after one has
started operating their machine! The reason is
simply that the largest valued number that
can be placed in an 'N-bit' register is the value
(2**N)-1. Since most microprocessors use but
eight bits in a word, the largest number that
can be represented in a single word if all the
bits are used is a mere 255 (decimal). If one
desires to maintain the "sign" (whether the
value is greater or less than zero) and uses one
bit in a register for that purpose, then the
largest number that can be represented in a
single word is a paltry 127 (decimal). That is
hardly enough to bother using a computer to
manipulate!

But, the secret to rapidly increasing the

5 - 2

magnitudes of the numbers that can be
handled by a digital computer is held in that
formula just presented; (2**N)-1. That
formula states that the size of the number
that can be stored in a binary register doubles
for every bit added to the register. Thus, if
one were to store a number using the avail-
able bits in two registers or memory words in
an 8-bit-per-word system, one would be able
to represen t numbers as large as (2**16)-1 or
65,535 (decimal). If one of those 16 bits was
reserved for a sign indicator, the magnitude
wou ld be limited to (2**15)-1 which is
32,767 (decimal). That is certainly a lo t more
than the value of 127 that can be held in just
o ne word I But, why stop at holding a number
in two words? There is no need to, one may
keep adding words to build up as many bits
as desired. Three words of eight bits, leaving
one bit out for a sign indicator, would leave
23 bits . That number of bits cou ld represent
numbers as large as (2**23)-1 which is about
8 ,388,607 (decimal). Four words would allow
representing a signed number up to (2**31)-1
which is roughly 1 ,107,483,647! One could
add still more words if required .. Generally,
however, one selects the number of signifi-
cant digits that wi ll be important in the cal-
culations that are to be performed and uses
enough words to ensure that the "precision"
or number of significant digits required for
the operations, can be represented in the total
number of bits available within the grouped
words. The use of more than one computer
word or normal sized register to store and
manipulate numbers as though they were in
one large continuous register is commonly
referred to as "multiple-precision" arith-
metic . One often hears computer technolo-
gists speaking of "double-prec ision" or
"triple-precision " arithmetic. This simply
means that the machine is using techniques
(generally programming techniques) that
enab le it to handle numbers stored in two
or three registers as though they were one
number in a very large register.

The '8008' CPU is capable of multiple-
precision ari th metic. In fact it does it quite
nicely because the designers of the CPU took
particular care to include some special in-

structions for just such operations. (Such as
the ADD and SUBTRACT wi th CARRY in-
structions .) Mul t iple-precision arithme tic is
not difficult. [t takes a little extra consid -
eratio n when organizing a program to handle
and store numbers that are contained in mul-
tiple words in memory. But, with the use of
effective subroutines (and "chaining")
the task can be handled with relative ease.

[n order to effectively deal with multip le-
prec ision arithme tic one must establish a
convention fo r storing the sections of one
large number in several locations. For the
purposes of the current disc ussion , it will be
assumed that triple-prec ision arithmetic is to
be performed . Numbers will be stored in three
consecutive memory locations according to
the following arrangement.

Location N = Least significant 8 bits
Location N+ l = Next significant 8 bits
Location N+2 = Most significant 7 + sign bit

Thus, the three words in memory could be
mentally viewed as being one continuous
large registe r containing 23 binary bits plus a
sign bit as illustrated in the diagram below .

LaC N+2
sx xxx xxx

MSB's

LaC N+l LaC N
xx xxx xxx xx xxx xxx

NS B's LSB's

a f course, one could reverse the above
seq uence, and store the least sign ifican t bits
in memory location 'N,' the next group in
'N+ l ' and the most significant bits plus sign
bit in me mory location ' N+2 .' It makes little
difference as lo ng as one remains consistent
within a program. However, the convention

illustrated will be the one used for the dis-
cussion in this section .

Also , as has been po inted out, it is not
necessary to limit the storage to just three
words. Additional words may be used if
additional precision is req uired. For most of
the discussion in this chapter , th ree words
will be used for storing numbers . Using three
words in the above fashio n will allow numbers
up to a value of 8 ,388 ,64 7 to be stored. This
means that six to seven significant digits
(decimal) can be maintained in calculations.

The first mul t iple-precision routine to be
illustrated will be an addition routine that will
add together two mult iple-precision numbers
and leave the result in the location formerly
occupied by o ne of the numbers. The routine
to be presented has been develo ped as a
general purpose routine in that, by prop-
erly setting up memory address pointers
and loading a CPU register with a precision
value prior to calling the routine , the same
routine may be used to handle multiple-
precision addition of numbers varying in
length from 'I' to 'N ' registers. (As long
as the registers containing a number are in
consecutive order in memory , and with the
restriction that al l the registers containing
a number are on one page . That limits 'N' to
255 (decimal) words, which is a limitation
few programmers will find cumbersome!)

The key element in the addition routine
to be illustrated is the use of the ACM add
with carry instruction. The essential differ-
ence between an add with carry (ACM) in-
struction and an ADM (add without carry)
command is as follows .

An ADM instruction sim ply adds the contents of the accumulator and the contents
of the memory location pointed to by the Hand L registers. During the addition
process, the status of the carry flag is ignored. However, if at the end of the process ,
an overflow has occured, the carry flag will be set to a logic one condition. For
example, adding the following binary numbers would yield : .

10101010
01010101

CARR Y = 0: 1 1 1 1 1 1 1 1

5 -3

An example illustrating a carry occuring is shown next.

11111111
00 000 001

CARR Y = 1 : a a a a a a a a
Remember in the above examples that the CARRY FLAG is only affected by an
overflow condition after the operation has occured. The original condition of the
carry flag will have no effect on the final results of the calculation.

An ACM command, on the other hand, examines the contents of the CARRY FLAG
prior to the addition operation and considers it as an operator on the least signifi-
cant bit position. At the end of the addition process, the carry flag is again set or
cleared depending on whether or not an overflow occured. (As in the case for the
ADM instruction discussed above .) For example, adding the following binary num-
bers yields results that differ depending on the INITIAL status of the carry flag.

CASE 1A: a : 'C' FLAG initiall y cleared
10101010
01010 101

CARRY = 0: 11 111 111

CASE 1B:

CARRY = 1:

CASE 2A:

CARRY = 1:

CASE 2B:

1 : 'C' FLAG initially set
10 101 010
01 010 101
-------- ---------- ------
00 000 000

a : 'C' FLAG initially cleared
11 11 1 111
00 000 001

00 000 000

1 : 'C' FLAG initially set
11111111
00 000 001

CARR Y = 1: a a a a a a a 1

In summary, one can see that an ACM type of instruction makes multiple-precision
addition extremely easy. This is because the carry bit acts as a link between any
carry from the most significant bit of one addition operation into the least signifi-
cant bit of the next addition operation. This allows one to proceed just as though
the addition operation was being performed in one long register instead of several
short registers. To discern this clearly, examine the example provided next which
first illustrates an addition operation being performed in a hypothetical 16 (decimal)
bit register , then shows the same result when two ACM operations are performed on
two eight bit registers "linked" by the special capabilities of the ACM instruction.

5-4

ADDITION IN HYPOTHETICAL 16 BIT REGISTER

11111111 10101010
00000000 11010101

CARRY = 1: 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

SAME OPERATION USING ACM INSTRUCTION & TWO 8 BIT REGISTERS

FIRST ACM OPERATION:
o : 'C' FLAG assum ed cleared

10 101010
11010101

CARR Y = 1: 01 1 1 1 1 1 1 : LSB 's in memory location N

SECOND ACM OPERATION :
1 : 'C' FLAG set by above add

11111111
00000000

CARRY = 1 : 00 000 000 : MSB's in location N+ 1

Placing the results of the two eight bit registers side-by-side after using the ACM
type of instruction yields the same result as though the operation had been
performed in a sixteen bit register . The concept can be applied to as many eight bit
registers as desired .

Armed with the knowledge of how the powerful ACM type of instruction operates,
one may proceed to develop a N'th precision addition subro utine . Examine the
following routine.

ADDER,
ADDMOR,

NDA
LAM
CAL SWITCH
ACM
LMA
DCB
RTZ
INL
CAL SWITCH
INL
JMP ADDMOR

Always clear carry flag at routine entry
Get first number into accumulator
Change po in ters to second number
Perform ADDITION with CARR Y
Place result back into memory
Decrement the "precision" counter
Exit routine when counter reaches '0'
Advance second num ber pointer
Change pointer back to first number
Advance first number pointer
Repeat process for next precision

Note that the above ADDER subroutine
requi res that a number of the CPU registers
be setup prior to calling the routine. The H
and L registers must con tain the address o f
the least significant bits register (memory
location) for the first multi-word number.
Registers D and E similarly must be setup to
contain the address of the least significant
part of the second multi-word number that is

to be added to the first. Finally, register B
must be initialized to the "precision," Of
number of memory words used to hold a
multi-word number. Suppose, for example,
that a number in triple-precision format is
stored in three words starting at location 100
on page 00 and that a second number in simi-
lar fo rmat is stored at location 200 on page
01. The following instructions would be used

5 - 5

to setup the CPU registers prior to calling the ADDER subroutine just described.

INIT, LHI 000
LLI 100
LDI 001
LEI 200
LBI003

Set page for LSW of first number
Set location on page for LSW of 1 's t number
Set page for LSW of second number

CAL ADDER

Set location on page for LSW of 2 'nd number
Set "precision" value (three words this case)
Call the N'th precision addition routine

Note too, that the ADDER subroutine is
destructive to the original value of the second
number because the answer is left in those
locations. If, for some reason, the user wanted
to save the original value of the second
number , then it would have to be saved else-
where in memory prior to performing the
multi-precision addition operation .

Just as there are two classes of instruc-
tions for performing addition with an '8008'
CPU, one of which (ACM category) is suited
for multiple-precision arithmetic, there are
two classes of subtract commands. The SUM
(SUBTRACT WITHOUT CARRY) and the
SBM (SUBTRACT WITH CARRY, or more
appropriately, SUBTRACT WITH BORROW).
The SBM type works similarly to the ACM
type previously discussed. The CPU first
checks the status of the carry flag before
performing the subtraction operation. It is
thus an easy matter to perform multiple-
precision subtraction operations. In fact, one
can set up aan almost identical routine to that

just described for addition. As in the addi-
tion example, one would first setup CPU
registers as pointers to the least significant
portions of the multiple-precision numbers
and load register B with the number of mem-
ory words (N) occupied by a N'th precision
number.

The routines presented here only utilize the
ACM or SBM instructions because the algo-
rithms have been developed as general pur-
pose routines to handle strings of numbers in
memory. The reader is reminded that there
are a whole group of instructions that have
similar functions for working with data
while it is in the various CPU registers
(such as the ACB, ACC, ACD instruc-
tions). In addition, there is also the ACI
instruction for performing an addition
operation with an IMMEDIATE data word.
The reader may review the appropriate
section in Chapter 1 for a summary of
the variations possible when using an
'8008' CPU.

EXAMPLE OF AN N'th PRECISION SUBTRACTION SUBROUTINE

SUBBER,
SUBTRA,

NDA
LAM
CAL SWITCH
SBM
LMA
DCB
RTZ
INL
CAL SWITCH
INL
JMPSUBTRA

Always clear carry flag at start of routine
Get first number into accumulator
Change pointers to second number
Subtract second from first with borrow
Place result back into memory
Decrement the "precision" counter
Exit subroutine when counter is '0'
Advance second number pointer
Change pointer back to first number
Advance first number pointer
Repeat process for next part of num ber

One thing a person dealing with mathematical functions on a computer will soon

5-6

have to be concerned with is what happens
when a larger number is subtracted from a
smaller number. The answer is naturally a
minus or negative number. As was initially
discussed in the chapter on fundamental
programming skills , most mIcroprocessors
handle negative numbers utilizing the "two's
complement" convention. The reader may
wan t to review t he first few pages of that
section at this time.

If, for instance, (using single-precision
arithmetic) the number '8' (decimal) was
subtracted from '6,' the result would appear
in the accumulator as shown here:

6 decimal = 00 000 110 binary
8 decimal = 00 001 000 binary
subtracted - - ---- -- - ---------------

is 11 111 110 binary

Note that the most significant bit in the
register containing the minus answer is a '1.'
By establishing a "two's complement" con-
vention and always ensuring that the mag-
nitude of any number handled does not
interfere with the most significant bit, one
may quickly determine whether a number in
a register (or series of registers in the case of
multiple-precision formatting) is positive or
negative . This may be accomplished by
testing to see if the most significant bit is
a ' 1' (for a negative number) or '0' (for a
positive) value. This is done in an '8008' or
similar microprocessor by testing the SIGN
FLAG with a JFS, CTS, or similar type
CONDITIONAL instruction.

Remember too, that a number may be
subtracted from another number by forming
the two's complement of the number to be
subtracted, then performing an addition
operation. Thus:

+8 decimal o 0 0 0 1 0 0 0 binary

2's camp 1 1 1 1 1 0 0 0 binary

consequently

6 decimal 0 0 0 0 0 1 1 0 binary
2's comp of 8 1 1 1 1 1 0 0 0 binary
when added ------------------------

is 1 1 1 1 1 1 1 0 binary

It is often desirable to perform a straight
two's complement operation on a number in
order to change it from a positive to a nega-
tive number (or the reverse) . One easy way to
accomplish this is to simply subtract the num-
ber from a value of zero. For multiple-pre-
cision work one could simply load one string
of memory locations (the first number) with
zeroes and place the number to be "negated"
in the second string of memory locations.
Then simply call th e previously illustrated
SUBBER subro utine. However, there may be
cases where one does not want to disturb
values in memory locations or perform the
transfer operations necessary to setup the
numbers for the SUBBER subroutine . What
is needed is a two's complement routine that
will operate on a value in the location(s) in
which it resides. The following subroutine
will accomplish that objective.

COMPLM, LAM
XRI377
AD! 001

MORCOM, LMA
RAR
LDA
DCB
RTZ
INL
LAM
XRI377
LEA

Get least significant bits in first word
Exclusive OR yields pure complement
Now add ' 1 ' to form two 's complemen t
Return 2's complement value to memory
Get the carry bit status
And save the carry bit status
Now decrement the precision counter
Finished subroutine when counter is zero
If not done, advance memory pointer
And fetch the next group of bits
Produce a pure complement
Save pure complement temporarily

5 - 7

LAD
RAL

Get previous carry back into accumulator
And shift it back out to the carry flag

LAIOOO
ACE
JMPMORCOM

Do a load so does not disturb carry flag
Add complemented value with any carry
Go on to do next word in string

Notice that in the above COMPLM sub-
ro utine it was necessary to save th e status of
the CARRY FLAG (carry bit) in a CPU
register. This was because an XRI or any
other BOOLEAN LOGIC instruction in an
'8008' CPU automatically clears the carry
flag to the zero state and would cause it to
"lose" any previous logic one condition .

As in the ADDER and SUBBER subrout-
ines it is also necessary to do some prelim-
inary setting up before calling the COMPLM
subroutine . The H :md L registers must be
set to the first word (least significant bits)
of the multi-precision number. Register B
must indicate how many words are used to
hold the multi-word number.

It will also be pointed out here, that as
the programmer gets into developing more
and more complicated routines that utilize
a lot of subroutines, the programmer must
maintain strict control over which CPU
registers are affected. The programmer must
make sure that the use of selected CPU
registers by one routine (especially when it
CALLS another subroutine) do not inter-
fere with the over-all operation of a program.
The best rule of thumb is to try and leave a
subroutine with all the CPU registers, except
those transferring information to the next
routine , in a FREE or "don't care" state.
This is not always possible . When it is not,
the programmer must keep track of which
registers are being used for a specific pur-
pose and not allow them to be unintention -
ally altered. For instance, the above COMPLM
routine requires that three of the CPU regis-
ters be setup prior to entry. The H, Land B
registers. When it leaves the subroutine those
registers are essentially free for use by the
next portion of the program. It also uses the
A, 0 and E registers for operations that it
performs . It does not care about the status

5-8

of those registers when it starts operations
because it loads them itself. It also leaves
those registers essentially free when the
routine is exited. (All the critical operations
in the COMPLM subroutine are done with
locations in memory .) However, the fact
that the routine uses certain CPU registers,
such as registers D and E, would be very
important to remember if one was using
other routines that maintained , say, memory
pointers in registers D and E. The novice
programmer (and a lot of times the not-so-
novice ones) will often find some very strange
operations occuring in a newly created pro-
gram because of problems related to just
this aspect!

The ADDER and SUBBER subroutines
previously presented could be used by them-
selves to handle the addition and subtraction
of large numbers. However, a restriction on
the types of numbers they could handle
would be that the numbers have to be whole
numbers . Also , as the magnitudes of the num-
bers to be handled increased, the number of
words used to store a value in multi-precision
format would have to be increased. As was
pointed out earlier, when one starts dealing
with numbers of large magnitude, one is
primarily concerned with a certain number of
SIGNIFICANT DIGITS in a calculation . For
instance, one could represent the value ONE
MILLION as '1,000,000.' To store this num-
ber in multi-precision format requires the use
of three memory words in an eigh t bit micro-
processor. However, the number '1,000,000'
only contains one significant digit. The num-
ber sould just as easily be represented as
'1' raised to the sixth power of ten. Or,
1 E+6 in what is often termed FLOATING
POINT FORMAT. Note that if the number
was stored in such format, one would only
need to use one memory register in which to
hold the single significant digit, plus a sepa-

rate register in which to hold the power to
which the significant digit was to be raised.
Floating point fo rmat also makes it easy to
handle the task of processing fractional num-
bers . Up to th is point, no d iscussio n on re-
presenting non -integer numbers has been pre-
sented. This will be done shortly. As an in tro-
duction, note that the decimal number '0 .1 '
co uld be represented in floating point format
as '} ' raised to the 'minus one' power of t.en,
o r 1 E-l.

The reader has now been introduced to
multi-precision arithmetic. Hopefully the
reader now has an understand ing of how
large numbers can be stored in several small
registers. The term large numbers may be
interpreted as meaning numbers containin g
more than a co uple of significant digits.
The reader should understand that increasing
the number of significant digits requires an
increase in the number of binary bits required
to store a number_ It thus increases the num-
ber of memory words required when the
number is stored in multiple-precision format.
Also, when the format described up to now
is used, increasing the magnitude of a num-
ber (by adding zeros to the right of the
signif icant digits) rapidly increases the num-
ber of words o f memory required to hold a
number. Finally, just storing a number in a
register, without regard to a decimal point
location , makes it impossible to properly
manipUlate fractional numbers.

However , the idea that numbers can be
represented as a series of significant digits
raised to a power presents a so lution to the
limi tations mentioned. Handling numbers in
such a fashion is generally termed "f1oating-
poin t" arithmetic . The remainder of this
chapter will be devoted to developing rout-
ines fo r a FLOATING POINT mathematical
program for general purpose app lications.

Before proceeding in to the development of
floating-point routines, it will be necessary to
discuss a matter that has been left aside up to
this point. That is how to represent fractional
numbers utilizing the language of the digital
computer, binary arithmetic.

5 - 9

In the decimal numbering system which
virtually everyone has been edu cated in ,
fractions of a number are represented by
digits placed to the right of a decimal point.
Each position to the right of such a point
represents uni ts of decreasing powers of 10.
Thus the number:

o . 1 2 5

actually represents :

1 Tenth (10 E-1)
Plus : 2 Hundredths (10 E-2)
Plus: 5 Thousandths (10 E-3)

The concept is exactly the same for binary
arithmetic except that now each positio n to
the right of the decimal point represents units
of decreasing po wers of two! Thus the num-
ber:

o . 1 1 1

represen ts:

1 Half (2**-1)
Plus : 1 Quarter (2**-2)
Plus: 1 Eighth (2**-3)

Th us the above binary number ' 0 .111 '
represents a fractional number which when
converted to decimal is equal to:

1/ 2 + 1 /4 + 1 /8 = 7/8 or 0.875 (decimal)

The manner in which fractional binary
numbers are represented brings o ut an in -
teresting point which many readers may have
heard of, but not truly understood. That is
the introduction of errors into calculations
done on a digital computer due to the mani-
pulation of fractions that can not be final-
ized. As an analogy, there are similar cases
in decimal arithmetic. One such case occurs
when the number '1' is divided by '3.' The
answer is :

0 .333333333333333

which is a non-ending series of '3's after the

decimal point. The accuracy or precision with
which a calculation involving such a number
can be carried out is determined by how
many significant digits are used in further
calculations involving the fraction. For
instance, theoretically, if the n urn ber one is
divided by three and then multiplied by
three, one would get back one as a result.
However , if the result of the division is ac·
tually multiplied by three, the answer is
not actually one, but approaches that value
as the number of significant lJits used in the
calculation is increased. Observe.

0.3 (one significant digi t used)
X 3

.9 (answer is off by 10%)

0.33 (two significant digits used)
X 3

.99 (answer is off by 1%)

0.333 (three significan t digi ts used)
X 3

.999 (answer is off by 0 .1%)

A similar situation exists with binary
arithmetic except there are now many more
cases where the non..,nding fraction situa-
tion can occur. For instance, the value '0.1'
is truly represented in the decimal system.
But, in the binary system, the decimal value
'0.1 ' can only be approximated. As for the
decimal case discussed above, the more
binary digits used, the closer the value
approaches the true value of ' 0.1. ' Observe.

0.0001 (binary) = 1/ 16 =.0625 (decimal)
Which is off by 37.5%!

0.0001l001l = 1/16 + 1 /32 + 1 /256
+ 1/512 = .0996
Off by just 0.4%!

Note too, that the binary representation is a
non·ending series:

5 - 10

0.1 decimal = 0 .0001l001l001l001l00
............... binary

and can not reach the theoretical true value
of '0.1' as in the decimal system . Thus, if
'0 .1' as represented in the binary system is
multiplied by, say, '10 : (which can be truly
represented in the binary system) the theo-
retical value of '1.0' can only be approached.
The more bits used to hold the binary equiv-
alent, the closer one will approach the true
answer. Thus, one may see another reason for
using multiple-precision arithmetic in a digi-
tal computer, even if one does not want to
handle large numbers. This is because, the
more bits available to store a fractional num-
ber, the more precision one can maintain in
performing calculations. One should now also
realize, that the more complex a series of
mathematical operations, in other words , the
more times a number that can not be truly
represented is multiplied or divided , the
wider will become the margin of error in the
final answer !

Now that one has a grasp of how binary
digits can represent fractional numbers
when placed to the right of a decimal
point, one may proceed to investigate
floating point arithmetic using a digital
computer .

FLOATING POINT ARITHMETIC

Just as one can represent decimal numbers
in floating point format, that is, by a string of
significant digits raised to a power of ten, one
may treat binary numbers in a similar manner
as a string of binary digits raised to a power
of two .

When handling numbers in floating point
format the number is represented in two
parts. The significant digits portion is re-
ferred to as the MANTISSA. The power
to which the significant digits are raised
is referred to as the EXPONENT. In decimal
floating point format the number '5' could
be expressed as:

5.0 E+O = 5 X 1 = 5

OR 50.0 E-1 50 X 1 /10 = 5

OR 0.5 E+1 0.5 X 10 = 5

While in binary floating point format the
number co uld be expressed as:

101.0 E+O = 5 X 1 = 5

OR 101000.0 E-3 = 40 X 1/8 5

OR 0.101 E+3 = 5/8 X 8 = 5

It shouid be remembered that in the
decimal example above the ·EXPONENT
represents a power of TEN . In the binary
example it represents a power of TWO .

Note that the mechanics of the corres-
pondence between the exponent and the
location of the decimal point in the mantissa
is the same for both numbering systems.
If the significa.,t digiis in the mantissa are
moved to the right of the decimal point
then the exponent is increased one unit
for each position the mantissa is shifted.
If the digits in the mantissa are shifted to
the left, then t he exponent is decreased .
The only difference between the two sys-
tems is that the exponent in the decimal
system is specified for powers of ten, while
in the binary system it is for powers of two.

The reader may now see that it can be
quite a simple matter to handle binary num-
bers using floating pain t format if one regis-
ter (or several registers) is used to hold the
mantissa portion, and another register is

used to maintain the exponent. Further-
more, a very simple relationship can be
maintained between the mantissa and the
exponent to facilitate keeping track of a
decimal point. Once one has selected a given
position as a reference in the mantissa por-
t ion, one has only to observe the following
procedures for manipulating the number and
keeping track of the decimal point:

Each time the MANTISSA is shifted RIGHT

INCREMENT the EXPONENT'

Each time the MANTISSA is sh ifted LEFT

DECREMENT the EXPONENT'

For the remainder of this chapter, a con-
vention for storing numbers in floating point
format will be established and maintained.
Numbers will be stored in four consecutive
words in memory. The first word in a group
will be used to store the EXPONENT with
the most significant bit in the word used to
represent the SIGN of the EXPONENT. A
'1 ' in the most significant bit position means
the number is NEGATIVE. The next three
words will hold the MANTISSA portion in
triple-precision format. The first bit in the
first (most significant word) of the mantissa
will be used as the mantissa sign bit. The re-
maining bits in that word will be the most
significant bits of the mantissa. The remaining
two words in the mantissa group will hold the
less significant bits of the mantissa . Further-
more, there will be an IMPLIED DECIMAL
POINT immediately to the right of the sign
bit in the mantissa. The format is illustrated
here :

... EXPONENT MSW MANTISSA LSW

SEEEEEEE S.M M M M M M M MMMMMMMM MMMMMMMM

MEM LOC N+3 MEM LOC N+2 MEM LOC N+1 MEM LOC N

5 - 11

Note the order of the memory addresses
assigned to the storage of a number. The
order of storage is an arbitrary assignment .
How ever , once it has been assigned it must
be adhered to within a program. The order
shown is the one that will be used in the dis-
cussion and program examples for the re-
mainder of t his section .

Note too , that a convention has been
establi shed that will co nsider a decimal
point (actuall y, perhaps it should be termed
a binary poin t) to be located to the righ t o f
the designated sign bit for the mantissa. This
means that all numbers stored in fl oating
poin t fo rmat will be represented as a
fractional n um ber I Also , t he reader may
observe that with one bit out of the three
words used to hold the sign of the mantissa,
that 23 (decimal) bits are left to hold the
actual magnitude of the mantissa . Similarly ,
the exponent has seven bits in which to re -
present the magnitude of its value . The eighth
bit being used to represent the sign of the
exponent. Furt hermore , an exponent must
be an integer value as there is no implied
decimal point in the exponent register.

F LOATING POINT NO RMALI ZATION

NO RMALI ZATIO N may be considered
as a standardizing process that will place a
n umber into a fixed position as a reference
poin t from which to commence operations.
For the purposes of this discussion, the
term NO RMALI ZATION will mean to place
a number into its storage registers so that the
mantissa will have a value that is greater than
or equal to ONE HALF (l /2) but less than
ONE (1). Put another way , this means that
any number to be manipulated by a fl oating
po in t routine will first be shifted so that the
most significant binary digit is next to the
IMPLIED BINA RY POINT in the most
significant word o f the MANTISSA storage
registers. For instance, if a binary number
such as:

10l.0 E+O (5 decimal)

5 - 12

was received by an input routine to a float-
ing point program, the number would be
NO RMALI ZED when it was placed in the
form:

0.101 E+3 (5 /8 X 5 = 5 decimal)

Similarly , if after , say , a binary division
operation in which the num ber '1 ' had been
divided by 10 (decimal) and one had the
answer:

0.000110011001100 ... E+O (0.1 dec imal)

the number would be considered normalized
when it was placed in the format:

0.110011001100110 ... E-3 (0.1 decimal)

Note that norm alizing a number is a
pretty easy matter. In the first example
the number was normalized by shift ing the ·
original number to the right until the most
significant bit was just to the right of the
decimal poin t. During t his procedure , t he
value of the exponent was incremented for
each shifting operatio n in the mantissa. In the
second example, the number is normalized by
shifting the original value of the mantissa to
the left while decrementing t he exponent for
each shifting operatio n in the mantissa.

There are several reasons fo r wanting to
NO RMALI ZE a number when working with a
fl oating point program . The first has to do
with the fact t hat generall y numbers will
o riginate from a human who will be using the
computer to manipulate numbers in decimal
format. Therefore, the computer will have to
convert numbers from say, decimal floating
point form at, to the binary floating po in t
format used by t he computer. There will
be more discussion on this matter later in this
chapter after a number of binary fl oating
point operations have been presented. The
second reason fo r normali zi ng numbers, and
a very important one. is because the process
will allow more significant digits to be re-
tained in a fixed length register. This may
be seen by observing in the above example
(the case where '0 .1' decimal is normalized)

that shifting the binary number to the left
three places would allow several more LSB's
to be placed in a fixed length register fo r the
non-ending binary series 0.110011001100
and th us allow more accuracy in the binary
calculations that might follow I

FLOATING POINT ACCUMULATOR and a
FLOATING POINT OPERAND. The floating
point accumulator and operand will be sepa-
rate groups of registers consisting of fo ur
consecutive memory words on PAGE 00 used
to store the active numbers that are manipu-
lated by the floating point routines . They
will, of co urse, be arranged in the format de-
scribed earlier. That is , a single-word EXPO-
NENT and then a triple-word MANTISSA.
The FLOATING POINT ACCUMULATOR
will be the focal point for any floating point
routine as all t he results of floating point
calculations will be placed there . The FLOAT-
ING POINT OPERAND will be used primarily
for holding and manipulating the number that
the floating point accumulator operates on.
For abbreviation in further discussions , the
floating point accumulator will be shortened
to FP ACC and the operand to FPOP.

A routine for normalizing binary numbers
will be presented next. In the routine for nor-
malizing numbers, and various other mathe-
matical routines in this chapter. various loca-
tions on PAGE 00 will be used for sto rin g
numbers that are to be manipulated by the
routines as well as for holding COUNTERS
and POINTERS used in the routines. A list of
the locations reserved for such use on PAGE
00 will be provided later. Also, before getting
into the actual binary floating point routines,
the reader should be informed that in the fol-
lowing routines, references will be made to a

FPNORM , LAB
NDA
JTZ NOEXCO
LLI127
LMB

NOEXCO, LLI126
LAM
LLI 100
NDA
JTS ACCMIN
XRA
LMA
JMP ACZERT

ACCMIN, LMA
LBI004
LLI 123
CAL COMPLM

ACZERT , LLI126
LBI004

LOOKO , LAM
NDA
JFZ ACNONZ
DCL
DCB
JF Z LOOKO
LLI127
XRA
LMA
RET

Check register B for special case
Set flags after load operation
If B was '0' then do standard normalization
Otherwise set EXPONENT of FPACC
To value found in B at start of routine
Set pointer to MSW of FPACC MANTISSA
And get MSW of FP ACC MANTISSA into ACC
Change pointer to SIGN storage address
Set flags after previous LAM operation
If MSB in MSW equals '1' then have minus number
If MSB '0' then have positive value mantissa
So set SIGN storage to 000 value
Proceed to see if FP ACC zero
Original FPACC negative number, set SIGN
Set precision counter to four (using extra word)
And pointer to FPACC LSW-1 (using extra word)
Two's complement FPACC (using extra word)
Check to see if FPACC contains zero
Set a counter
Get a part of FPACC
Set flags after load operation
If find anything then FP ACC is not zero
Otherwise move pointer to next part
Decrement the loop counter
And if not finished check next part
If reach here FPACC was zero
So make sure EXPONENT of FPACC is zero
By placing zero in it
Can then exit NORMALIZATION routine

5 - 13

ACNONZ, LLl123
LBI004
CAL ROTATL
LAM

If FPACC has value, set up pointer and
Precision value ('4' to handle special cases)
Then rotate FP ACC to the LEFT

NDA
Now get MSB of MSW from MANTISSA
Set flags after load operation

JTS ACCSET
INL

If MSB = '1' then have found MSB in FPACC

CAL CNTDWN
JMP ACNONZ

ACCSET, LLI126
LBI 003
CAL ROTATR
LLl100

If not, advance pointer to FPACC EXPONENT
And decrement the value o f the EXPONENT
Then continue in the rotating left loop
Compensate for last rotate left when MSB
Found to leave room for SIGN in MSB of the
FPACC MANTISSA by doing one rotate RIGHT
Set pointer to original SIGN storage

LAM Get original SIGN indicator value
NDA Set flags after load operation
RFS
LLI124
LBI003
CALCOMPLM
RET

Finished if value in FP ACC is POSITIVE
Original SIGN is negative , so set pointer to
LSW of FPACC and also set precision counter
Now two's complement the NORMALIZED FPACC
That is all for t he FP NORMALIZATION ROUTINE

There are several items in the above routine
that might confuse the reader if not explain-
ed. First of all, the routine checks CPU regis-
ter B when it is entered. If B contains '0 '
then the routine will proceed directly on to a
new section in the program. If B contains
some value , then the value it contains will be
placed in the EXPONENT portion of the
FPACC. This is done so that the FPNORM
subroutine can process numbers that are not
initially in floating point form. For instance,
when a number is first received from an
INPUT device it will generally be in a form
such as shown in the example below depict-
ing the binary equivalent of 5 decimal:

00 000 000 00 000 000 00 000 101

As it would appear in standard triple-preci-
sion format. Now, the above standard for-
mat co uld be converted to floating point
format by assuming that a BINARY POINT
existed to the right of the least significant
bit, and shifting the entire number to th e
right while incrementing the binary expo-
nent register. However, the technique would
cause a slight problem. How could one tell
where the most significant bit of the binary

5 -14

number resided? A way around that problem
is to simply shift th e registers to the LEFT
until the first '1 ' (MSB) is in the desired posi-
tion. If this is don e, one must first set the
EXPONENT portion of the floating point
number to the highest possible value that
could be contained in the registers. Then,
that value is decremented each time the
magnitude portion of the number is shifted
to the LEFT. In the example presentation ,
there are 23 decimal bits available for storing
the mantissa when triple-precision format-
ting is being used (24 bits less one which is
used to represent the sign of the number).
Thus, one would simply load register B with
the octal equivalent of 23 decimal which is
27 before calling the FPNO RM subroutine
whenever one wanted to convert a number in
standard form to floating point format' The
following illustrations should help clarify
the presentation:

ORIGINAL BINARY NUMBER WHEN IT
IS IN STANDARD FORMAT

00 000 000 00 000 000 00 000 101

DESIRED FLOATING POINT FORMAT

SE EEE EEE
(exponent followed by mantissa):
S . I III III II III III II III III

NOW ORIGINAL NUMBE R PLACED IN
FPACC and EXPONENT SET TO 27-

(OCTAL)

00010 III
(exponent followed by mantissa):

0.0 000000 00000000 00000101

ORIGINAL NUMBER IS THEN
NO RMALI ZED BY ROTATING LEFT

00000011
(exponent followed by mantissa):

0.1 010000 00000000 00000000

Since the exponent was decremented each
time the number was rotated left the final
exponent value is the same as if the number
had been rotated to the right to accomplish
the normalization while incrementing the
exponent from a value of zero!

The reader should also note that the
FPNORM subroutine checks to see if the
number to be normalized is negative. If it
is, the routine keeps track of that fact and
makes the number positive in order to accom-
plish the normalization procedure. If it did
not, the normali zatio n routine would not
work as may be seen when one recalls what a
number such as minus five appears like in its
two 's complement form:

11 III III 11 111 111 11 111 011

After the number has been normalized in its
positive form, it is converted back to the

5 - 15

negative form so that the number minus five
would appear when normalized as:

00000011
(exponent followed by mantissa):

l.0 llO 000 00 000 000 00 000 000

The reader should work through the
proced ure using pencil and paper to make
sure the process is understood when pro-
cessing negative numbers as it may be
co nfusing at first glance. Note t hat the
normalized minus value has the most sig-
nificant bit position in the mantissa set to
a 'I' to indicate a negative value!

Another po int of interest in the FPNORM
subroutine is that the routine tests to see if
the FPACC contains zero. Note that if this
test was not made and appropriate action
taken to exit the subroutine on such a con-
dition, that the program cou ld become
trapped in the rotate left loop as it would
fail to ever see a '1' appear in the most sig-
nificant bit position! When a zero condition
is found in the mantissa, the routine sets the
exponent part of the FPACC to zero as an
additional safety measure.

Finally, the reader may note that the
first part of the normalization routine
assumes the mantissa uses four memory
words. This was done so that the subroutine
could handle some special cases that can
occur after operations such as multipli-
cation where it may be necessary to have
some additional precision. In cases where the
feature is not needed, the extra memory word
should be set to zero before using the
FPNORM subroutine .

The ROTATL and ROTATR subroutines
called by FPNO RM are short routines that
have been set up for N'th-precision o peration
as with other algorithms discussed in this
chapter. Before entering the routines the
calling program sets the starting address of the
string of memory words to be processed in
the Hand L CPU registers. It should also set
the number of words in the string in register
B. The two subroutines are shown next.

ROTATL,
ROTL,

NDA
LAM
RAL
LMA
DCB
RTZ
IN L

Clear carry nag at this entry point
Fetch word fro m memory
Rotate LEFT (with carry)
Restore rotated word to memory
Decrement precision counter

JMP ROTL

Return to calling routine when done
Otherwise advance pointer to next word
And rotate across the memory wo rd string

ROTATR,
ROTR,

NDA
LAM
RAR
LMA
DCB
RTZ
DCL

Clear carry flag at this entry point
Fetch word from memory
Ro tate RIGHT (with carry)
Restore rotated word to memory
Decreme nt precision counter
Return to calling routine when do ne

JMP ROTR
Going other way so decrement memory pointer
And rotate across the memory word string

FLOATING POINT ADDITION

Floating point addition is quite straight
forward . In fact , one may use the ADDER
subroutine already developed earlier in this
chapter for the mantissa portion o f a set of
floating point numbers . However , there are
a few other parameters that must be con-
sidered in developing the overall routine .

When two numbers are to be added it will
be assumed that they have been positioned in
the FPACC and the FPOP memo ry storage
areas . A few items that should be considered
in developing the basic floating point addition
routine include the following.

Suppose either the FPOP or FPACC con-
tain zero? Or, they both contain zero? In the
latter case the ro utine could be immediately
exited as the answer is sitt ing in the FPACC.
If the FPACC is zero, but the FPOP is no t,
then one has merely to place the contents of
the FPOP into t he FPACC (as the co nvention
was established earlier that the result of an
operation would always be left in the
FPACC). For the case where the FPACC
contains a value, but the FPOP is zero, one
may immediately exit the routine.

But, as will more likely be the case when

5 - 16

the floating point ADD routine is called, both
the FPACC and the FPOP will contain so me
non-zero value. Thus one co uld immediately
proceed to perform t he addition operation ,
right? WRO NG ! Since float ing point opera-
tions allow the manipulation of numbers with
large magnitudes , because of t he exponent
method of maintaining magnitudes, it is quite
possible that an operator might ask for an
addi t ion of a very small number to a very
large number. (This also might occur in t he
middle of a complex calculation where an
operator was not monitoring the intermediate
results .) Readers know t hat if the difference
between the two numbers to be added is so
great that there can be no chan ge in the
significant digits during the calculation then
there is no need to perform the addition
process . So, the next step in the floating point
add itio n ro utine would be to check to see
whether o r not the magnitudes of the
numbers are within sign ificant range of
o ne another. If t hey are not , then the largest
value should be placed in the FPACC as the
answer!

If the magnitudes of the two numbers are
within significant range then the two numbers
may be added . Before this can be done, they
must first be ALIGNED by shifting one of the
numbers until the exponent is equal in value
to that of the second number. The alignment

is accomplished by finding out which expo-
nent is the smallest and shifting the man-
tissa of that number to th e right (while in -
crementing the exponent for each shift)
until it is properly aligned. The sh ifting pro-
cedure is quite straightfOlward since it can
be hand led by a N'th-precision register
rotate subroutine . However, there is one
>pecial consideration for the case of a nega-
tive number being shifted to the right. · One
must insert a el' into the most significant
bit position each time such a shift is made
in order to maintain the minus value prop-
erly (to keep the sign bit in its proper state) .
This can be accomplished easily as the reader
may observe in the foll owing FP ADD sub-
routine by inserting a '1' into the carry bit,
then calling the ROTR subroutine. (This is
simply another entry point to the ROTATR
subroutine presented earlier . The entry

po int at ROTR avoids the NDA instruction
which would cause the carry bit to be cleared
to a '0 ' condition if executed.)

One more consideration that the reader
may note in the foll owing FPACC subrout-
ine is that the two numbers to be added are
sh ifted to the right once before the addition
is performed so that any overflow fro m the
addition will stay wi thin the FP ACC. This
will allow normalizatio n to be handled by
the previously presented routine instead of
having to be concerned with the status of
the carry flag at the end of the operation.
Because o f this shifting operation, an add i-
tio nal memory word is used by both the
FP ACC and FPOP and the addition is per-
form ed using quad-precision . At t he end of
the addition process the result is normalized
and left in the FPACC .

FPADD , LL1126
LBI003

CKZACC , LAM
NDA
JF Z NONZAC
DCB
JTZ MOVOP
DCL
JMP CKZACC

MOVOP, CAL SWITCH
LHD
LLl134
LBI004
CAL MOVEIT
RET

NONZAC, LLI 136
LBI003

CKZOP, LAM
NDA
JF Z CKEQEX
DCB
RT Z
DCL
JMP CKZOP

CKEQEX, LLl127
LAM
LLI 137
CPM
JTZ SHACOP

Set pointer to MSW of FP ACC
Set loop counter
Fetch part of FPACC
Set flags after loading operation
Finding anything means FPACC not zero
If that part equals zero, decrement loop counter
If FPACC equals zero , move FPOP into FPACC
Not finished checking, decrement pointer
And test next part of FPACC
Save pointer to LSW of FPACC
Set H equal to zero for sure
Set pointer to LSW of FPOP
Set a loop counter
Move FPOP into FPACC as answer
Exit FP ADD subroutine
Set pointer to MSW of FPOP
Set loop counter
Get MSW of FPOP
Set flags after load operation
If not zero then have a number
If zero, decrement loop counter
Exit subroutine if FPOP equals zero
Else decrement pointer to next part of FPOP
And continue testing for zero FPOP
Check for equal expo nents
Get FPACC exponent
Change pointer to FPOP exponent
Compare exponents
If same can setup for ADD operation

5 - 17

SKPNEG,

LINEUP,

MORACC,

SHIFTO,
MOROP,

SHACOP,

SHLOOP,

FSHIFT,

XRI377
AD! 001
ADM
JFS SKPNEG
XRI377
AD! 001
CPI030
JTS LINEUP
LAM
LLI 127
SUM
RTS
LLI124
JMP MOVOP
LAM
LLI 127
SUM
JTS SHIFTO
LCA
LLI127
CALSHLOOP
DCC
JFZ MORACC
JMP SHACOP
LCA
LLI 137
CAL SHLOOP
INC
JFZ MOROP
LLI123
LMIOOO
LLI 127
CALSHLOOP
LLI 137
CALSHLOOP
LDH
LEI 123
LBI004
CAL ADDER
LBIOOO
CAL FPNORM
RET
LBM
INB
LMB
DCL
LBI004
LAM
NDA
JTS BRING1
CAL ROTATR

If not same, then two 's complement
The value of the FP ACC exponent
And add in FPOP exponent
If + then go directly to alignment test
If negative perform two's complement
On the result
N ow see if result greater than 27 octal
If not can perform alignment
If not alignable, get FPOP exponent
Set pointer to FPACC exponent
Subtract FPACC exponent from FPOP exponent
FPACC exponent greater so just exit routine
FPOP was greater, set pointer to FPACC LSW
Go put FPOP into FPACC and then exit routine
Align FPACC and FPOP , get FPOP exponent
Change pointer to FPACC exponent
Subtract FPACC exponent from FPOP exponent
FPACC greater so go to shift operand
FPOP greater so save difference
Pointer to FP ACC exponent
Call shift loop subroutine
Decrement difference counter
Continue aligning if not done
Setup for ADD operation
Shift FPOP routine, save difference count (negative)
Set pointer to FPOP exponent
Call shift loop subroutine
Increment difference counter
Shift again if not done
First clear out extra room, setup pointer
to FP A CC LSW + 1 and set it to zero
N ow prepare to shift FP ACC right once
Set pointer and then call shift loop routine
Shift FPOP right once, first set pointer
Call shift loop subroutine
Setup pointers, set T) equal to zero for sure
Pointer to LSW of FPACC
Set precision counter
Add FPACC to FPOP using quad-precision
Set B for standard normalization procedure
Normalize the result of the addition
Exit FP ADD subroutine with result in FP ACe
Sh ifting loop for alignment
Fetch exponent into B and increment
Return increment value to memory
Decrement the pointer
Set a counter
Get MSW of floating point number
Set flags after loading operation
If number is minus, need to shift in a ' 1 '
Otherwise perform N'th-precision rotate

5 - 18

RET
BRING1 , RAL

Exit FSHIFT subroutine
Save '1 ' in carry bit

CAL ROTR
RET

Do ROT ATE RIGHT without clearing carry bit
Exit FSHIFT SUbroutine

MOVEIT, LAM
INL

Fetch a word from memory string' A'
Advance 'A' string pointer

CAL SWITCH
LMA

Switch pointer to string 'B'

INL
Put word from string 'A' into 'B'
Advance B string pointer

CAL SWITCH.
DCB

Switch pointer back to string 'A'
Decrement co unter

RTZ
JMP MOVEIT

Return to calling routine when counter is zero
Otherwise continue moving operation

FLOATING POINT SUBTRACTION

Now that one has a floatin'g point addi-

tion routine , floating point subtraction is a
snap. All one really has to do is negate the
number in the FP ACC and jump to the
floating point addition routine!

FSUB, LLI 124
LBI003

Set pointer to LSW of FPACC
Set precision counter

CAL COMPLM
JMP FPADD

Perform two's complement on FPACC
Subtraction accomplished now by adding!

FLOATING POINT MULTIPLICATION

Floating point multiplication can be
accomplished by utilizing a shifting and
adding algorithm for the mantissa portion
of the numbers. As pointed out earlier,
shifting a binary number to the LEFT serves
to essentially DOUBLE its value. An algo-
rithm that takes advantage of that fact can
be described as follows .

Consider the two numbers as a MULTI-
PLIER and a MULTIPLICAND. Examine the
least significant bit of the MULTIPLIER. If
it is a o ne , add the current value of the
MULTIPLICAND to a third register (which
initially starts with a value of zero). Now,
shift the MULTIPLICAND one position to
the LEFT. Examine the next bit to the LEFT
of the least sign ificant bit in the MULTI-

5 - 19

PLIER . If it is a one, add the current value
of the MULTIPLICAND to the third regis-
ter (wbich could be called the PARTIAL-
PRODUCT register). Shift the MULTIPLI-
CAND to the LEFT again. Continue the
process by examining all the bits in the
MULTIPLIER for a one condition. When-
ever the MULTIPLIER contains a ONE add
the current value of the MULTIPLICAND
to the PARTIAL-PRODUCT register. After
each examination of a bit in the multiplier
(and addition of the multiplier to the par-
tial-product register if a ' 1' was observed)
shift the multiplicand LEFT. Continue
until all bits in the multiplier have been
examined. The result of the multiplication
will be in the partial-product register at the
completion of the above process . The algo-
rithm can perhaps be seen a little more
clearly by studying the flow chart presented
next.

NO

CHECK NEXT BIT
OF MULTIPLIER

IS IT A 1 ?
YES

ADD MULTIPLICAND
TO PARTIAL-PRODUCT

SHIFT MULTIPLICAND
TO THE LEFT

The reader may verify the algorithm b y
following the example below for two small

numbers , t he number '3 ' as the multiplicand
and the number '5' as the multiplier.

00000011

00000101

00000000

00000011

00000101

00000011

(Multiplicand at start of operations.)

(Multiplier.)

(Partial-product before operations start .)

(Multiplicand when first bit of mu ltiplier
is examined .)

(Least significant bit of multiplier '1 ')

(Multiplicand is added to partial-product.)

5 - 20

00 000 110

00 000 101

(Multiplicand is shifted to the LEFT before
second bit of multiplier is examined.)

(Second bit of mult iplier is zero.)

00 000 all (So nothing is added to partial-product.)

00 001 100

00 000 101

(Multiplicand is shifted to the LEFT again
before next bit of multiplier is exam ined .)

(Third bit of multiplier is a one.)

00 001111 (So multiplicand's current value is added
into the partial-product register. Since
all the remaining bits in t he multip lier
are '0' noth ing more will be added to the
partial-product register. It thus holds the
final answer I)

While the algorithm just. presented was
designed for multiplying numbers that are in
standard fo rmat, with just a little variation ,
the basic procedure can by applied toward s
multiplying the mantissa portion of numbers
sto red in floating point format . A fl ow chart
of the mantissa mUltiplying algorithm used in
the FPMULT subroutine to be presented
shortly is illustrated on the next page . Note
that it is easy to test each bit of the MULTI-
PLIER by simply rotating it right and testing
the status of the carry flag after a rotate
operation.

Handling the exponent portion when
multiplying two numbers stored in binary
floating point format is acco mplished the
same way one would handle exponents
in decimal floating point format. The ex-
ponents are simply added together.

There are several other parameters to
consider when multiplying numbers. First,
the algori t hm presen ted may only be used
when the numbers are positive in value.
Thus, any negative numbers must first be
negated before using the algorithm . Furt her-
more, the reader knows that if two numbers
of the same sign are multiplied together the
answer will be a positive value, but , if the
signs are differen t, tbe answer will be a nega-
tive number. Therefore, one must take

5 - 21

acco unt of the initial signs of the numbers
being mult iplied . If appropriate, the final
value must be negated after using the algo-
rithm. As the reader may observe in the
FPMULT subroutine, handling this task is
quite easy.

Secondly, the alert reader may have ob-
served that since the multiplicand is shifted
in the above algorithm (the partial-product
register is shifted in the floating po int algo-
rithm to accomplish the same purpose) one
position for each bit in the mult iplier, t hen
it is necessary to maintain working registers
that are twice as long as the original numbers
that are being multiplied . Thus, the final
aqswer may contain more hits of precision
than the overall program is designed to
handle. In tbe FPMULT subroutine, tbe
multiplication of the mantissas is accom-
pliohed using six memo ry words per register.
At the conclusion of the routine, the twenty-
third binary bit is rounded off (depending
on the status of the twenty-fourth least
significant bit) and the answer is norma-
lized back to a 23 bit binary number which
is the largest number of bits the package
being discussed is designed to normally
manipulate . The method allows maximum
precision to be maintained during the multi-
plication process without over-burdening
the rest of the floating po int routines.

FPMULT,
ADDEXP,

SHIFT MULTIPLIER
RIGHT (INTO CARRY)

NO

NO

CAL CKSIGN
LLI 137
LAM
LLI127
ADM
AD! 001
LMA

CARRY = I?

CHECKED
ALL BITS IN

MULTIPLIER?

YES

ADD MULTIPLICAND
TO PARTIAL-PRODUCT

YES

ANSWER IS STORED IN
THE PARTIAL-PRODUCT

REGISTER

Setup routine and chec\< sign of numbers
Set po inter to FPOP exponent
Fetch FPOP exponent into accumulator
Set pointer to FPACC exponent
Add FPACC exponent to FPOP exponent
Add one for algorithm compensation
Store result in FP ACC exponent

5 - 22

SETMCT, LLI102
LMI027

MULTIP , LLI 126
LBI003
CAL ROTATR
CTC ADOPPP
LLI 146
LBI006
CAL ROTATR
LLI102
CAL CNTDWN
JFZ MULTIP
LLI146
LBI006
CAL ROTATR
LLI143
LAM
RAL
LAA
NDA
CTS MROUND
LLI123
CAL SWITCH
LHD
LLI143
LBI004

EXMLDV, CAL MOVEIT
LBIOOO
CAL FPNORM
LLI101
LAM
NDA
RFZ
LLI124
LBI003
CAL COMPLM
RET

CKSIGN, CAL CLRWRK
LLI 101
LMI001
LLI126
LAM
NDA
JTS NEGFPA

OPSGNT, LLI136
LAM
NDA
RFS
LLI 101
CAL CNTDWN
LLI134

Set bit counter storage pointer
Set bit counter to 23 decimal (27 octal)
Basic multiply algorithm, set pntr to MSW of FPACC
Set precision counter
Rotate multiplier RIGHT into carry flag
If carry equals one, add multiplicand to partial-product
Set pointer to partial-product MSW
Set precision counter
Shift partial-product RIGHT
Set pointer to bit counter
Decrement value in bit counter
If bit counter not zero, repeat algorithm
Set pointer to partial-product MSW
Set precision co unter, now rotate partial-product
Once more to make room for possible rounding
Set pointer to access 24'th bit in partial-product
Fetch 24 'th bit
Position it to MSB position
NOP in8erted to correct algorithm
Set flags after rotate operation
If 24 'th bit is a '1' then do rounding process
Now set pointer to FPACC
Save FPACC pointer
Ensure that H is '000'
Set pointer to partial-product
Set precision counter
Move answer from partial-product into FP ACC
Set B for standard normalization
Normalize the answer
Set pointer to SIGN indicator
Fetch SIGN indicator
Set flags after load operation
If SIGN has value, result is positive, exit subroutine
But if SIGN is zero, set FPACC LSW pointer
And set precision counter
And negate the answer
Before exiting the FPMULT subroutine
Clear working locations for multiplication
Set pointer to SIGN storage
Place the initial value of '1' into SIGN storage
Set pointer to MSW of FPACC
Fetch MSW of FPACC
Set nags after load operation
If number is minus, need to do two 's complement
Set pointer to MSW of FPOP
Fetch MSW of FPOP
Set flags after load operation
If number is positive , return to calling routine
If number is minus, set pointer to SIGN storage
Decrement value of SIGN indicator
Set pointer to LSW of FPOP

5 - 23

NEGFPA,

CLRWRK ,

CLRNEX,

CLROPL,

CLRNX1,

ADOPPP,

MROUND ,

CROUND,

LBI003
CAL COMPLM
RET
LLI 101
CAL CNTDWN
LLI124
LBI003
CAL COMPLM
JMP OPSGNT
LLI140
LBI010
XRA
LMA
DCB
JTZ CLROPL
INL
JMP CLRNEX
LBI004
LLI 130
LMA
DCB
RTZ
INL
JMP CLRNX1
LEI 141
LDH
LLI 131
LBI006
CAL ADDER
RET
LBI003
LAI100
ADM
LMA
INL
LAIOOO
ACM
DCB
JFZ CROUND
LMA
RET

FLOATING POINT DIVISION

Set precision counter
Perform two's complement of number in FPOP
Go back to calling routine
Set pointer to SIG N storage
Decrement value of SIGN indicator
Set pointer to LSW of FPACC
Set precision counter
Negate the value in the FPACC
Go c heck sign of FPOP

Clear partial-products work area (140 - 147)
Set pointer and counter
Set accumulator to zero
Deposit accumulator contents into memory
Decrement counter
When done go to next area
Else continue clearing partial-product working area
By stuffing zeroes in next memory location
Clear additional room for multiplicand
At 130 to 133, first set counter and pointer
Put '000 ' in memory
Decrement counter
Return to calling program when done
Else advance pointer
And continue clearing operation
Pointer to LSW of partial-product
On PAGE 00 in D & E pointer
Pointer to LSW of multiplicand
Set precision counter
Perform addition
Exit subroutine
Set precision counter
Add '1 ' to 23'rd bit of partial-product
Here
Restore to memory
Advance pointer
Clear ACC without disturbing CARR Y FLAG
And propogate rounding
In partial-prod uct
Finished when counter equals zero
Restore last word of partial-product
Exit subroutine

In a manner that is sort of the reverse of
multiplication (which uses ADDITION and
ROTATE operations) one can perform
division using an algorithm that utilizes

SUBTRACTION and ROTATE operations.
An algorithm will be presented directly in
the form used in floating point operations
because in this case it is simpler than de-
scribing it for numbers that are not in floating
point form . The alert reader should have
little difficulty observing that the algorithm

5 - 24

NO

NO

SUBTRACT DIVISOR
FROM THE DIVIDEND

IS
RESULT

'0' OR '+'?

YES

PLACE '1 ' IN LSB
OF QUOTIENT

PLACE '0' IN LSB
OF QUOTIENT

PLACE REMAINDER AS
NEW DIVIDEND

ROTATE CURRENT
DIVIDEND LEFT

ROTATE QUOTIENT
TO THE LEFT

FINISHED?

5 - 25

YES

ANSWER IN
QUOTIENT

could be used for numbers that are not in
floating point format. To do so, one would
have to align the most significant bits of the
divisor and dividend , and take appropriate
action to handle the location of a binary
point in cases where the result was not a
pure in teger.

In rambling English, the algorithm could
be stated as follows. Subtract the value of
the divisor from the value of the original
dividend. Test the result of the subtraction.
If the result is negative, meaning the entire
divisor could not be subtracted, place a '0'
in the least significant bit of a register desig-
nated as the QUOTIENT. Leave the current
dividend alone. If the result of the subtrac-
tion is positive, or zero, indicating the divi-
dend was larger than or equal to the divisor,
place a ' 1 ' in the least significant bit of the
QUOTIENT register, then set the dividend
equal to the value of the REMAINDER (or
result) of the subtraction operation . Next ,
once appropriate action has been taken as a

result of the subtraction operation , rotate the
contents of the dividend (whether its original
value or the new REMAINDER) one posi-
tion to the LEFT. Similarly, rotate the
QUOTIENT once to the LEFT to allow
room for the next least significant bit. Now
repeat the entire procedure until one has
performed the above operations as many
times as there are bit positions in the register
used to hold the original dividend! (That
would be 23 decimal times for the floating
point package being discussed.)

The algorithm may be visualized a little
more clearly by studying the flow chart
presented on the previous page. Addition-
ally, a step-by-step illustration of the algo-
rithm being used to divide the binary equiva-
lent of 15 (decimal) by 5 is presented next.
(The length of the registers have been reduced
to shorten the illustration .) Remember, the
algorithm shown is for the MANTISSA por-
tion of numbers once they have been stored
in NORMALIZED floating point format!

0.1111 Original DIVIDEND at start of routine.

0.1010

0.0101

DIVISOR (Note floating point format.)

This is the REMAINDER from the sub-
traction operation. Since the result was
POSITIVE a '1' is placed in the LSB of
the QUOTIENT register.

a . a a a 1 QUOTIENT after l'st loop.

NOW BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT

a 1 a 1 a
a 1 a 1 a
0.0000

New DIVIDEND (which is the previous RE-
MAINDER rotated once to the LEFT).
DIVISOR (Does not change during routine).

RESULT of this subtraction is zero and thus
qualifies to become a NEW DIVIDEND. Also ,
QUOTIENT LSB gets a '1 ' for this case'

o . a a 1 1 QUOTIENT after 2'nd loop.

5 - 26

AGAIN BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT

a a 0 a 0

o 1 a 1 0

New DIVIDEND (which is the last
remainder rotated once to the left).
DIVISOR (still same old number) .

1.0110 RESULT of this subtractio n is a m inus
number (note that the SIG N bit ch ang-

. ed) . Thus, o ld DIVIDEND stays in place
and QUOTIENT gets a '0' in LSB!

o . 0 1 1 0 QUOTIENT after 3 'rd loop.

NOW BOTH QUOTIENT, AND IN THIS CASE , THE OLD DIVIDEND, ARE ROT ATED LEFT

o 0 0 0 0 Old DIVIDEND rotated once to the left.

o 1 0 1 0 Same old DIVISOR.

1 0 1 1 0 RESULT of this subtraction is again a
minus. Old DIVIDEND stays in place.
QUOTIENT gets another '0 ' in LSB .

o . 1 1 0 0 QUOTIENT after 4'th loop .

Since there were just four bits in the
multiplicand register, the algorithm would
be com pleted at the end of the fo urth loop
in the illustration above. The answer would
be that shown in the quotient. Remember,
that since floating point fo rmat is being
used , there would be binary exponents
involved. Similar to the way one would
handle expo nents in decimal floating po in t
no tation, o ne subtracts the exponents for
t he two numbers (DIVISOR exponent from
the DIVIDEND exponent) to o btain the
exponent value fo r a division operation.
In the above example, t he multiplicand
would have had the binary ex ponent '4'
(decimal) to represent the nonnalized sto ring
of 15 and t he divisor would have had a binary
exponent of ' 3.' The above algorithm requires
a compensation factor of +1 after subtracting
the expo nents (can the reader think of ways
in which this co uld be avoided?) in order to

5 - 27

have the correct floating point result . In the
example being d iscussed here, (4 - 3) + 1 = 2,
and indeed if the answer shown was moved
two places to the left (of the implied binary
point) o ne could quickly verify that the result
was the binary equivalent of 3 decimal' The
reader might want to try using other small
valued numbers to test the validity of the
algorithm and to develop a thorough und er-
standing of the process. A good case to
examine is one where the result is non-ending
such as when the number '1' is divided by '3.'

Just as in the multiplication routine , there
are several other parameters that must be con-
sidered when developing the division routine.
For instance, there is again the matter of t he
signs of the numbers. The algorithm requires
that the numbers be in positive format. Again
one must keep track of the signs of the origi-
nal numbers and convert any negative o nes to

positive values for the routine. If the signs of
the two numbers involved are identical, the
result must be a positive value. If they are dif-
ferent then the program must negate the ans-
wer obtained from the actual division process.
And, because some calculations could result
in a non-ending series for an answer, some
rounding capability must be included in the

routine. Then, there is a special case in divi·
sian that one must check for and take approp-
riate action upon finding. That is the case of
an attempted divide by zero ! In such a situa-
tion, the program should branch off to notify
the operator of an error condition. The float-
ing point routine shown next considers these
matters as the read er may observe.

FPDIV , CAL CKSIGN
LLI126
LAIOOO
CPM
JFZ SUBEXP
DCL
CPM
JFZ SUBEXP
DCL
CPM
JTZ DERROR

SUBEXP, LLI137
LAM
LLI127
SUM
ADI 001
LMA

SETDCT, LLI102
LMI027

DIVIDE, CAL SETSUB
JTS NOGO
LEI 134
LLI131
LBI003
CAL MOVEIT
LAI001
RAR
JMP QUOROT

NOGO, LA! 000
RAR

QUOROT, LLI144
LBI003
CAL ROTL
LLI134
LBI003
CAL ROTATL
LLI102
CALCNTDWN
JFZ DIVIDE
CAL SETSUB

Setup registers and check sign of numbers
Set pointer to MSW of FPACC (DIVISOR)
Clear accumulator
See if MSW of FPACC is zero
If find anything proceed to divide
Decrement pointer
See if NSW of DIVISOR is zero
If find anything proceed to divide
Decrement pointer
See if LSW of DIVISOR is zero
If DIVISOR equals zero, have error condition!
Set pointer to DIVIDEND (FPOP) exponent
Fetch DIVIDEND exponent
Set pointer to DIVISOR (FPACC) exponent
Subtract DIVISOR exp from DIVIDEND exp
Compensate for division algorithm
Store exponent result in FPACC exponent
Set pointer to bit counter storage
Set it to 27 octal (23 decimal)
Main division subroutine, subtract DIVIS from DIVID
If result is negative then put '0 ' in QUOTIENT
If '+' or '0' then move REMAINDER into DIVIDEND
Set pointers
And precision counter
And move REMAINDER into DIVIDEND
Put a '1 ' into accumulator
And move it into the CARRY BIT
Proceed to ROTATE it into the QUOTIENT
When RESULT is NEGATIVE, put '0' into ACC
And move it into CARRY BIT
Set pointer to LSW of QUOTIENT
Set precision counter
Move CARR Y BIT into LSB of QUOTIENT
Set pointer to DIVIDEND LSW
Set precision counter
Rotate DIVIDEND left
Set pointer to bits counter
Decrement bits counter
If not finished then continue algorithm
Do one more divide for rounding operations

5 - 28

JFS DVEXlT
LLl144
LAM
ADI 001
LMA
LAIOOO
INL
ACM
LMA
LAIOOO
INL
ACM
LMA
JFS DVEXIT
LSI 003
CAL ROTATR
LLl127
LSM
INL
LMB

DVEXlT , LLl144
LEI 124
LSI 003
JMP EXMLDV

SETSUB, LLl131
CAL SWITCH
LHD
LLI124
LBI003
CAL MOVEIT
LEI 131
LLI 134
LBI003
CAL SUBBER
LAM
NDA
RET

DERROR, CAL DERMSG
JMP USERDF

If 24 'th bit equal zero then no rounding
When 24'th bit is '1' set pntr to QUOTIENT LSW
Fetch LSW of QUOTIENT
Add '1' to 23'rd bit
Restore LSW
Clear accumulator while saving CARR Y FLAG
Advance pointer to NSW of QUOTIENT
Add with carry
Restore NSW
Clear accumulator while saving CARR Y FLAG
Advance pointer to MSW of QUOTIENT
Ad d wi th carry
Restore MSW
If MSB of MSW is zero prepare to exit
Otherwise set precision counter
Move QUOTIENT to the RIGHT to clear SIGN BIT
Set pointer to FPACC exponent
Fetch exponent
Increment it for ROTATE RIGHT operatio n above
Restore exponent
Set pointers to transfer
QUOTIENT to FPACC
Set precision counter
Exit through FPMULT routine at EXMLDV
Set pointer to LSW of working register
Save pointer
Set H = '0' for sure
Set pointer to LSW of FP ACC
Set precision counter
Move FPACC value to working register
Reset pointer to working register LSW (DIVISOR)
Set pointer to LSW of FPOP (DIVIDEND)
Set precision counter
Subtract DIVISOR from DIVIDEND
Get MSW of RESULT from subtraction operations
And set flags after load operation
Before returning to calling routine

**User defined ERROR routine for handling
Attempted divide by zero, exit as directed**

The five fundamental floating point sub-
routines, FPNORM , FPADD, FPSUB ,
FPMULT and FPDIV when assembled into
object code will fit within three pages of
memory in an '8008' system_ Additionally,
the routines as presented in this chapter
use some space on PAGE 00 for storing

data and counters_ Needless to say, the pro-
grams as developed for discussion could be
modified to use other memory locations
with little difficulty_For reference pur-
poses, the locations used on PAGE 00 by the
fundamental floating point routines just
presented are listed on the next page_

5 - 29

100
101
102

SIGN indicator
SIGNS indicator (multiply & divide)
Bits counter

12 3
124
125
126
127

FP ACC extension
FPACC least significant word (LSW)
FPACC next significant word (NSW)
FPACC most significant word (MSW)
FPACC exponent

130 - 133 Working area

134
135
136
137

FPOP least significant word
FPOP next significant word
FPOP most significan t word
FPOP exponent

140 - 147 Working area

The fundamental floating point routines
which have been presented and discussed
are extreme ly powerful routines which should
be of considerable value to anyone desiring
to manipulate mathematical data in an '8008'
or similar system. The routines in the form
presented for illustrative purposes are cap-
able of handling binary numbers that are
the decimal equivalent of six to seven digits
raised to approximately the plus or minus
38 'th power of ten! The routines may be used
to so lve a wide variety of mathematical
formulas by simply calling the appropriate
subroutines after loading the FPOP and
FPACC registers with the values that are to
be manipulated (when they are in norma-
lized floating point format). Furthermore,
the basic routines illustrated can become the
fundamental routines in more sophisticated
programs. Such programs might be developed
to calculate functions such as SINES and
COSINES using numerical techniques such as
expansion series formulas .

The interested programmer should have
little difficulty in modifying the routines
illustrated to upgrade their capability to
provide more significant digits (by increasing
the length of the mantissa). Or , to extend the
exponents capability by providing double or
even t riple-precis ion registers for the expo-

5 - 30

nent. For many applications, however , t he
user will be well satisfied with the capability
provided by the routines as they have been
presented for educational purposes.

The floating point routines which have
been presented are used to manipulate num-
bers once they are in binary format. In so me
applications, such as when formulas are being
solved by a computer to control the opera-
tion of a machine, or applications where there
is little or no need to communicate with
humans, the above routines co upled with
I /O routines and whatever operating programs
are dictated by th e application, would be
sufficient for handling th e mathematical
o peratio ns. However , in probably the major-
ity of applications, at some time o r other it
will be desirable for humans to communicate
with the computer. Or , for the computer to
at least present information to humans. It
seems that the vast majority of people prefer
to manipulate mathematical data using decL
mal notation. Most people would not want
to change tbeir ways by working in floating
point' binary notatio n' So , most programmers
would find it beneficial to have som e conver-
sion routines that would convert numbers
from decimal floating point notation to
binary floating point notation as well as the
reverse. The next · section of this chapter is

devoted to discussing and developing routines
that accomplish such a worth wile objective.

CONVERTING FLOATING POINT
DECIMAL TO FLOATING POINT BINARY

Most people using a digital computer for
handling mathematical functions would like
to input data in the form:

1234.567

OR

1.234 E+3

Using an input device such as a keyboard or
electronic typing machine. In order to accept
data in such format one needs to develop a
program that will first convert the informa-
tion from the decimal mantissa and exponent
form to the binary equivalent. The process is
fairly straightforward conceptually.

First, one needs to develop a method for
breaking down the mantissa portion into a
DEClMAL NORMALIZED format . This may
be done quite readily because:

1234.567 = 1234567 .0 E-3

AND

1 .234 E+3 = 1234.0 E+O

Thus, to effectively normalize a decimal

number one has to simply keep track of
where the decimal poin t is placed by the
operator in the mantissa. Then one needs to
compensate for that factor by removing the
decimal point (making the mantissa an
integer value) and changing the exponent
value to compensate for the removal of the
decimal point!

Next, one needs to convert the mantissa
portion of the number from decimal to
binary. That conversion process can ac-
tually be accomplished as each decimal
number is inputted by the operator using
the algorithm described below.

DECIMAL TO BINAR Y CONVE RSION

Each time a digit is received in
decimal form, immediately con-
vert it to its binary equivalent .
In many cases this consists of
simply MASKING 0 FF extra bits
to leave a value in BCD format.
Next, In order to compensate
for the powers of ten denoted by
the posi tional weigh t of decimal
numbers , multiply any previous
number(s) that are already stored
in binary form by multiplying
them by ten (decimal). Then add
in the binary equivalent of the
number that has just been
received .

The algorithm can be illustrated by con-
sidering the following example. An operator
enters the decimal number 63 by first enter-
ing the number '6' and then '3' from an input
device such as an ASCII encoded keyboard:

00000000 Input register initially cleared.

Operator initially types in the character for a ' 6.' This
is immeidately co nverted to 1 1 0 as its binary equiv-
alent. Since it is the first character received it is not
necessary to multiply the present value of the storage
register by ten. The binary value 1 1 0 can simply be
placed in the INPUT register giving:

5 - 31

00000110 Input register after 1 'st number.

The operator then enters the character for a '3.' Once
again this is immediately converted to 0 lIas its
binary equivalent . But, before this new digit is added
to the binary storage register, the contents of the
register must be multiplied by ten to account for the
positional value of the previous digit. A simple way
to multiply a binary register by ten is to perform the
following steps:

00000 110 Input register initially contains ' 6'

00001 100 Rotate left = multiply by 2

00011 000 Rotate left = multiply by 4

00011 110 Add In o riginal value = times 5

00111 100 Rotate left = multipl y by 10

With the previous value of '6 ' now multiplied by ten to
represent 60 (decimal) in the binary register, the new
value of '3' can now be added in to yield :

00111111 Binary equivalent of 63 (decimal)

The above algorithm is repeated each time
an additional decimal character is received to
maintain the binary equivalent. The algorithm
is valid for multiple-precision storage of
numbers.

Finally, it is necessary to convert the
decimal exponent value (which again is
immediately converted to a binary number
as it is received from the input device) to
represent a binary number raised to an equiva-
lent value . Conversion at this point may be
accomplished by first converting the binary
representation of the mantissa to its norma-
lized format (using t he special capability of
the FPNORM routine). Then multiplying the
normalized floating point binary number by
10 (decimal) for each unit of a positive
decimal exponent. This can be accomplished
by using the FPMULT routine previously
described!

5 - 32

The decimal to binary input program to be
presented next handles the above considera-
tions plus several other functions. The routine
will allow an operator to specify the sign of
the decimal mantissa and exponent and takes
appropriate action to negate numbers desig-
nated as being minus in value. It also allows
for erasure of the current input string by
typing a special character. The routine
assumes that characters are received from an
input device that uses ASCII code and that an
output device using ASCII code is used to
ECHO (repeat back) information as it is re-
ceived from the input . Neither the actual
input or output subroutines are shown in the
sample program that follows . (Information
on typical I/O routines will be presented in
another chapter.) The program also assumes
that certain locations on PAGE 00 will be
used for storage of numbers received and for
maintaining counters and indicators. A listing

of the locations used will be provided later.
The program calls on other routines previous-

ly detailed in this chapter such as FPNORM
and FPMULT .

DINPUT,

CLRNX2,

CLRNX3,

SECHO,
NINPUT,

NOTPLM,

PERIOD,

LHI 000
LLI150
XRA
LBI 010
LMA
INL
DCB
JFZ CLRNX2
LLI 103
LBl 004
LMA
INL
DCB
JFZ CLRNX3
CAL INPUT
CPI253
JTZ SECHO
CPI 255
JFZ NOTPLM
LLI 103
LMA
CAL ECHO
CAL INPUT
CPI377
JTZ ERASE
CPI256
JTZ PERIOD
CPI305
JTZ FNDEXP
CPI260
JTS ENDINP
CPI272
JFS ENDINP
LLI 156
LBA
LAI370
NDM
JFZ NINPUT
LAB
CAL ECHO
LLI 105
LCM
INC
LMC
CAL DECBlN
JMP NINPUT
LBA

Set pointer to INPUT
Storage registers
Clear accumulator
Set a counter
And clear memory locations 150 - 157
By depositing zeroes and advancing pointer
And decrementing loop counter
Until finished
Set pointers to counter/indicator storage
Set a counter
And clear memory locations 103 - 106
In a similar fashion by depositing zeroes
And decrementing loop counter
Until finished
N ow bring in a character from I/O device
Test to see if it is a '+' sign
If yes, go to ECHO and continue
[f not '+' see if '-' sign
If not '+ ' or '-' test for valid character
If minus, set pointer to INPUT SIGN
And make it non-zero by depositing character
Output character in ACC as ECHO to operator
Fetch a new character from I/O device
See if character is code for R UBO UT
If yes, prepare to start over
If not, see if character is a period (.)
If '.' process as decimal point
If not, see if character is 'E' for exponent
If 'E' process as exponent indicator
If not, see if character is a valid number
If none of above, terminate input string
Still checking for valid number
If not, terminate input string
Have a number, set pntr to MSW of INPUT register
Save character in register B
Form a mask and check to see if input
Registers can accept larger num ber
If not, ignore present input
If O .K., restore character to accumulator
And ECHO number back to operator
Set pointer to digit counter
Fetch digit counter
Increment its value
And restore it to storage
Perform decimal to binary conversion.
Get next character for mantissa
Subroutine to process'.' - save in B

5 - 33

ERASE,

FNDEXP,

EXECHO,
EXPINP,

NOEXPS,

LLI 106
LAM
NDA
JFZ ENDINP
LLI 105
LMA
INL
LMB
LAB
CAL ECHO
JMP NINPUT
LAI274
CAL ECHO
LAI240
CAL ECHO
CAL ECHO
JMP DIN PUT
CAL ECHO
CAL INPUT
cpr 253
JTZ EXECHO
CPI255
JFZ NOEXPS
LLI104
LMA
CAL ECHO
CAL INPUT
CPI377
JTZ ERASE
CPI260
JTS ENDINP
CPI272
JFS ENDlNP
NDI 017
LBA
LLI 157
LAI003
CPM
JTS EXPINP
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
LAI260
ADB
JMP EXECHO

Set pointer to '.' storage indicator
Fetch contents
Set flags after load operation
If '.' already present, end input string
Otherwise set pointer to digit counter
And reset digit counter to zero
Advance pointer back to '.' storage
And put a '.' there
Restore I. ' to aCCll mu latar
And echo it back to operator
Get next character in number string
Put ASCII code for < in accu mulator
Display it
Put ASCII code for SPACE in ACC
And leave a couple of spaces
Be fore go ing back to
Start the input string over
Subroutine to process exponent, echo 'E'
Get next part of exponent
Test for a '+) sign
If yes , proceed to echo it
If not, test for a '. ' sign
If not, see if a valid character
If have '.' then set pointer to EXPONENT SIGN
Set EXPONENT SIGN minus indicator
Echo character back to operator
Get next character for exponent portion
See if code for RUBOUT
If yes, prepare to re-enter entire string
Otherwise check for valid decimal number
If not, end input string
Still testing for valid number
If not , end input string
Have valid number , form mask and strip ASCII
Character to pure BCD, save in register B
Set pointer to input exponent storage location
Set accumulator = '3'
See if 1 'st exponent number was greater than three
If yes, ignore input (limits exponent to less than 40)
If O.K., save previous exponent value in register C
And also place it in accumulator
Clear the carry bit
Multiply times ten algorithm: 1 'st multiply by two
Multiply by two again
Add in original value
Multiply by two once more
Add in new number to complete the decimal to
Binary conversion for exponent and restore to memory
Restore ASCII code by adding 260
To BCD value of the number
And echo number, then look for next input

5·34

END!NP, LLI 103
LAM
NDA
JTZ FININP
LLI154
LBI003
CAL COMPLM

FININP, LLI153
XRA
LDA
LMA
LEI 123-
LBI004
CAL MOVEIT
LBI027
CAL FPNORM
LLI 104
LAM
NDA
LLI 157
JTZ POSEXP
LAM
XRI377
AD! 001
LMA

POSEXP , LLI106
LAM
NDA
JTZ EXPOK
LLI 105
XRA
SUM

EXPOK, LLI 157
ADM
LMA
JTS MINEXP
RTZ

EXPFIX, CAL FPX10
JFZ EXPFIX
RET

FPX10, LEI 134
LDH
LLI 124
LBI004
CAL MOVEIT
LLI 127
LMI004
DCL
LMI120
DCL
XRA

Set pointer to mantissa SIGN indicator
Fetch SIGN indicator
Set flags after load operation
If nothing in indicator, number is positive
Set pointer to LSW of input mantissa
Set precision
Perform two's complement to negate number
Set pointer to input storage LSW·l
Clear accumulator
Clear register D
Clear input storage location LSW·l
Set pointer to FPACC LSW·l
Set precision counter
Move input + LSW·l to FPACC + LSW·l
Set special FPNORM mode by setting bit count
In register B and then call normalization routine
Set pointer to EXPONENT SIGN indicator
Fetch EXPONENT SIGN indicator to ACC
Set flags after load operation
Set pointer to decimal exponent storage
If exponent positive, jump ahead
If exponent negative , fetch it into accumulator
And perfonm two's
complement
Then restore to storage location
Set pointer to period indicator
Fetch contents to accumulator
Set flags after load operation
If nothing, no decimal point involved
If have decimal point, set pointer to digit
Counter then clear accumulator
Subtract digit counter from '0' to give negative
Set pointer to decimal exponent storage
Add in compensation for decimal point
Restore compensated value to storage
If compensated value minus , jump ahead
If compensated value zero, finished!
Compensated decimal exponent is positive, multiply
FPACC by 10, loop until decimal exponent is zero
Exit with converted value in FP ACC
Multiply FPACC by 10 subroutine, set pointer to
FPOP LSW, then set D = zero for sure
Set pointer to FP ACC LSW
Set precision counter
Move FPACC to FPOP (including exponents)
Set pointer to FP ACC exponent
Place FP form of 10 (decimal) in FPACC
Place FP form of 10 (decimal) in FPACC
Place FP form of 10 (decimal) in FPACC
Place FP fonm of 10 (decimal) in FP ACC
Place FP form of 10 (decimal) in FPACC

5·35

LMA
DCL
LMA
CAL FPMULT
LLI157
CALCNTDWN
RET

MINEXP, CAL FPD10
JF Z MINEXP
RET

FPD10, LEI 134
LDH
LLI 124
LBI004
CAL MOVEIT
LLI127
LMI375
DCL
LMI146
DCL
LMI146
DCL
LMI147
CAL FPMULT
LLI157
LBM
INB
LMB
RET

DECBIN, LLI 153
LAB
NDI 017
LMA
LEI 150
LLI154
LDH
LBI003
CAL MOVEIT
LLI 154
LBI003
CAL ROTATL
LLI154
LBI003
CAL ROTATL
LEI 154
LLI150
LBI 003
CAL ADDER
LLI154
LBI003
CAL ROTATL

Place FP form of 10 (decimal) in FPACC
Place FP form of 10 (decimal) in FPACC
Place FP form of 10 (decimal) in FPACC
Now multiply original binary number (in FPOP) by ten
Set pointer to decimal exponent storage
Decrement decimal exponent value
Return to calling program
Compensated decimal exponent is minus, multiply
FPACC by 0.1, loop until decimal exponent is zero
Exit with converted value in FP ACC
Multiply FPACC by 0.1 routine, pointer to FPOP LSW
Set D = '0 ' for sure
Set pointer to FP ACC
Set precision counter
Move FPACC to FPOP (including exponent)
Set pointer to FPACC exponent
Place FP form of 0.1 (decimal) in FPACC
Place FP form of 0 .1 (decimal) in FPACC
Place FP form of 0.1 (decimal) in FPACC
Place FP form of 0 .1 (decimal) in FPACC
Place FP form of 0.1 (decimal) in FPACC
Place FP form of 0.1 (decimal) in FPACC
Place FP form of 0 .1 (decimal) in FPACC
Now multiply original binary number (in FPOP) by 0.1
Set pointer to decimal exponent storage
Fetch value
Increment it
Restore it to memory
Return to calling program
Decimal to binary conversion, set pntr to temp storage
Restore to accumulator
Mask off ASCII bits to leave pure BCD number
Place current BCD number in temporary storage
Set pointer to working area LSW
Set another pointer to LSB of input registers
Set D = '0' for sure
Set precision counter
Move original value to working area
Set pointer to LSW of INPUT storage
Set precision counter
Rotate LEFT (X 2) (Total = X 2)
Set pointer to LSW again
Set precision coun ter
Rotate LEFT (X 2) (Total = X 4)
Set pointer to LSW of rotated value
And another to LSW of original value
Set precision counter
Add original to rotated (Total now = X 5)
Set pointer to LSW again
Set precision counter
Rotate LEFT (X 2) (Total now = X 10)

5 - 36

LLI 152
XRA
LMA
DCL
LMA
LLI153
LAM
LLI1 50
LMA
LEI 154
LBI003
CAL ADDER
RET

Set pointer to clear working area
Clear accumulator
Deposit in MSW of working area
Decrement pointer to MSW
Put zero there too
Set pointer to current digit storage
Fetch latest BCD number
Set pointer to LSW o f working area
Deposit latest BCD number in LSW
Seup pointer
Set precision counter
Add in latest number to complete DECBIN co nversion
Return to calling program

CONVERTING FLOATING POINT BINA RY
TO FLOATING POINT DECIMAL

scribed . First the binary floating point num-
ber is converted to a regularly formatted
binary number. Then the number is conver-
ted to a decimal number using a multiply by
ten algorithm. Since the reader should now be
quite adept at following the operation of a
program from the commented source listing,
the floating point binary to floating point
d ec imal conversion routine will be presented
without further discussion. Remember that
the routine illustrated assumes an ASCII
encoded out put device is being utilized. In
addition, several subroutines used by the pre-
viously illustrated DINPUT program are called
by the routine .

The fo llowing program will co nvert binary
numbers stored in floating point format to
decimal floating point format and display
them on an o utput device such as an
electronic printer (using ASCII code) in the
fo llowing format:

+0 .1234567 E-+'07

The routine operates essentially in the
reverse manner to the input routine just de-

FPOUT , LLI157
LMIOOO
LLI126
LAM
NDA
JTSOUTNEG
LAI253
JMP AHEAD1

OUTNEG, LLI124
LBI003
CAL COMPLM
LAI255

AHEAD1, CAL ECHO
LA! 260
CAL ECHO
LAI256
CAL ECHO
LLI 127
LA! 377

Set pointer to decimal exponent storage
Clear d ec imal exponent storage location
Set pointer to MSW FPACC MANTISSA
Fetch MSW FP ACC MANTISSA to accumulator
Set flags after load operat ion
If MSB = 1 have a negative number
Otherwise number is positive, set ASCII code for '+ '
Go to display ' +' sign
Have a negative number, set pntr to LSW FPACC
Set precision counter
Perform two 's complement on FPACC
Set ASCII code for' -' sign
Display sign of MANTISSA
Set ASCII code for '0'
Display '0'
Set ASCII cod e for'.'
Display ' .'
Set pointer to FP ACC exponent
Put ' -1' in accumulator

5 - 37

ADM
LMA

DECEXT, JFS DECEXD
LAI004
ADM
JFS DECOUT
CAL FPX10

DECREP, LLI127
LAM
NDA
JMP DECEXT

DECEXD, CAL FPD10
JMP DECREP

DECOUT, LEI 164
LDH
LLI124
LBI003
CAL MOVEIT
LLI 167
LMIOOO
LLI164
LBI 003
CAL ROTATL
CAL OUTX10

COMPEN, LLI127
LBM
INB
LMB
JTZ OUTDIG
LLI167
LBI 004
CAL ROTATR
JMP COMPEN

OUTDIG, LLI 107
LMI007
LLI167
LAM
NDA
JTZ ZERODG

OUTDGS, LLI 167
LAI260
ADM
CAL ECHO

DECRDG, LLI107
CALCNTDWN
JTZ EXPOUT
CALOUTX10
JMPOUTDGS

ZERODG , LLI157
CAL CNTDWN
LLI166

Effectively subtract one from exponent
Restore compensated exponent
If compen exp is zero or positive, multip MANT by 0.1
If compensated exponent is negative
Add '4' (decimal) to exponent value
If exponent now zero or positive, output MANTISSA
Otherwise , multiply MANTISSA by 10
Set pointer to FPACC exponent
Get exponent after multiplication routine
Set flags after load operation
Repeat above test for zero or positive condition
Multiply FPACC by 0.1
Check status of FPACC exponent after multiplication
Set pointer to LSW of OUTPUT registers
Make D zero for sure
Set pointers to LSW of FPACC
Set precision counter
Move FPACC to OUTPUT registers
Set pointer to MSW+1 of OUTPUT register
And clear that location
Now set pointer to LSW of OUTPUT register
Set precision counter, perform one
Rotate operation to compensate for space of sign bit
Multiply OUTPUT register by 10, overflow into MSW+1
Set pointer to FPACC exponent
Compensate for any remainder in binary
Exponent by performing a ROTATE RIGHT on
OUTPUT registers until binary exponent becomes zero
Go to output digits when compensation done
Binary eXfonent compensation rotate loop
Set pointer to OUTPUT MSW+1 and set counter
Perform compensating ROTATE RIGHT operation
Repeat loop until binary exponent equals zero
Set pointer to output digit counter
Set digit counter to ' 7' to initialize
Set pointer to MSD in OUTPUT register MSW+1
Fetch BCD form of digit to be displayed
Set flags after load operation
See if 1 'st digit is a '0'
If not, set pointer to MSW+1 (BCD code)
Form ASCII number code by adding 260 (octal)
To the BCD code
And display the ASCII encoded decimal number
Set pointer to output digit counter
Decrement value of output digit counter
When it is '0' go do exponent output routine
Otherwise multiply OUTPUT register by 10
And output next decimal digit
If 1 'st digit , then set pointer to MSW
Decrement value to compensate for skipping display
Of first digit, then set pointer to MSW

5 - 38

OUTXIO,

EXPOUT ,

EXOUTN,

AHEAD2,

SUB12,

LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
LL! 157 '
LMA
JMP DECRDG
LLI167
LMIOOO
LLI164
LDH
LEI 160
LBio04
CA L MOVEIT
LLI164
LBI004
CAL ROTATL
LLI164
LBI004
CAL ROTATL
LLI 160
LEI 164
LBl 004
CAL ADDER
LLI164
LBI004
CAL ROTATL
RET
LA! 305
CAL ECHO
LLI157
LAM
NDA
JTS EXOUTN
LA! 253
JMP AHEAD2
XRI377
AD! 001
LMA
LA! 255
CAL ECHO
LBIOOO
LAM
SUI 012

Of output registers, fetch contents
Set flags after load operations
Check to see if entire mantissa is '0'
Check to see if entire mantissa is ' 0'
Check to see if entire mantissa is '0'
Check to see if entire mantissa is '0'
Check to see if entire mantissa is .'O'
Check to see if entire mantissa is '0 1

Check to see if entire mantissa is '0'
.. ' Check to see if entire mantissa is ' 0 '

Check to see if entire mantissa is '0'
If entire mantissa is zero. set pointer to
Decimal exponent storage and set it to '0'
Before proceeding to finish display
Multiply output registers by 10 to push out
BCD code of MSD, first clear output MSW+1
Set pointer to LSW of output registers
Make sure D equals zero
Set another pointer to working area
Set precision counter
Move original value to working area
Set pointer to original value LSW
Set precision counter
Start multiply by 10 routine (Total = X 2)
Reset pointer
And counter
Multiply by two again (Total = X 4)
Set pointer to LSW of original value
And another to LSW of rotated value
Set precision counter
Add original value to rotated (Total = X 5)
Reset pointer
And counter
Multiply by two once more (Total = X 10)
Finished multiplying output registers by ten
Set ASCII code for letter E
Display E for Exponent
Set pointer to decimal exponent storage location
Fetch decimal exponent to accumulator
Set flags after load operation
If MSB equals one , value is negative
If value is positive, set ASCII code for '+' sign
Go to display the sign
For negative exponent, perform two's camp
In standard manner
And restore to storage location
Set ASCII code for ' .' sign
Display sign of the exponent
Clear register B for use as a counter
Fetch decimal exponent value
Subtract 10 (decimal)

5·39

JTS TOMUCH
LMA
INB
JMP SUB12

TOMUCH, LAI 260
ADB
CAL ECHO
LAM
ADI 260
CAL ECHO
RET

Look for negative resul t
Restore positive result, maintain count of how
Many times 10 (decimal) can be subtracted
to obtain most significant digit of exponent
Form ASCII character for MSD of exponent by
Adding 260 to count in register B
And display most significant digit of exponent
Fetch remainder from decimal exponent storage
And form ASCII character for LSD of exponent
Display least sign ifican t digi t of exponent
Exit FPOUT routine

Once one has a decimal to binary INPUT
routine, and binary to decimal OUTPUT
routine to work with the fundamental float-
ing point routines, it is a relatively simple
matter to tie them all together. By doing
so, one may form an OPERATING PACK-
AGE that will allow an operator to specify
numerical values in decimal floating point
notation, indicate whether addition, sub-
traction, multiplication, or division was de ·

sired, and then obtain an answer from the
computer. An illustrative operating program
that utilizes all the demonstration routines
presented in this section is shown below.
The program will allow an operator to make
entries and receive results in the format
illustrated here:

+33.0E+3 X -4 -0 .1320000E+6

FPCONT, CAL CRLF2
CALDINPUT
CAL SPACES
LLI124
LDH
LEI 170
LBI004
CAL MOVEIT

NVALID, CAL INPUT
LBIOOO
CPI253
JTZ OPERA1
CPI255
JTZ OPERA2
CPI330
JTZOPERA3
CPI257
JTZ OPERA4
CPI377
JFZ NVALID
JMP FPCONT

OPERA1, DCB
DCB

OPERA2, DCB
DCB

OPERA3, DCB

Display a few Cr's & LF 's for I /O device
Let operator enter a FP decimal number
Display a few spaces after num ber
Set pointer to LSW of FPACC
Set D = 0 for sure
Set pointer to temp number storage area
Set precision counter
Move FPACC to temporary storage area
Fetch OPERATOR from input device
Clear register B
Test for '+' sign
Go setup for '+ ' sign
If not '+' then test for '-' sign
Go set up for '·' sign
If not above , test for X (multiply) sign
Go set up for X sign
If not above, test for / (divide) sign
Go set up for / sign
If none of above, test for RUBOUT
If none of above then ignore current input
If ROBOUT then start a new input sequence
Setup register B based on above tests
Setup register B based on above tests
Setup register B based on above tests
Setup register B based on above tests
Setup register B based on above tests

5 - 40

DCB
OPERA4, LCA

LA! ***
ADB
LLI 110
LMA
LAC
CAL ECHO
CAL SPACES
CAL DlNPUT
CAL SPACES
LAI 275 _
CAL ECHO
CAL SPACES
LLI170
LDH
LE!134
LBI004
CAL MOVEIT
LL! 110
LLM
LHI XXX
LEM
INL
LDM
LL! Z+l
LME
INL
LMD
LH! 000
LDH
JMP RESULT

CRLF2, LA! 215
CAL ECHO
LAI212
CAL ECHO
LA! 215
CAL ECHO
LAI212
CAL ECHO
RET

SPACES, LA! 240
CAL ECHO
LA! 240
CAL ECHO
RET

* Z * RESULT, CAL DUMMY
CAL FPOUT
JMP FPCONT

LOOK-UP TABLE AAA
BBB

Setup register B based on above tests
Save OPERATOR character in register C
*** = Next to last location in LOOK-UP table
Modify *** by contents of register B
Set pointer to LOOK-UP table address storage
Place LOO K-UP address in storage location
Restore OPERATOR character to ACC
Display the OPERATOR sign
Display a few spaces after OPERATOR sign
Let operator enter 2'nd FP decimal number
Provide a few spaces after 2'nd number
Place ASCII code for = in accumulator
Display '=' sign
Display a few spaces after the '=' sign
Set pointer to temporary number storage area
Set D = 000 for sure
Set another pointer to LSW of FPOP
Set precision counter
Move l'st number inputted to FPOP
Set pointer to LOOK-UP table address storage
Bring in LOW order address of LOOK-UP table
XXX = PAGE this routine located on!
Bring in an address stored in LOOK-UP table
Residing on this PAGE (XXX) at LOCATIONS
'*** + B' and '*** + B + I ' and place it
!n registers D and E then change pointer to address
Part of instruction labeled RESULT below
And transfer the LOOK-UP table contents so that it
Becomes the address portion of the instruction
Labeled RESULT, then restore
registers Hand D to zero
Now JUMP to command labeled RESULT
Subroutine to provide CR & LF 's
Place ASCII code for CR in ACC then display
Place ASCII code for LF in ACC
Then display
Do it again, first setup code for CR in ACC
Display it
Setup code for LF
Display it
Return to calling routine
Setup code for SPACE in accumulator
Display a SP ACE
Do it again, place code for SPACE in ACC
Display a SPACE
Return to calling routine
CALL the subroutine indicated by current address here
Display results of the calculation
Go back and wait for next problem input!
LOW address for start of FPADD subroutine
PAGE address for start of FPADD subroutine

5 - 41

CCC
DDD
EEE
FFF
GGG
HHH

LOW address for start of FPSUB subroutine
PAGE address for start of FPSUB subroutine
LOW address for start of FPMULT subroutine
PAGE address for start of FPMULT subroutine
LOW address for start of FPDIV subroutine
P AG E address for start of FPDIV subroutine

The three subroutines, FPINP, FPOUT,
and FPCONT as presented would require
about three pages of memory for storage_
However, as will be discussed in the next
chapter, the subroutines could be modified
to fit into considerably less memory _ The

LOCATIONS

103
104
105
107
110

150 - 153
154 - 156
157
160 - 163
164 - 167
170 -173

demonstration routines used certain locations
on PAGE 00 for storage of transient data and
these are listed below for reference. Naturally,
the routines could be easily altered to use
other temporary storage locations .

USAGE

Input MANTISSA sign storage
Input EXPONENT sign storage
Input DIGIT COUNTER >
Output DIGIT COUNTER
Temporary storage for control OPERATOR

Input working area
Input storage registers (for DECBIN conv)
Input EXPONENT (decimal equivalent)
Output working area
Output storage registers (for BINDEC conv)
Temporary number storage

ASSEMBLED LISTING OF THE DESCRIBED FLOATING POINT PROGRAM

The following is an assembled listing of the
floating point package just described in this
chapter as it would appear for an '8008' sys-
tem. The order in which the major routines
appear in the following assembled version is
different than the order in which they were
presented for explanation. The routines were
presented fo r explanation in a manner related
to the increasing complexities of the various
portions of the package. The assembled
version is arranged more along the logical

5 - 42

lines of order of usage. As a guide to the
assembled version which is presented next,
a memory map shown below gives the start-
ing and ending addresses of the major rout-
ines. It rna" be noted, however, that while
the order of the routines have been changed
in the assem bled version , all of the actual
instructions in the routines themselves have
been left unchanged. (The assembled version
has the comments portion of the listing
deleted in order to save space.)

FLOATING POINT PROGRAM MEMORY MAP

ROUTINE STARTING ADDRESS ENDING ADDRESS

SCRATCH PAD AREA PG 00 LaC 100 PG 00 LaC 177
FPCONT PG 01 LaC 000 PG 01 LaC 243
FPOUT PG 01 LaC 244 PG 02 LaC 263
DlNPUT PG 02 LaC 264 PG 04 LaC 107
FPNORM PG 04 LaC 110 PG 04 LaC 237
FPADD PG 04 LaC 240 PG 05 LaC 114
FSUB PG 05 LaC 115 PG 05 LaC 126
FPMULT PG 05 LaC 127 PG 06 LaC 021
FPDIV PG 06 LaC 022 PG 06 LaC 254

UTILITY ROUTINES PG 06 LaC 255 PG 07 LaC 004

The assembled version assumes that user
defined routines for INPUT and OUTPUT to
an I/O device, as well as user defined routines
for displaying an attempted divide by zero

operation as well as re-directing program
operation after such an error, will reside at
the locations indicated below.

ROUTINE STARTING ADDRESS DEFINITION

DERMSG PG 07 LaC 100 Attempted divide by zero
error message

USERDF PG 07 LaC 160 Direct program flow after
above error

INPUT PG 07 LaC 200 ASCII input routine
ECHO PG 07 LaC 300 ASCII Output routine

ASSEMBLED LISTING OF THE FLOATING POINT PROGRAM FOR AN '8 0 0 8' SYSTEM

ADDRESS MACHINE CODE MNEMONICS
----- -------------- -------- ----------- ----- -----

001 000 106 163 001 FPCONT, CAL CRLF 2
001 003 106 264 002 CAL DINPUT
001 006 106 210 001 CAL SPACES
001 011 066 124 LLI 124
001 013 335 LDH
001 014 046 170 LEI 170
001 016 016 004 LBI 004
001 020 106 076 005 CAL MOVEIT
001 023 106 200 007 NVALID , CAL INPUT
001 026 016 000 LBIOOO
001 030 074 253 CPI253

5 - 43

001 032 150 064 001 JTZ OPERA1
001 035 074 255 CPI255
001 037 150 066 001 JTZ OPERA2
001 042 074 '330 CPI330
001 044 150 070 001 JTZ OPERA3
001 047 074 257 CPI257
001 051 150072 001 JTZ OPERA4
001 054 074 377 CPI377
001 056 110 023 001 JFZ NVALID
001 061 104 000 001 JMP FPCONT
001 064 011 OPERA1, DCB
001 065 all DCB
001 066 011 OPERA2, DCB
001 067 011 DCB
001 070 011 OPERA3, DCB
001 071 011 DCB
001 072 320 OPERA4, LCA
001 073 006 242 LAI242
001 075 201 ADB
001 076 066 110 LLI110
001 100 370 LMA
001 101 302 LAC
001 102 106 300 007 CAL ECHO
001 105 106 210 001 CAL SPACES
001 110 106 264 002 CAL DINPUT
001 113 106 210 001 CAL SPACES
001 116 006 275 LAI275
001 120 106 300 007 CAL ECHO
001 123 106 210 001 CAL SPACES
001 126 066 170 LLI170
001 130 335 LDH
001 131 046 134 LEI 134
001 133 016 004 LBI004
001 135 106 076 005 CAL MOVEIT
001 140 066 110 LLI 110
001 142 367 LLM
001 143 056 001 LHI 001
001 145 347 LEM
001 146 060 INL
001 147 337 LDM
001 150 066 224 LLI224
001 152 374 LME
001 153 060 INL
001 154 373 LMD
001 155 056 000 LHI 000
001 157 335 LDH
001 160 104 223 001 JMP RESULT
001 163 006 215 CRLF2, LAI215
001 165 106 300 007 CAL ECHO
001 170 006 212 LAI212
001 172 106 300 007 CAL ECHO

5 - 44

001 175 006 215 LA! 215
001 177 106 300 007 CAL ECHO
001 202 006 212 LA! 212
001 204 106 300 007 CAL ECHO
001 207 007 RET
001 210 006 240 SPACES, LA! 240
001 212 106 300 007 CAL ECHO
001 215 006 240 LA! 240
001 217 106 300007 CAL ECHO
001 222 007 , RET
001 223 106 000 000 RESULT, CAL DUMMY
001 226 106 244 001 CAL FPOUT
001 231 104 000 001 JMP FPCONT
001 234 240 240
001 235 004 004
001 236 115 115
001 237 005 005
001 240 127 127
001 241 005 005
001 242 022 022
001 243 006 006

001 244 066 157 FPOUT , LLI157
001 246 076 000 LMIOOO
001 250 066 126 LLI 126
001 252 307 LAM
001 253 240 NDA
001 254 160 264 001 .ITS OUTNEG
001 257 006 253 LAI253
001 261 104 275 001 JMPAHEAD1
001 264 066 124 OUTNEG , LLI 124
001 266 016 003 LB! 003
001 270 106 311 006 CAL COMPLM
001 273 006 255 LA! 255
001 275 106 300 007 AHEAD1, CAL ECHO
001 300 006 260 LA! 260
001 302 106 300 007 CAL ECHO
001 305 006 256 LA! 256
001 307 106 300 007 CAL ECHO
001 312 066 127 LLI 127
001 314 006 377 LA! 377
001 316 207 ADM
001 317 370 LMA
001 320 120 343 001 DECEXT, JFS DECEXD
001 323 006 004 LAI004
001 325 207 ADM
001 326 120 351 001 JFS DECOUT
001 331 106 300 003 CAL FPXI0
001 334 066 127 DECREP, LLI127
001 336 307 LAM
001 337 240 NDA

5 - 45

001 340 104 320 001 JMP DECEXT
001 343 106 346 003 DECEXD, CAL FPD10
001 346 104 334 001 JMP DECREP
001 351 046 164 DECOUT, LEI 164
001 353 335 LDH
001 354 066 124 LLI 124
001 356 016 003 LBI003
001 360 106 076 005 CAL MOVEIT
001 363 066 167 LLI167
001 365 076 000 LMIOOO
001 367 066 164 LLI 164
001 37l 016 003 LBI003
001 373 106 340 006 CAL ROTATL
001 376 106 122 002 CALOUTX10
002 001 066 127 COMPEN, LLI127
002 003 317 LBM
002 004 010 INB
002 005 37l LMB
002 006 150 023 002 JTZOUTDIG
002 011 066 167 LLI 167
002 013 016 004 LBI004
002 015 106 352 006 CAL ROTATR
002 020 104 001 002 JMP COMPEN
002 023 066107 OUTDIG, LLI107
002 025 076 007 LMI007
002 027 066 167 LLI 167
002 031 307 LAM
002 032 240 NDA
002 033 150 064 002 JTZ ZERODG
002 036 066 167 OUTDGS, LLI167
002 040 006 260 LAI260
002 042 207 ADM
002 043 106 300 007 CAL ECHO
002 046 066 107 DECRDG, LLI107
002 050 106 305 006 CALCNTDWN
002 053 150 177 002 JTZ EXPOUT
002 056 106 122 002 CALOUTX10
002 061 104 036 002 JMPOUTDGS
002 064 066 157 ZERODG, LLI 157
002 066 106 305 006 CAL CNTDWN
002 071 066 166 LLI 166
002 073 307 LAM
002 074 240 NDA
002 075 110 046 002 JFZ DECRDG
002 100 061 DCL
002 101 307 LAM
002 102 240 NDA
002 103 110 046 002 JFZ DECRDG
002 106 061 DCL
002 107 307 LAM
002 110 240 NDA

5 - 46

002 111 110 046 002 JFZ DECRDG
002 114 066 157 LLI157
002 116 370 LMA
002 117 104 046 002 JMP DECRDG

002 122 066 167 OUTX10 , LLI 167
002 124 076 000 LMIOOO
002 126 066 164 LLI164
002 130 335 LDH
002 131 046 160 LEI 160
002 133 016 004 LBI004
002 135 106 076 005 CAL MOVEIT
002 140 066 164 LLI 164
002 142 016 004 LBI004
002 144 106 340 006 CAL ROTATL
002 147 066 164 LLI164
002 151 016 004 LBI004
002 153 106 340 006 CAL ROTATL
002 156 066 160 LLI160
002 160 046 164 LEI 164
002 162 016 004 LBI004
002 164 106 255 006 CAL ADDER
002 167 066 164 LLI164
002 171 016 004 LBI004
002 173 106 340 006 CAL ROTATL
002 176 007 RET
002 177 006 305 EXPOUT, LAI305
002 201 106 300 007 CAL ECHO
002 204 066 157 LLI157
002 206 307 LAM
002 207 240 NDA
002 210 160 220 002 JTS EXOUTN
002 213 006 253 LAI253
002 215 104 227 002 JMP AHEAD2
002 220 054 377 EXOUTN, XRI377
002 222 004 001 AD! 001
002 224 370 LMA
002 225 006 255 LAI255
002 227 106 300 007 AHEAD2, CAL ECHO
002 232 016 000 LBIOOO
002 234 307 LAM
002 235 024 012 SUB12, SUI 012
002 237 160 247 002 JTSTOMUCH
002 242 370 LMA
002 243 010 INB
002 244 104 235 002 JMP SUB12
002 247 006 260 TOMUCH, LA! 260
002 251 201 ADB
002 252 106 300 007 CAL ECHO
002 255 307 LAM
002 256 004 260 AD! 260

5·47

002 260 106 300 007 CAL ECHO
002 263 007 RET

002 264 056 000 DINPUT, LHI 000
002 266 066 150 LLI150
002 270 250 XRA
002 271 016 010 LBI010
002 273 370 CLRNX2, LMA
002 274 060 INL
002 275 011 DCB
002 276 110 273 002 JFZ CLRNX2
002 301 066 103 LLI103
002 303 016 004 LBI004
002 305 370 CLRNX3 , LMA
002 306 060 INL
002 307 011 DCB
002 310 110 305 002 JFZ CLRNX3
002 313 106 200 007 CAL INPUT
002 316 074 253 CPI253
002 320 150 333 002 JTZ SECHO
002 323 074 255 CPI255
002 325 110 341 002 JFZ NOTPLM
002 330 066 103 LLI 103
002 332 370 LMA
002 333 106 300 007 SECHO, CAL ECHO
002 336 106 200 007 NINPUT, CAL INPUT
002 341 074 377 NOTPLM, CPI377
002 343 150 046 003 JTZ ERASE
002 346 074 256 CPI256
002 350 150 022 003 JTZ PERIOD
002 353 074 305 CPI305
002 355 150 066 003 JTZ FNDEXP
002 360 074 260 CPI260
002 362 160 170 003 JTS ENDINP
002 365 074 272 CPI272
002 367 120 170 003 JFS ENDINP
002 372 066 156 LLI156
002 374 310 LBA
002 375 006 370 LAI 370
002 377 247 NDM
003 000 110 336 002 JFZ NINPUT
003 003 301 LAB
003 004 106 300 007 CAL ECHO
003 007 066 105 LLI105
003 011 327 LCM
003 012 020 INC
003 013 372 LMC
003 014 106 006 004 CAL DECBIN
003 017 104 336 002 JMP NINPUT
003 022 310 PERIOD , LBA
003 023 066 106 LLI106

5 - 48

003 025 307 LAM
003 026 240 NDA
003 027 110 170 003 JFZ ENDlNP
003 032 066 105 LLI105
003 034 370 LMA
003 035 060 !NL
003 036 371 LMB
003 037 301 LAB
003 040 106 300 007 CAL ECHO
003 043 104 336 002 JMP NINPUT
003 046 006 274 ERASE, LA! 274
003 050 106 300 007 CAL ECHO
003 053 006 240 LA! 240
003 055 106 300 007 CAL ECHO
003 060 106 300 007 CAL ECHO
003 063 104 264 002 JMPDlNPUT
003 066 106 300 007 FNDEXP, CAL ECHO
003 071 106 200 007 CAL INPUT
003 074 074 253 CPI 253
003 076 150 III 003 JTZ EXECHO
003 101 074 255 CPI255
003 103 110 117 003 JFZ NOEXPS
003 106 066 104 LLI104
003 110 370 LMA
003 111 106 300 007 EXECHO, CAL ECHO
003 114 106 200 007 EXPINP, CAL INPUT
003 117 074 377 NOEXPS, CPI 377
003 121 150 046 003 JTZ ERASE
003 124 074 260 CPI260
003 126 160 170 003 JTS ENDlNP
003 131 074 272 CPI272
003 133 120 170 003 JFS ENDlNP
003 136 044 017 NDl 017
003 140 310 LBA
003 141 066 157 LLI157
003 143 006 003 LA! 003
003 145 277 CPM
003 146 160 114 003 JTS EXPINP
003 151 327 LCM
003 152 307 LAM
003 153 240 NDA
003 154 022 RAL
003 155 022 RAL
003 156 202 ADC
003 157 022 RAL
003 160 201 ADB
003 161 370 LMA
003 162 006 260 LAI260
003 164 201 ADB
003 165 104 111 003 JMP EXECHO
003 170 066 103 ENDlNP, LLI103

5 - 49

003 172 307 LAM
003 173 240 NDA
003 174 150 206 003 JTZ FININP
003 177 066 154 LLI154
003 201 016 003 LBI003
003 203 106 311 006 CALCOMPLM
003 206 066 153 FININP, LLI 153
003 210 250 XRA
003 211 330 LDA
003 212 370 LMA
003 213 046 123 LEI 123
003 215 016 004 LBI004
003 217 106 076 005 CAL MOVEIT
003 222 016 027 LBI027
003 224 106 110 004 CAL FPNORM
003 227 066 104 LLI 104
003 231 307 LAM
003 232 240 NDA
003 233 066 157 LLI157
003 235 150 246 003 JTZ POSEXP
003 240 307 LAM
003 241 054 377 XRI377
003 243 004 001 AD! 001
003 245 370 LMA
003 246 066 106 POSEXP, LLI106
003 250 307 LAM
003 251 240 NDA
003 252 150 261 003 JTZ EXPOK
003 255 066 105 LLI105
003 257 250 XRA
003 260 227 SUM
003 261 066 157 EXPOK, LLI157
003 263 207 ADM
003 264 370 LMA
003 265 160 337 003 JTS MINEXP
003 270 053 RTZ
003 271 106 300 003 EXPFIX , CAL FPX10
003 274 110 271 003 JFZ EXPFIX
003 277 007 RET
003 300 046 134 FPX10, LEI 134
003 302 335 LDH
003 303 066 124 LLI124
003 305 016 004 LBI004
003 307 106 076 005 CAL MOVEIT
003 312 066 127 LLI 127
003 314 076 004 LMI004
003 316 061 DCL
003 317 076 120 LMI120
003 321 061 DCL
003 322 250 XRA
003 323 370 LMA

5 - 50

003 324 061 DCL
003 325 370 LMA
003 326 106 127 005 CAL FPMULT
003 331 066 157 LLI 157
003 333 106 305 006 CALCNTDWN
003 336 007 RET
003 337 106 346 003 MINEXP, CAL FPD10
003 342 110 337 003 JFZ MINEXP
003 345 007 RET
003 346 046 134 FPDlO, LEI 134
003 350 335 LDH
003 351 . 066 124 LLI 124
003 353 016 004 LBI004
003 355 106 076 005 CAL MOVEIT
003 360 066 127 LLI 127
003 362 076 375 LMI375
003 364 061 DCL
003 365 076 146 LMI146
003 367 061 DCL
003 370 076 146 LMI146
003 372 061 DCL
003 373 076 147 LMI147
003 375 106 127 005 CAL FPMULT
004 000 006 157 LLI 157
004 002 317 LBM
004 003 010 INB
004 004 371 LMB
004 005 007 RET

004 006 066 153 DECBIN , LLI153
004 010 301 LAB
004 011 044 017 NDI017
004 013 370 LMA
004 014 046 150 LEI 150
004 016 066 154 LLI154
004 020 335 LDH
004 021 016 003 LBI003
004 023 106 076 005 CAL MOVEIT
004 026 066 154 LLI154
004 030 016 003 LBI003
004 032 106 340 006 CAL ROTATL
004 035 066 154 LLI154
004 037 016 003 LBI003
004 041 106 340 006 CAL ROTATL
004 044 046 154 LEI 154
004 046 066 150 LLI150
004 050 016 003 LBI003
004 052 106 255 006 CAL ADDER
004 055 066 154 LLI154
004 057 016 003 LBI003
004 061 106 340 006 CAL ROTATL

5 - 51

004 064 066 152 LLI152
004 066 250 XRA
004 067 370 LMA
004 070 061 DCL
004 07l 370 LMA
004 072 066 153 LLI153
004 074 307 LAM
004 075 066 150 LLI150
004 077 370 LMA
004 100 046 154 LEI 154
004 102 016 003 LBI003
004 104 106 255 006 CAL ADDER
004 107 007 RET

004 110 301 FPNORM , LAB
004 III 240 NDA
004 ll2 150 120 004 JTZ NOEXCO
004 ll5 066 127 LLI127
004 ll7 37l LMB
004 120 066 126 NOEXCO, LLI 126
004 122 307 LAM
004 123 066 100 LLI100
004 125 240 NDA
004 126 160 136 004 JTS ACCMIN
004 131 250 XRA
004 132 370 LMA
004 133 104 146 004 JMPACZERT
004 136 370 ACCMIN, LMA
004 137 016 004 LBI004
004 141 066 123 LLI 123
004 143 106 3ll 006 CAL COMPLM
004 146 066 126 ACZERT, LLI126
004 150 016 004 LBI004
004 152 307 LOOKO, LAM
004 153 240 NDA
004 154 110 17l 004 JFZ ACNONZ
004 157 061 DCL
004 160 Oll DCB
004 161 110 152 004 JFZ LOOKO
004 164 066 127 LLI127
004 166 250 XRA
004 167 370 LMA
004 170 007 RET
004 17l 066 123 ACNONZ, LLI 123
004 173 016 004 LBI004
004 175 106 340 006 CAL ROTATL
004 200 307 LAM
004 201 240 NDA
004 202 160 214 004 JTS ACCSET
004 205 060 INL
004 206 106 305 006 CALCNTDWN

5 - 52

004 211 104 171 004 JMP ACNONZ
004 214 066 126 ACCSET, LLI126
004 216 016 003 LBI003
004 220 106 352 006 CAL ROTATR
004 223 006 100 LLI100
004 225 307 LAM
004 226 240 NDA
004 227 023 RFS
004 230 066 124 LLI124
004 232 016 003 LBI003
004 234 106 311 006 CAL COMPLM
004 237 007 RET

004 240 066 126 FPADD , LLI126
004 242 016 003 LBI003
004 244 307 CKZACC, LAM
004 245 240 NDA
004 246 110 275 004 JFZ NONZAC
004 251 011 DCB
004 252 150 261 004 JTZ MOVOP
004 255 061 DCL
004 256 104 244 004 JMP CKZACC
004 261 106 276 006 MOVOP, CAL SWITCH
004 264 353 LHD
004 265 066 134 LLI134
004 267 016 004 LBI004
004 271 106 076 005 CAL MOVEIT
004 274 007 RET
004 275 066 136 NONZAC , LLI 136
004 277 016 003 LBI003
004 301 307 CKZOP, LAM
004 302 240 NDA
004 303 110 314 004 JFZ CKEQEX
004 306 011 DCB
004 307 053 RTZ
004 310 061 DCL
004 311 104 301 004 JMP CKZOP
004 314 066 127 CKEQEX, LLI 127
004 316 307 LAM
004 317 066 137 LLI 137
004 321 277 CPM
004 322 150 016 005 JTZ SHACOP
004 325 054 377 XRI377
004 327 004 001 AD! 001
004 331 207 ADM
004 332 120 341 004 JFS SKPNEG
004 335 054 377 XRI377
004 337 004 001 AD! 001
004 341 074 030 SKPNEG, CPI030
004 343 160 360 004 JTS LINEUP
004 346 307 LAM

5 - 53

004 347 066 127 LLI127
004 351 227 SUM
004 352 063 RTS
004 353 066 124 LLI124
004 355 104 261 004 JMP MOVOP
004 360 307 LINEUP , LAM
004 361 066 127 LLI127
004 363 227 SUM
004 364 160 004 005 JTS SHIFTO
004 367 320 LCA
004 370 066 127 MORACC, LLI 127
004 372 106 046 005 CALSHLOOP
004 375 021 DCC
004 376 110 370 004 JFZ MORACC
005 001 104 016 005 JMP SHACOP
005 004 320 SHIFTO, LCA
005 005 066 137 MOROP, LLI137
005 007 106 046 005 CAL SHLOOP
005 012 020 INC
005 013 110 005 005 JFZ MOROP
005 016 066 123 SHACOP, LLI123
005 020 076 000 LMIOOO
005 022 066 127 LLI127
005 024 106 052 005 CAL SHLOOP
005 027 066 137 LLI137
005 031 106 052 005 CAL SHLOOP
005 034 335 LDH
005 035 046 123 LEI 123 .
005 037 016 004 LBI 004
005 041 106 255 006 CAL ADDER
005 044 016 000 LBIOOO
005 046 106 110 004 CAL FPNORM
005 051 007 RET
005 052 317 SHLOOP, LBM
005 053 010 INB
005 054 371 LMB
005 055 061 DCL
005 056 016 004 LBI004
005 060 307 FSHIFT , LAM
005 061 240 NDA
005 062 160 071 005 JTS BRING 1
005 065 106 352 006 CAL ROTATR
005 070 007 RET
005 071 022 BRING1, RAL
005 072 106 353 006 CAL ROTR
005 075 007 RET
005 076 307 MOVEIT, LAM
005 077 060 INL
005 100 106 276 006 CAL SWITCH
005 103 370 LMA
005 104 060 INL

5 - 54

005 105 106 276 006 CAL SWITCH
005 110 011 DCB
005 111 053 RTZ
005 112 104 076 005 JMP MOVEIT

005 115 066 124 FSUB , LLI 124
005 117- 016 003 LBI003
005 121 106 311 006 CAL COMPLM
005 124 104 240 004 JMP FPADD

005 127 106 .'257 005 FPMULT, CAL CKSIGN
005 132 066 137 ADDEXP, LLI 137
005 134 307 LAM
005 135 066 127 LLI 127
005 137 207 ADM
005 140 004 001 AD! 001
005 142 370 LMA
005 143 066 102 SETMCT, LLI 102
005 145 076 027 LMI027
005 147 066 126 MULTIP, LLI126
005 151 016 003 LBI003
005 153 106 352 006 CAL ROTATR
005 156 142 367 005 CTC ADOPPP
005 161 066 146 LLI146
005 163 016 006 LBI006
005 165 106 352 006 CAL ROTATR
005 170 066 102 LLI 102
005 172 106 305 006 CALCNTDWN
005 175 llO 147 005 JFZ MULTIP
005 200 066 146 LLI 146
005 202 016 006 LBI006
005 204 106 352 006 CAL ROTATR
005 207 066 143 LLI 143
005 211 307 LAM
005 212 022 RAL
005 213 300 LAA
005 214 240 NDA
005 215 162 002 006 CTSMROUND
005 220 066 123 LLI123
005 222 106 276 006 CAL SWITCH
005 225 353 LHD
005 226 066 143 LLI143
005 230 016 004 LBI004

005 232 106 076 005 EXMLDV , CAL MOVEIT
005 235 016 000 LBIOOO
005 237 106 110 004 CAL FPNORM
005 242 066 101 LLI101
005 244 307 LAM
005 245 240 NDA
005 246 013 RFZ

5 - 55

005 247 066 124 LLI124
005 251 016 003 LBI003
005 253 106 311 006 CAL COMPLM
005 256 007 RET
005 257 106 336 005 CKSIGN, CALCLRWRK
005 262 066 101 LLI 101
005 264 076 001 LMI001
005 266 066 126 LLI126
005 270 307 LAM
005 271 240 NDA
005 272 160 317 005 JTS NEGFPA
005 275 066 136 OPSGNT, LLI 136
005 277 307 LAM
005 300 240 NDA
005 301 023 RFS
005 302 066 101 LLI101
005 304 106 305 006 CALCNTDWN
005 307 066 134 LLI134
005 311 016 003 LBI003
005 313 106 311 006 CAL COMPLM
006 316 007 RET

005 317 066 101 NEGFPA, LLI101
005 321 106 305 006 CALCNTDWN
005 324 066 124 LLI124
005 326 016 003 LBI003
005 330 106 311 006 CALCOMPLM
005 333 104 275 005 JMPOPSGNT
005 336 066 140 CLRWRK, LLI 140
005 340 016 010 LBI010
005 342 250 XRA
005 343 370 CLRNEX, LMA
005 344 011 DCB
005 345 150 354 005 JTZ CLROPL
005 350 060 INL
005 351 104 343 005 JMP CLRNEX
005 354 016 004 CLROPL, LBI004
005 356 066 130 LLI130
005 360 370 CLRNX1, LMA
005 361 011 DCB
005 362 053 RTZ
005 363 060 INL
005 364 104 360 005 JMP CLRNX1
005 367 046 141 ADOPPP, LEI 141
005 371 335 LDH
005 372 066 131 LLI131
005 374 016 006 LBI006
005 376 106 255 006 CAL ADDER
006 001 007 RET
006 002 016 003 MROUND, LBI 003
006 004 006 100 LAI100

5 - 56

006 006 207 ADM
006 007 370 CROUND, LMA
006 010 060 INL
006 011 006 000 LAIOOO
006 013 217 ACM
006 014 011 DCB
006 015· 110 007 006 JFZ CROUND
006 020 370 LMA
006 021 007 RET

006 022 106 257 005 FPDIV, CAL CKSIGN
006 025 066 126 LLI126
006 027 006 000 LAIOOO
006 031 277 CPM
006 032 110 047 006 JFZ SUBEXP
006 035 061 DCL
006 036 277 CPM
006 037 110 047 006 JFZ SUBEXP
006 042 061 DCL
006 043 277 CPM
006 044 150 247 006 JTZ DERROR
006 047 066 137 SUBEXP, LLI 137
006 051 307 LAM
006 052 066 127 LLI 127
006 054 227 SUM
006 055 004 001 ADI 001
006 057 370 LMA
006 060 066 102 SETDCT, LLI 102
006 062 076 027 LMI027
006 064 106 216 006 DIVIDE, CAL SETSUB
006 067 160 111 006 JTS NO GO
006 072 046 134 LEI 134
006 074 066 131 LLI131
006 076 016 003 LBI003
006 100 106 076 005 CAL MOVEIT
006 103 006 001 LAI001
006 105 032 RAR
006 106 104 114 006 JMP QUOROT
006 III 006 000 NOGO, LAIOOO
006 113 032 RAR
006 114 066 144 QUOROT, LLI 144
006 116 016 003 LBI003
006 120 106 341 006 CAL ROTL
006 123 066 134 LLI134
006 125 016 003 LBI003
006 127 106 340 006 CAL ROTATL
006 132 066 102 LLI 102
006 134 106 305 006 CALCNTDWN
006 137 110 064 006 JFZ DIVIDE
006 142 106 216 006 CAL SET SUB
006 145 120 205 006 JFS DVEXIT

5 - 57

006 150 066 144 LLI 144
006 152 307 LAM
006 153 004 001 AD! 001
006 155 370 LMA
006 156 006 000 LAIOOO
006 160 060 INL
006 161 217 ACM
006 162 370 LMA
006 163 006 000 LA! 000
006 165 060 INL
006 166 217 ACM
006 167 370 LMA
006 170 120 205 006 JFS DVEXIT
006 173 016 003 LBI003
006 175 106 352 006 CAL ROTATR
006 200 066 127 LLI 127
006 202 317 LBM
006 203 060 INL
006 204 371 LMB
006 205 066 144 DVEXIT, LLI 144
006 207 046 124 LEI 124
006 211 016 003 LBI003
006 213 104 232 005 JMP EXMLDV
006 216 066 131 SETSUB, LLI 131
006 220 106 276 006 CAL SWITCH
006 223 353 LHD
006 224 066 124 LLI 124
006 226 016 003 LEI 003
006 230 106 076 005 CAL MOVEIT
007 233 046 131 LEI 131
006 235 066 134 LLI1 34
006 237 016 003 LBI003
006 241 106 364 006 CAL SUBBER
006 244 307 LAM
006 245 240 NDA
006 246 007 RET
006 247 106 100 007 DERROR, CAL DERMSG
006 252 104 160 007 JMP USERDF

006 255 240 ADDER, NDA
006 256 307 ADDMOR, LAM
006 257 106 276 006 CAL SWITCH
006 262 217 ACM
006 263 370 LMA
006 264 011 DCB
006 265 053 RTZ
006 266 060 INL
006 267 106 276 006 CAL SWITCH
006 272 060 INL
006 273 104 256 006 JMPADDMOR

5 - 58

006 276 325 SWITCH, LCH
006 277 353 LHD
006 300 332 LDC
006 301 326 LCL
006 302 364 LLE
006 303 342 LEC
006 304 007 RET

006 305 327 CNTDWN , LCM
006 306 021 DCC
006 307 372 LMC
006 310 007 RET

006 311 307 COMPLM, LAM
006 312 054 377 XR ! 377
006 314 004 001 AD ! 001
006 316 370 MORCOM,LMA
006 317 032 RAR
006 320 330 LDA
006 321 011 DCB
006 322 053 RTZ
006 323 060 !NL
006 324 307 LAM
006 325 054 377 XR! 377
006 327 340 LEA
006 330 303 LAD
006 331 022 RAL
006 332 006 000 LA! 000
006 334 214 ACE
006 335 104 316 006 JMP MORCOM

006 340 240 ROTATL, NDA
006 341 307 ROTL , GAM
006 342 022 RAL
006 343 370 LMA
006 344 011 DCB
006 345 053 RTZ
006 346 060 INL
006 347 104 341 006 JMP ROTL

006 352 240 ROTATR, NDA
006 353 307 ROTR, LAM
006 354 032 RAR
006 355 370 LMA
006 356 011 DCB
006 357 053 RTZ
006 360 061 DCL
006 361 104 353 006 JMP ROTR

006 364 240 SUBBER , NDA
006 365 307 SUBTRA, LAM

5 - 59

006 366 106 276 006 CAL SWITCH
006 371 237 SBM
006 372 370 LMA
006 373 011 DCB
006 374 053 RTZ
006 375 060 INL
006 376 106 276 006 CAL SWITCH
007 001 060 INL
007 002 104 365 006 JMP SUBTRA

007 100 DERMSG ,

007 160 USERDF ,

007 200 INPUT,

007 300 ECHO,

5 - 60

USING MEMORY SPACE EFFECTIVELY

The FPINP, FPOUT, FPCONT and other
routines presented in the floating point pro-
gram in the previous chapter might all appear
somewhat lengthy to the read er . Indeed , they
are all somew ha t longer than necessary be-
cause they were developed in a manner that
would enable one to follow the logic of the
program rather t han to save memory space
in a computer system. As readers kn ow ,
however, it is o ften desirable to reduce pro-
gram s to forms that use a minimum amount
of memory. But , there are trade-offs to con-
sider. Designing a program to minimize the
amount of memory used generally req uires
significantly more program developmen t
time. It also tends to make the program mo re
comp lex or difficul t fo r someone else to
und erstand. This is because one of the funda-
mental techniques to redu ce a program's
length is to capitalize on making as man y sub-
routines as possible out of d ifferent sections
of the program . There is another parameter
that may be affected by designing a program
to use a minimum amount of memory. That is
the speed at wh ich the program will execute.
As a general rule of thumb, the execution
speed will decrease because lots of extra t ime
will be spent execut ing time co nsuming CALL
instructions. (Note that this is contradictory
to what one might initially presume') More
discussion on the considerat ions of a pro-
gram's operati ng speed will be presen ted in
another chapter.

Perhaps the first rule to apply towards re-
ducing the amount of mem ory a program re-
qu ires is to maximize the amount of su b-
rout ining utilized, provided that the sub rout-
ining meets th e following simple mathemati-
cal re lationship (when utilizing an
based or similar ma chi ne):

where:

B x N 3 x N+ B+1

B = the number of bytes in a re-
repeated instruction seq uence.

6 - 1

and: N = the num ber o f times the se-
quence is used in the program

Examining the formula above will show that
it does no good in term s of conserving mem-
ory space to ca ll a subroutine that utilizes
only three bytes of mem ory. This is because
a CAL instruction itself requires three bytes
of memory. (A BYTE is eq ual to eight binary
hits of information and is thus equal to one
memory wo rd in an '8008' o r similar micro-
computer system.) However, o nce an in stru c-
t ion seq uence exceeds three bytes of memory,
the point at which subroutining becomes pro-
fitable for conservin g memory space is a func -
tion of 'N' wh ere 'N' is the number of t imes
the instruction seq uen ce needs to be repeated
in a program . For example, if B = 4 , one starts
saving memory space by subroutining when
N = 6. The above fo rmula shows that the
value of 'N' req uired to meet t he condition
where memory space is saved by subroutining
drops quite rapidly as B is increased . By the
time one is dealing with instructional seq uen-
ces which use e ight or more bytes of memory,
one can save memory space by forming a sub-
routine if that sam e sequ ence is used more
than once in the program! A summary of the
minimum values of Band N that will result
in memory space being saved by subroutining
based on the above formula is provided here:

B = 4 and N=6
B=5 and N=5
B =6 and N=3
B =S and N=2

The am ount o f mem ory space that one
saves by appropriate subroutining can be
ascertained by rearranging t he above formula.

B x N - (3 x N + B + 1) = Z

and solving for 'Z' which is the number of
bytes saved. For example, if B is Sand N is 3,
t hen Z is eq ual to:

8 x 3 - (3 x 3 + 8 + 1) 6

When developing subroutines, o ne can
often use one routine to serve several func·
tions by al lowing for multiple entry points
to the su broutine. An example of this method
was used in the floating po int package dis-
cussed . There , two entry points to the rotate
subroutines were provided. The ROTATL
subroutine, for example, had a second entry
point labeled ROTL which allowed one to
enter the subrou ti ne after the NDA instruc-
tion which resid ed in t he location labeled
ROTATL.

Another way to often save significant
amounts of memory is by carefu l o rgani-
zation of the program and assignment of
data storage areas in memory. For example,
the reader may have noted that all the numer-
ical data storage areas used in the floating
point routines along with the coun ters and
indicators were located o n I;'AGE 00. This
was done to minimize the resetting of the
page pointer (register H). Scattering data
on different pages of memory in a large
program can result in quite a bit of wasted
memory because register H (or other poin-
ters) must be frequently altered. Carefu l
organization of data sto rage can even be
helpfu l in minimizing the amount of times
that register L (o r similar pointers) must
be loaded with a new address by locating
storage areas in acco rdan ce with how they are
accessed in a program seq uence. Then an INL
or DCL (one byte commands) may be used
to access a st orage location rather than a
LLl XXX o r similar instruction.

In line with the above is the simple rule
of maintaining pointers, counters, and other
frequently used indicat ors in CPU registers
as much as possible. This considerably re-
duces the num ber of times that the memory
pointe r registers have to be changed to po in t
to locations that contain such infonnatio n,
then changed back to han dle the current
data that is being manipulated.

Another general rule of th umb fo r re-
ducing program memory usage is to capi-

6-2

talize on LOO PS. A fonnu la for detennining
when one can save mem ory space by using
a loop (assuming the loop counter is sto red
in a CPU register) is presented here:

B x N B + 6

where: B the nu mber of bytes fonn ing the
repeated portion of the sequence
that must be repeated .

and: N t he number of times the sequence
must be consecutively repeated.

By using the formula, o ne may verify that
if a programmer has a fo ur byte instruction
that must be consecutively repeated the pro-
grammer can save memory by setting up a
loop when the sequence must be repeated
three or more times. If B is o nly two , then a
loop conserves memory if it must be consec-
u tively perfonned five or more times. (The
a bove fonnula is derived from the fact that
it requires six bytes to set up a counter, in-
c rement or decrement the counter each time
a loop is completed, and make a condit io nal
branching test in an '8008' or similar CPU.)

A subtle concept that can save memory
space involves t he possibility of includ ing
a few carefully chose n instructions in sub-
routines to increase their general useful-
ness . For example, consider the subroutine
illustrated below:

SAMPLE, LCH
LHI XXX
LAM
LHC
NDA
RET

Save value of H in C
Set pntr to data page
Fetch a byte of data
Resto re orig value of H
Set flags fo r ACC cants

Such a subroutine might be extremely
valuable in a large program where data was
stored on o ne page, but counters and indi-
cato rs had to be sto red o n another. Before
call ing the above routine, the program would
have to set register L to the appropriate
address on the page where data was to be

obtained. Suppose that sometimes the main
program needed to simply transfer data from
one location to another, and at other times
it made tests on the data it obtained. The
simple inclusion of a NDA instruction in the
above routine does no hann in cases where
data is to be simply transferred, but it can
save valuable memory storage if there are
two or more times in which the data must be
tested in the main program. For, the NDA
sets up the flags allowing one to immediately
execute a conditional branching instruction
upon return from the subroutine. To push
the point being made one step further , adding
one more instruction to the above subroutine,
an INL placed just before the NDA instruc·
tion, could make the routine even more gene·
ral purpose. For instance, in a typical data
manipulating program one might be sequen-
tially accessing locations in the data storage
area while possibly searching for a certain
code. At other times one might branch off
to perform work in another area of memory.
In the latter case one would probably have
to perform an LLI XXX instruction. Thus,
the inclusion of the INL command in the
subroutine takes care of all the times that
one needs to access the next location in the
data area, yet it does no harm if the program
will be directed to a different memory area'
(Note, however, that one would have to
examine carefully just how often the main
program might be required to access the
exact same location again, thus requiring
a compensating DCL instruction in the main
portion of the program.)

One of the most powerful memory saving
techniques for '8008' systems is based on the
use of a class of instructions that many novice
programmers completely overlook! This class
of instructions is the RESTART (RST XXX)
group. For, while the mnemonic for a RE-
START instruction is shown as consisting of
two parts, the actual machine code results in
an effective one byte CALL instruction. While
the RST commands were included in the in-
struction set for the '8008' to facilitate im-
plementing start-up operations in conjunction
with the INTERRUPT facility on typical sys-
tems, they may also be put to extremely ef-

6-3

fective usage in general programming appli-
cations. The reason is easy to understand once
it has been pointed out. Being able to CALL a
subroutine with a one byte instruction instead
of a three byte instruction can save a large
amount of memory space if a routine is
called frequently in a program.

The reader may want to review the material
in the first chapter which explained the re-
start instructions. There are eight restart loca-
tions on PAGE 00 in an '8008 ' system. That
means that one may have up to eight different
subroutines in a program that can be accessed
with a single byte CALL instruction. While
the restart locations are spaced just eight loca-
tions apart, one can still use the restart loca-
tions for saving memory space even if the de-
sired subroutines will not fit in eight loca-
tions. This may be accomplished by simply
placing a JUMP instruction at a RESTART
location to direct the program to the actual
location of a subroutine!

To see the importance of using RST com-
mands in large programs consider the fact
that it may often be necessary to call a
particular subroutine 30 or 40 (decimal)
tim es in a program. U sing a one byte RST
command instead of a three byte CAL in-
struction can thus save 60 to 80 memory
locations . That is roughly one-fourth of a
PAGE of memory. Multiply that by a fac-
tor of eight, the number of RST locations
available, and one can see a very considerable
savings in memory usage. The person who has
developed a fairly decent sized program for
an '8008' system without taking advantage of
the RST command to conserve memory is
often amazed when such programs are re-
written to utilize the technique.

As a challenge to the reader who is in-
terested in doing a little creative trimming
of a . program, why not try reducing the
size of the FPINP, FPOUT, and FPCONT
routines presented in the previous chapter?
Using the techniques described in this chap-
ter one should be able to work those rout-
ines down from the roughly three pages of
memory they required to about two pages!

INPUT/OUTPUT PROGRAMMING

This chapter will be concerned with dis,
cussing programming techniques for trans-
ferring information to and from the computer
and external devices. External devices are
connected to the compu ter via physical con-
nections which carry electronic signals. Since
it is often desirable to have anum ber of
diffe rent devices connected to a system at
one time, a hardware arrangement is generally
provided that enab les a number of devices to
be connected at one time. However, o nly one
such device may actually communicate with
the computer at any given instant of time. To
allow control of which dev ice will communi-
cate with the computer at any give n instant,
an electronic arrangement is nonnally pro-
vided that will allow software selection of in-
put and output ports. As far as a programmer
is concerned, a port consists of eight parallel
electronic signals that m ay be in the '1' or
'0' states. The eight signals correspond to the
eight bit positions available in the accum -
ulator of the CPU. An in put port accepts in-
formation from an external device and
presents it to the accum ulator . An ou tpu t
port takes information from the accumulator
and passes it to an output device . The
selection of a particular input or output port
is specified by the programmer when utilizing
an I/O command. The reader may desire to
review the discussion of the I/O instructions
presented on page 15 of the chapter des-
cribing the instruction set for the 8008 CPU
at this time .

NOTE: For the purposes of
the discussion in this chapter,
all I/O operations will be
assumed to take pl ace between
t he I/O ports and the accum-
ulator of the CPU. Some
readers may be aware that it is
possible to communicate with
a computer via
known as direct memory ac-
cess, whereby an external

7 - 1

device places data directly into
areas in memory, or vice-versa.
Such transfer techniques are
essentially hardware con-
tro lled and are outside the
pure programming realm to
which this manual is devoted .

The basic concept behind comm un icating
with a computer lies in providing some form
of systematic system for encoding infor-
mation from an external device that will allow
a program to decode the information and take
appropriate action. And, to allow a program
to send codes to an external device that will
direct it to perform in a desired manner.

Such a system may be created entirely by
the programmer. Indeed, in many special ap-
plications, such as controlling a unique piece
of machinery, that is just the approach taken.
For example, suppose some manufacturer had
a machine that was to be controlled by the
computer. The machine could be constructed
so that when it was performing a certain type
of function it would close a particular elec-
tr ical switch. There might be a number of
such switch es on the machine and each one
could be connected to an input line, repre-
senting one bit on an input port . For the sake
of discussion , suppose a machine had eight
such input switches, one connected to each
possible line making up an input port . When
the switch was closed, a '1 ' condition woul d
be placed on the line, and when it was open
the line would represent a '0' condition. For
the sake of simplicity, it could also be
assumed that only one switch could be closed
at any given time.

Now , assume the computer was to monitor
the status of the switches by periodically exe-
cuting an input instruction for the input port
to which the switches were attached. Then,
depending on which switch was in the closed

condition, the computer would direct infor-
mation to be outputted on an output port,
say, to direct another part of the machine to

perform a specific operation. A programmer
might ' make up an input program in the
following manner.

INCTRL, INP X
NDA

Read data from port X into accumulator
Set flags after input operation

JTZ INCTRL
CPI001

No switches closed - keep looking
Is it switch No.1?

JTZ STARTl
cpr 002 .
JTZ START2
CPI004

Yes, do required routine
Is it switch No.2?
Yes, do required routine
Is it switch No.3?

JTZ START3
CPI 010

Yes, do required routine
Is it switch No.4?

JTZ START4 Yes, do required routine

CPI200 Is it switch No.8?
JTZ START8
JMPERROR

Yes, do required routine
If program ever gets here, something is wrong

The above input routine is quite simple and
lacks a technical consideration that might be
necessary in a real system (how can the rou-
tine tell whether a reading indicates a new
switch closure or a previous condition still
present?). However, it does illustrate the con-
cept of inputting information and having the
computer interpret that information.

In a similar manner to the input routine,
one could connect, say, the co ils of elec-
tronic relays to the output lines of a specific
output port. Each of the eight possible lines
connected to an output port could activate
the associated relay when a '1' condition was
present, but not when a '0' condition existed.
Since each line corresponds to one bit in the
accumulator, one could easily develop a pro-
gram to control the operation of the relays
by placing appropriate codes in the accum-
ulator of the CPU, and then executing an
OUT Z instruction where Z represented the
output port whose lines were connected to
the relays.

In the above example input program to
monitor the status of a set of switches it was

7-2

assumed that only one switch could be closed
at a given time. Th us, there were only nine
possible signal conditions that could be re-
ceived by the computer - anyone of the eight
switches, each represented by the status of a
particular bit in the accumulator, could be on,
or none of them were activated. Thus, the
particular coding technique for the example
was really quite limited. Had it been stated
that any number of the switches could be on
at any given time, then there would be 256
different codes possible on the 8 input lines
at any given time! Such an encoding scheme
would allow quite a lot more information to
be co nveyed to the computer on one input
port. One could readily envision coming up
with a system whereby an external machine
could use the 256 possible states available on
one input port to provide a lot of information
to the computer. By assigning different codes
to represent different artifacts, one could
easily come up with a device that could
essentially encode all the letters of the alpha-
bet, the numbers 0 - 9, and a lot of special
symbols, and still have unused states! Well, as
the reader undoubtably knows, people de-
veloped such encoding systems quite some

time ago. In fact, a number of different
standardized encoding systems have been de-
veloped over the years. One of the most pop-
ular encoding systems, one that is used on
many kinds of machines such as electronic
keyboards, typewriters, numerical co ntrol
machines, and a variety of communication
devices, is commonly abbreviated and re-
ferred to as t he ASCII code. ASCll is the
abbreviation for American Standard Code
for Information Interchange. ASCII code
itself is actually designed to use just 7 bits
of information (thus allowing for the en-
coding of 128 differen t sy mbols), however,
ASC II code is o ften used in devices that use
8 bits because the last bit of data can be

CHARACTER

A
B
C
D
E
F
G
H
I
J
K
L'
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
1
t ...

SPACE

BI NARY

11 000 001
11 000 010
11 000 011
11 000 100
11 000 101
11 000 110
11 000 III
11 001 000
11 001 001
11 001 010
11 001 011
11 001 100
11 001 101
11 001 110
11 001 III
11 010 000
11 010 001
11 010 010
11 010 011
11 010 100
11 010 101
11 010 110
11 010 111
11 011 000
11 011 001
11 011 010
11 011 011
11 011 100
11 011 101
11 011 110
11 011 111
11 100 000

OCTAL

301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
3 22
323
324
325
326
327
330
331
332
333
334
335
336
337
240

7 - 3

used to test for transmission erro rs by
serving as a parity indicator. More will be
said about parity a li ttle later.

While the entire ASCII code is based o n
the different patterns that will fit in seven
bits of a register , thus yielding 128 (decimal)
different codes, a commonly used subset of
the ASCII code is often utilized. The subset
does not use eve ry possible pattern but only
those patterns desired. The subset referred
to is frequently used in ASCII coded key-
boards, teletype machines, and other de-
vices. In the listing shown below, the 8th bit
not used by the ASCII code will be shown as
a '1 ' condition , and the codes will be pre-

CHARACTER

"

$
%
&

*
+

/
o
1
2
3
4
5
6
7
8
9

<

>
?
@

BINARY

10 100 001
10 100 010
10 100 011
10 100 100
10 100 101
10 100 110
10 100 111
10 101 000
10 101 001
10 101 010
10 101 011
10 101 100
10 101 101
10 101 110
10 101 III
10 110 000
10 110 001
10 110 010
10 110 011
10 110 100
10 110 101
10 110 110
10 110 111
10 111 000
10 111 001
10 111 010
10 111 011
10 III 100
10 III 101
10 III 110
10 III 111
11 000 000

OCTAL

241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300

sented as they could appear in the registers of
an 8008 cpu.

The subset of the ASCII code just pre-
sented has several nice features worth noting.
For instance, the 26 letters of the alphabet

are all encoded in a sequence starting with
301 (octal) and ending with 332 (octal). Thus
one can easily check data , for example, being
inputted by an operator to see if the code
being received represents a letter of the alpha-
bet by performing a range test as illustrated
below.

CKALF A, [NP:X
CP I 301

Accept a characte r fro m input device
See if input in range from 301

JTS CKALFA
cpr 333 .
JFS CKALFA

To 332, if it is not, ignore th e
Input, if it is within the range

ISALFA ,
Then have an alphabetical charac ter
To process as desired

The reader may note t hat the numbers a
through 9 are also grouped together in the
sequence fro m 260 to 271, and the program-
mer can thus readily perform a similar range
test to only accept num bers.

There are seve ral other characters that are
used by many machines that operate with
ASCl! code that will be mentioned for re-
ference. The functions carriage return (215),
line-feed (212), bell (207), and RUBOUT
(377) are most often found on automatic
typing mach ines which make very nice [/0
devices for a computer.

When an input instruction is executed, the
computer will receive eight bits of infor-
mation sim ultaneously, corresponding to the
eight possible lines of an input port which are
fed into the accumulator. [n other words, the
data is accepted in parallel. Likewise , when an
output instruction is executed, the computer
will send all eight bits in the accumulator out
to the appropriate output port simulta-
neously. However, some devices which one
desires to operate with the computer may not
be parallel devices. They may instead be
serially operated, which means they do not
transmit information over a group of wires,
but rather send the information one bit at a
time over a single wire. Such devices may,
however, still be connected to an 8008 system
since one may simply discard the unused bits
corresponding to unused lines of an [/0 port.

7-4

[n such cases, the programmer must know
which line of a port is the active line and take
care to ensure that the program manipulates
bits of information so that they appear on
that line at the proper time. Whether a parti-
cular device connected to a compu ter is se rial
or parallel III operation (as far as the
computer is co ncerned) is often a function of
the type of hardware interface provided for
the external device. For instance, electric
typing machines are essentially serial devices
since they act on information one bit at a
time . However , when actually connected to a
computer, one can elect to have a hardware
interface that converts information received
from the mach ine in serial form and places it
in a parallel register before passing the data to
the computer. Going in the other direction
one may have the computer send data in
parallel form to the interface which will then
pass it on to the machine in bit-serial fashion.
Such an interface can save a lot of computer
time because the external hardware interface
is able to handle the time consuming serial to
parallel and parallel to serial tasks. However,
such hardware costs money I and in many ap-
plications one may desire to have the com-
puter do the serial to parallel conversion and
vice-versa. This can be accomplished quite
readily with a suitable program that actually
utilizes the computer's o wn timing to de-
term ine when to look or sample for the next
bit of information from the serial devic e, or
when to send the next bit of information to

•

the serial device. While the details of carefully
controlling the timing for such a program will
be discussed in the next chapter, the concept
of having the computer perform parallel to
serial or serial to parallel conversion will be
demonstrated with several routines at this
point. The technique consists of using accum-
ulator rotate instructions to sh ift the serial
data in or out of the computer.

In the parallel to serial routine shown next,
it will be assumed that a device that accepts
serial data is connected to the least significant
bit line of output port X, and that the re-
maining lines available on the port are unused.
The device will be assumed to be a unit that
operates with ASCII code, and before the il-
lustrated routine is called, that the code for a
character has been placed in the accumulator.

PARSER,
NEXOUT,

LCI010
OUTX
RRC
DCC

Set up register C as a bit counter

JFZ NEXOUT
RET

Output data in ACC to port X, only the
Data in LSB used, now rotate ACC right
Ignore carry, then decrement bit counter
Do next bit if counter not zero
Exit routine when all 8 bits transmitted

In the following serial to parallel routine it
is assumed that data is arriving at the most sig-

nificant bit position of an input port, and that
it is to be assem bled into an eight bit format.

SERPAR, XRA
LBA
LCIOIO

Clear accumulator and also clear
Register B at start of routine
Set a bit counter

NEXTIN, INP X
NDI 200
RAL
ADB
RAR
LBA
DCC

Bring in data from input port X
Since only MSB has important data, mask
Off other bits and clear carry, now rotate
Left to save new bit, then add in any
Previous bits from B and rotate right
To add on latest bit, store in B
Decrement bit counter

JFZ NEXTIN
RET

If not finished, get next bit
Exit routine when 8 bits received and stored

Another popular standardized code for
operating I/O devices is known as BAUDOT
code. BAUDOT code is a 5 level code in that
it requires five bits to specify a particular
character. Thus , there are theoretically 32
different patterns that can be represented
when using BAUDOT code . Now, BAUDOT
code has long been used in a variety of
electro-mechanical typing machines and other
communication devices, and the code is of
interest to many computer owners because
older model machines, paper tape punches ,
and paper tape readers can often be obtained
from second-hand sources at quite reasonable

7 - 5

prices, and used as an I /O device for a com-
puter. Wbile BAUDOT code can only re-
present 32 different bit patterns, these
machines can print all the letters of the alpha-
bet, the numbers a through 9 , and a variety
of punctuation sym bois! That is a lot more
than 32 different characters' How is it done?

Well, the designers of those machines used
a little ingenuity to enable the machines to
handle almost double the number of char-
acters that could be represented by a five bit
code by using several of the codes to shift
the machine between two modes, so that in

one mode it would interpret the codes to
mean one set of characters, and in the other
mode it would interpret the codes to repre-
sent a different set of characters. In one

mode, termed the letters mode, all the letters
of the alphabet may be printed. In the figures
mode, numbers and punctuation are printed .
The BAUDOT code is presented below.

LC UC BIT POSITION CODES

A
B ?
C
D $
E 3
F
G &
H :#
I 8
J
K
L
M
N
0 9
P a
Q 1
R 4
S Bell
T 5
U 7
V
W 2
X /
y 6
Z "
SPACE

CAR . RET.
LINE FEED

NULL
FIGURES
LETTERS

In the BAUDOT table shown above, the
octal codes column was shown assuming that
the codes were stored in the least significant
bit positions of an 8008 register with the
three most significant bits set to O. The reader
can now see that 26 of the possible 32 codes
can represent two different characters de-
pending on which mode the machine is in.
The functions SPACE, CARRIAGE-RE-
TURN, LINE-FEED, and NULL mean the

00011 003
1 100 1 031
a 111 a 016
a 1 a a 1 all
00001 001
a 1 101 015
110 1 a 032
10100 024
00110 006
a 101 1 01 3
01111 017
100 1 a 022
11100 034
01100 014
110 a a 030
10110 026
10111 027
01010 012
00101 005
10000 020
00111 007
11110 036
100 1 1 023
1 1 101 035
10 1 a 1 025
10001 021
a a 100 004
01000 010
00010 002
00000 000
11011 033
1 1 1 1 1 037

same regardless of which mode the machine
is in, and two codes FIGURES and LETTERS
are used to switch the mode of the machine.
While everything may seem fine at this point,
it is important to discuss handling the code as
part of an I/O routine because there is a
subtle factor that can be over-looked by some
beginning programmers!

In actual operation, a BAUDOT machine

7 -6

operates in the mode that it was last placed in
by a figures or letters key , and remains in that
mode until t he opposite mode code is
received. Thus, a mechanical arrangement
actually serves to rem ember a bit of infor·
mation. The fact that an external mechanical
linkage is used to hold a bit of information
must be taken in accou nt if a computer pro·
gram is to process the code with practical
results!

For instance , if one had an inpu t rou t ine
that simpl y looked for a five bit pattern from
a BA UDOT device, o ne could get that pattern
in many instances from two possible can·
ditions of the machine . For instance, if
the operator typed an 'A' or an '. ' mark , and
the program was designed to perform a cer·
tain fu nction on receipt of the letter 'A,' it
would also perform it if the punctuat ion '.'
was rece ived! To avoid t hat happening , one
m igh t inform the human operator to always
enter information during that part of the
program with the machine in the letters
mode, but that is not the safest way in which
to design a program.

Instead, one would be better off to add a
bit to the BA UDOT code when it was mani·
pulated in the compu te r that would serve to
differentiate between letters and figures. For
instance, the code 000011 could be used to
indica te the letter 'A,' and 100011 to indicate
t he pu nctuation '.' mark . In order to institute
this method , one would have to have a pro·
gram that kept track of which mode the
machine was operating in whenever it was re-
ceiving data from the machine by remember·

ing the last letters or figures code received.
Furthermore, in order to ensure that the
mode was properly received (such as when the
program was first started, o r power turned on
th e machine), it would be wise to have the
computer output a command that would
place the machine in a known state such as
would be accomplished by outputting a
letters or figures code at the start of such
operations. Then , for storage and manipul·
ation in the com puter, the input routine
cou ld set a sixth bit to a '1 ' condition when·
ever a code was received while t he machine
was in , say , t he figures mode, and leave the
sixth b it as a '0' when codes were received in
the letters mode. The six bit codes could t hen
be manipulated and stored by th e program in
much the same manner as one might process
ASCII codes with the ability to immediately
recognize the close to 60 different characters.
When it was d esired to output inform ation,
the sixth bit would be used to indicate
whether it was necessary to first output a
figures or letters code to set the machine in
the proper mode. (It would not be necessary
to outpu t a figures or lette rs mode command
before every character was sent because o ne
cou ld use an algorithm that would o nly send a
mode command when the sixth bit was noted
to have changed from that present when the
previous character was transmitted.)

Two sam ple routin es for performing such
a function, one for inputting data fr om a
BAUDOT machine, and one for outputting
data to such a mach ine, will be illustrated
here.

BAUDIN, LAI037 Lo ad letters code into accumulator
CAL O UTPUT
CAL LETCOD

INBAUD , CAL INPUT
CPI033
CTZ FIGCOD
CPl 037
CTZ LETCOD
ADB

STORBD , CAL MANIP
JMP INBA UD

Call routine to send BAUDOT character
Initialize register B to letters
Now accept BAUDOT characters from machine
See if figures code
Go set up '1 ' as sixth position bit
See if letters code
Go set up '0 ' as sixth position bit
Add in status of sixth bit position
User subroutine to process data
Get next character in sequence if applicable

7 . 7

FIGCOD, LBI040
RET

LETCOD, LBIOOO
RET

Set sixth bit in B = 1
Return to main subroutine
Set sixt h bit in B = a
Return to main rou tine

The reader should note that there are
actually two entry points to the routine just
presented. The subroutine BAUD1N should be
called to initialize the condition of the
BAUDOT machine whenever the program is
first started, o r at other times when the mode
of the machine is not certain. Once the mach-
ine and routine have been initial ized, then the
program may be called at lNBAUD as long as
some other routine does not interfere with
the status of register B. The reader who is
interested in logic might note that register B
in the above program acts as a flip-flop to re-
member the mode in which the typewriter is

operating.

The ro utine shown next also has two entry
points. The first termed BAUDOT is used
when the first character of.a string of charac-
ters is to be outputted in order to initialize
the BAUDOT machine , and set up register C.
The entry point OTBAUD may then be used
until the mode memory register (C) is inter-
fered with by any other external routine.
Note too, that the routine below expects the
character to be ou tpu tted to be resid ing In

register B when the subroutine is called!

BAUDOT, LAI037 Load letters code into accumulator
CAL OUTPUT Call routine to send BAUDOT character
LCIOOO Set indicator for letters in C

OTBAUD, LAB Move character from B to accumulator
NDI 040 See if sixth bit = 1, if yes = figures
JTZ LTCHAR Character, if not = letters character
NDC If figure see if last out also figure
JTZ LASLET If a here then last was a letters

OUTCOD, LAB Put present character in accumulator
CAL OUTPUT Send the BAUDOT character
RET Return to calling routine

LASLET, LAI033 Since last was letter put figures code
LASFIG, CAL OUTPUT Send code

LCB Save latest in register C for comparison
JMP OUTCOD Send current character

LTCHAR, LAI040 Set m ask and see if last was letters
NDC By comparison of sixth bit position
JTZ OUTCOD If a here, last was also letters
LAI037 If not, send letters code first
JMP LASFIG By using above routine to send letters code

It is often desirable to have I /O routines
that will convert between one type of I/O
code and another, such as between ASCII and
BAUDOT. This may be desired for a number
of reasons. For instance, because one has had
one type of input device using one code, and
a different output device using another code.

Or, one might desire to use a particular pro-
gram that was written to use one kind of
code, with a machine that used a different
kind of code, without having to modify a lot
of locations in the original program that
m igh t have been testing for specific I/O codes
from an external device. In such cases, the

7-8

computer's capability to perform conversio n
functio ns is readily capitalized upon by con-
structing a lookup table and using a suitable
program to convert from one code to another.

For example, suppose it was desired to use

ADDRESS CONTENTS

10 000
10 001
10 002
10 003

10 076
10 077
10 100
10 101

10 174
10 175
10 176
10 177

301
003
302
031

240
004
241
015

277
071
300
000

In constructing the table, one could elect
to leave out or ignore characters that were not
represented by both codes, or to substitute a
substitute character when one code does not
have an equivalent character. Either method
requires consideration when the search rou-
tine is developed. The former method leaves
the possibility that a human operator migh t
type in a character that did not exist in the
table, and so the programmer would have to
be careful to limit the table search routine.
Note that if every possible entry existed in
the table, then the table search routine will
be self limiting in that a match will always be
found. On the other hand, the latter choice
of using a substitute character requires that
the table be organized so that the preferred
character for cases of multiple substitution
will be the one found first by the table look-
up routine. For instance, there are several
characters besides the @ mark, such as '1 ' and

7 - 9

a BAUDOT machine with a program that was
developed originally to operate with a
machine that used ASCII code. One could
proceed to first construct a lookup table
similar in format to that shown here:

COMMENTS

A (ASCII)
A (BAUDOT)
B (ASCII)
B (BAUDOT)

SPACE (ASCII)
SPACE (BAUDOT)
",,, (ASCII)
",,, (BAUDOT)

"?" (ASCII)
"?" (BAUDOT)
"@" (ASCII)
Substitute null (BAUDOT)

'[' which could be included in the above table
which are represented by ASCII codes but not
BAUDOT codes. If one decided to include
them in the table, but have NULL characters
as their conversion equivalent , one can see
that a problem arises when one uses the same
table to convert from BAUDOT to ASCII, as
now there are several places in the table that
have the NULL code. As will be clear shortly,
the routine that converts from BAUDOT to
ASCII will always represent a NULL charac-
ter in BAUDOT as a ' @ ' symbol in ASCII
because the BAUDOT routine searches the
table from highest address to lowest, and will
find the NULL to '@ ' entry first. Naturally,
the table could be re-organized so that some
other NULL conversion entry was located
first. Or, a different type of lookup routine
than the one to be presented can be de-
veloped. These factors are simply being
pointed out to increase the reader 's aware-

ness as to the types of facto rs that must be
cons idered when performing such operations.

A routine that will use the lookup table to
convert ASCII characters to BA UDOT is illtlS-

trated next. This program, and the BAUDOT
routine discussed earlier could be used to out-
put characters from a program that was
actually doing internal processing with ASCII
codes.

ASBAUD, LHI 010
LLIOOO

Set page address pointer to location of table
Set low address pointer to top of table

FASCII, CPM
JT Z FNDBDO
INL
INL
JMP FASCH

FNDBDO, INL
LAM
RET

Compare (ASCII) code in accumulator to contents
Of table, if match, do conversion
Otherwise advance low address pointer
To next ASCII code location in table
And keep looking for a match
When have ASCII match, advance pointer 1 location
And fetch BA UDOT equivalent into accumulator
Exit lookup routine

The above routine assumes that the code
(in ASCII) for a character that exists in the
table is in the accumulator when the routine
is entered . Note that the routine does not test
for the end of the tab le because of that
assumption. If for any reason it might be
possible for a code to be in the accumulator
that was not in the table, then it would be
necessary to add an end of table test each
time the tab le pointer was advanced, and to
take appropriate action if no match was
found in the table.

verse process, using the same table, to co nvert
BAUDOT codes to ASCII codes. It cou ld be
used along with the previously described
BAUDIN routine to accept characters from a
BAUDOT machine and convert them for use
in a program that utilized ASCII codes. As
in the above routine, the program assumes
that a valid BAUDOT code is in the accum-
ulator when the routine is called . Note that
the routine starts searching the table in the
opposite direction than the routine presented
above.

The next routine does essentially the re- Naturally, the techniques illustrated to

BAUDAS, LHI 010
LLll77

FBA UDO , CPM
JTZ FNDASC
DCL
DCL
JMP FBAUDO

FNDASC, DCL
LAM
RET

Set page address pointer to location of table
Set low address pointer to bottom of table
Compare (BAUDOT) code in accumulator to contents
Of table , if match, do conversion
Otherwise decrement low address pointer
To next BAUDOT code location in table
And keep looking for a match
When have BAUDOT match , decr pointer 1 location
And fetch ASCII equivalent into accumulator
Exit lookup routine

convert between ASCII and BAUDOT codes
may be applied to many other types of codes.
Indeed , the small computer makes an ideal
device fo r coupling between a variety of 1/0

devices, particularly in communication appli-
cations, thus enabling machines with different
characteristics and using different codes to
communicate with one another.

7 - 10

A concept that will be discussed more fully
in the next chapter will be briefly mentioned
at this time to point out an important con-
cept when dealing with 1/0 devices co nnected
to the computer. As the reader und oubtably
knows, many mach ines that might be con-
nected to a computer are much slower in op-
eration, in fact o ften times orders of magni-
tude slower, than the basic operating cycle
of a computer. For instance, an 8008 system
req uires but a mere 32 millionths of a seco nd
in a typ ical system to execut e an input in-
struction. That is, in that short amount of
time it can access an input port and bring in
8 parallel bits of informat ion into the accum-
ulator of the CPU.

The extrem e speed of the computer can in
fact cause problems when perfo rming 1/0
operat ions if steps are not taken to cont rol
the situation . Assume, for example , that a
person desired to connect an electronic key-
board unit, similar to a typewriter , that
would present the ASCII cod e for the key
being depressed in parallel on the lines of an
input port. If the perso n just connected the
keyboard output lines to the input lines of
an input port, and wanted to d evelop a pro-
gram that would accept information from the
keyboard, there would be a number of rather
tough problems, and they would be related to
the speed at which the computer can operate
relative to the speed at which a human can d e-
press the keys on a keyboard .

Suppose that the keyboard was directly
connected to an input po rt, and a pro-
grammer t ried to develop a routine that
would simply read the code being sent by the
keyboard, store the character in memory , and
go on to read the next character . In the first
place , how would the program be able to even
te ll if a key had been depressed? True, one
could assume that if no keys were depressed
the code being received would be all zeros,
and a program could check for that condition _
But, even if that was done, the programmer
would soon have another problem . When a
key was actually depressed, and a non-zero

7 - 11

condition received , a short program to place
the character in memory and advance the
memory pointer would be accomplished in
the order of a hundred -millionths of a second .
The poor human depressing the key wouldn't
have a chance of getting a finger off the de-
pressed key in that amount of time, and in
fact it would take on the ord er of several
tenths of a seco nd for a person to remove
a finger from a key. In that amount of time,
the simple input routine could have read that
same character and packed it into memory
locatio ns a few hundred times' Not exactly
the desired resul t . What now? Well, one could
develo p t he input algorithm so that , once a
non-zero code was rece ived, o ne would not
accept another character until a zero code was
observed . That might improve things some-
what, but it would preclude actually being
able to receive a zero code (that might repre-
sent a valid condition) and, because of tech-
nical consideratio ns (such as contact bounce
on the mechanical switches of the keyboard)
it would not be a very reliable m ethod to
utilize.

Instead, it would be far better to place an
interface between the keyboard and the com-
puter input port that would accomplish t he
foll owing objectives. Whenever a key on the
key board was depressed, the interface would
latch (hold) the code represented by the key
in an e lectronic buffer that was connected to
the lines of an input port. The buffer wo uld
thus hold data from the keyboard. Next,
when the key that had been depressed was re-
leased, t he interface would present a signal
to an input line of another input port, termed
a control port. Finally , the interface would
have a line coming from an output port of
the computer that would allow the computer
to signal to the interface that it had taken
appropriate action . A diagram of an elec-
t ronic interface with the characteristics
described is shown in the next illustration.

With such an interface, one could develop
a much m ore re liable system using an input
program that would perform in the manner
illustrated after the diagram.

MACHINE
DATA

OUTPUT

strobe
LATCH

+

L I ----.

DATA
INTO

PORT X

CONTROL
INTO PORT Y NEW

CYCLE
SIGNAL elk 0

I CONTROL
OUTOF PORT Z

MACHIN, INP Y
JFSMACHIN
INP X

Check status of control from machine
If data not ready then wait by looping
Data ready now so fetch DATA

LBA Save DATA in register B
LAI001 Prepare to pulse line on PORT Z
OUT Z
XRA

Send a logic one on PORT Z control line
Clear accumulator

OUT Z
LAB

Send logic zero on PORT Z control line
Restore data to accumulator

RET Exit routine with DATA in accumulator

The above routine assumed that the control
line from the interface came into the most
significant bit of the accumulator and that
the control line going to the interface origi-
nated from the least significant bit in the
accumulator. Furthermore , while the above
routine waited for new data to arrive from the
external device by monitoring the input con-
trol port continuously , the JFS MACHIN in-
struction could have been replaced by a
directive to have the computer perform some
other function(s) before testing INPUT
PORT Y again instead of wasting time doing

7 - 12

nothing!

A similar type of interface , and similar
programming techniques can be applied to a
wide variety of devices that might be connec-
ted to the computer . While the example
showed but one line being used on each
control port, one should note that with
eight lines available on one port, one can
use just a few control ports in a system to
monitor and control a large group of ex-
ternal instruments by using the available
bit positions.

TESTING FOR ERRORS DURING
I/O OPERATIONS

It is often desirable to transmit data to an
external device that will store the data in
some sort of permanent form, such as on
paper tape or magnetic tape. Then, at some
later time, read the data back into the com-
puter. During such a p rocess it is possible for
erro rs to occur. That is, bits of information
within a word may be altered because of noise
or random erro rs occurring in the I/O system.
While such errors are likely to occur at a very
low rate in a well designed , properly operating
[/0 system, it is often desirable to utilize
techniques that will at least indicate when an
error has occurred. There are a vari ety of
error checking techniques available, some so
soph isticated that they can often correct
certain types of errors that occur during I/O
operations. Two techniques will be discussed
here. While neither one of them has error
correcting capa bility, they are capab le of de-
tecting the most common type of I/O error
which is for a bit in a word changing state .

The fi rst method to be discussed concerns
the use of using parity techniques to detect
transmission errors. The technique consists
of examining a group of bits for t he number
of bits that are in t he '1' condition when it is
being readied for transmission, and then
setting a bit aside for the purpose to the state
that will make the total number of bits that
are in the '1' condition either an odd or even
count (for the entire group). For instance, it
was mentioned earlier that the ASCII code

ORIGINAL 7 BIT ASCII CODE

(A) 1 000 001
(B) 1 000 010
(C) 1 000 all
(D) 1 000 100
(E) 1 000 101
(0) a 110 000
(1) a 110 001

7 - 13

required 7 bits to represent all the possible
128 characters defined by the code, but that
many systems employed an 8'th bit for parity
purposes. Thus, the ASCII code is ideal for
use in typical 8008 systems because there are
exactly 8 bits to a computer word.

Furthermore, the 8008 CPU has as part of
its instruction set specific instructions to
facilitate the use of parity techniques. Re-
memb er the parity flag that was discussed in
the chapter on the 8008 instruction set, and
the various conditional branch ing instructions
t hat use the status of the parity flag?

When the codes for the ASCII subset were
described earlier, it was mentioned that the
eighth bit position (most significant bit) in
the listing was arbitrarily set to the '1 ' con-
dition as the ASCII code did not use that
bit. However, that bit position may be used to
specify the desired parity in a system where
parity checking is to be employed. For
instance, if one wanted to establish an even
parity system, one would proceed in the
following manner.

Examine the seven bits making up the code
for the character to be transmitted (assuming
ASCII code for th is example) . If t he number
of bits in the character that are a logic '1' are
even, that is there are 0, 2 , 4, or 6 bits in the
'1 ' state, set the 8'th bit to a '0.' If t he num-
ber of bits are odd, that is there are 1,3,5, or
7 bits in the '1 ' state, set the 8 'th bit to a '1 '
condition so that the total number of bits in
the entire group becomes an even number !
Some examples are illustrated below.

8 BIT EVEN PARITY COD E

01 000 001
01 000 010
11 000 all
01 000 100
11 000 101
00 110 000
10 110 a a 1

One could also elect to use an odd parity
system by essentially reversing the scheme so
that the 8 'th bit is always set to make the
total number of bits in a group that are in the

ORIGINAL 7 BIT ASCII CODE

(A) 1 000 001
(B) 1 000 010
(C) 1 000 011
(D) 1 000 100
(E) 1 000 101
(0) 0 1 1 0 000
(1) 0 110 001

Once one has selected which parity (odd or
even) to use with a system, one simply sends
the data in the desired mode to the I/O de-
vice. Then, when the data is later read into
the computer, a check is made on each word
of data received to determine if the parity is

'1' state to be an odd number. ASCII code
using an 8 'th bit to produce an odd parity
system is illustrated below for several char-
acters .

8 BIT ODD PARITY CODE

11 000 001
1 1 000 010
01 000 011
11 000 100
01 000 101
1 0 110 000
00 110 001

correct. If it is not , then an error has
occurred. Sample routines to generate even
parity words for an output routine , and for
checking for even parity in an input routine
are shown next.

SEVENP, NDA
JTP GOUT
XRI200

GOUT, CAL OUTPUT
RET

REVENP, NDA

Assume 7 bit ASCII code in accumulator, 8'th bit
Init 0, if parity even as is, send data
Otherwise set MSB = 1 to get even parity
User routine to transmit data to I /O
Exit even parity generator routine

RTP
JMPPERROR

Assume data from I/O device in accumulator
Set flags, if even parity, all O .K.
If not even parity do user error routine

Similar routines are easily developed for
utilizing odd parity. The programmer should
note that parity techniques can be used with
virtually any coding technique as long as one
bit is set aside for the parity indicator. For in-
stance, one could easily adapt parity tech-
niques for the BAUDOT code discussed
earlier provided that the I/O device could
handle the extra bit. That might not be
possible with a BA UDOT coded machine
but it might be applicable, say, if BAUDOT
code was being written on a magnetic tape
unit where extra bits could be added to the
code and processed by the I /O unit.

7 - 14

The reader should also be aware of the fact
that the use of parity checking techniques is
not infallible. It does detect errors that re-
sult in an odd number of bits changing state
within a group, but not if an even number of
state changes occur. It it thus most useful in
a system where the expected probability of
more than one error occurring in a group of
eight bits is extremely low. The programmer
might also want to consider when using a
parity checking scheme the possibility of
transmitting each group of bits twice. Then,
when data is read back from the I /O device,
an algorithm that will skip the second group

if the group is received correctly the first
time , or read the second group if an error was
detected in the first group, can be utilized .
Such a format, while requiring a longer trans-
mit and receive time, can result in highly
rei iable I/O data handling operations .

Another error checking method that is
often used when passing data to and from I/O
devices is termed the check-sum technique.
The method is quite simple in application, yet
remarkably powerful in detecting errors. The
tech nique consists of simply maintaining a
one register sum of all the data transmitted
within a block . That is, as each word is sent
out, it is summed with a register that con-
tains the sum of all previous data words trans-
mitted in the block. (Over-flows in the
summing register are ignored.) At the end of
a block of data, the two's complement of
the sum that has been compiled is sent as the
final piece of data in the block.

When the block of data is read back into
the computer a similar sum is formed as each
data word is received . Then, when the last

piece of data is received, which is the two's
complement of the check-sum, that value is
added to the sum obtained from all the
previous data words in the block . The result ,
if no transmission errors have occurred, will
be zero, the result of adding any number to
its two's complement. If it is not zero , then a
transmission error has occurred. The method
is simple and quite reliable. The reader can
readily determine that if errors have occurred
it will affect the value of the sum as it is
formed , and thus likely result in a non -zero
value as a final result when the check-sum and
its two's complement are added. (Note: It
is theoretically possible for just the right num-
ber of errors to occur when reading a block of
data to result in a zero condition, but it is
quite small, hardly enough to lose sleep over')

A routine for generating a check·sum and
placing the two's complement of that value
as the last word sent in a block of data
followed by a routine that will read back a
block of data using a check-sum technique
and test to see if any errors occurred is shown
below .

SCKSUM, LHI XXX
LLIYYY
LEI ZZZ
LDI 000

Set page address where block of data stored
Set location on page for start of data block
Set number words in block counter

NXC KSM, LAM
ADD
LDA
LAM
CAL OUTPUT
INL
DCE
JFZ NXCKSM
LAD
XRI377
ADI001
CAL OUTPUT
RET

RCKSUM, LHIXXX
LLI YYY
LEI ZZZ
LDI 000

INCKSM, CAL INPUT

Set check-sum register to 0 at start
Fetch data word from memory
Add present data to check-sum value
Save new check-sum value
Restore original data word from memory
Output the data word to I/O device
Advance memory pointer
Decrement word counter
If counter not 0 , fetch next data word
Put check-sum value in accumulator
Fonn two's complement value
In standard manner
Send two 's complement of check-sum as last
Word in block and exil routine
Set page address where block of data goes
Set starting location on page for data
Set number words in block counter
Set check-sum register to 0 at start
Fetch data from I/O device

7 - 15

LMA
ADD
LDA
INL
DCE
JFZ INCKSM
CAL INPUT
ADD
RTZ
JMP CKSMER

Store data word in memory
Add new data to currect check-sum value
Save new check-sum value
Advance memory pointer
Decrement word counter
Get next data word if counter not °
Next word from I/O is two 's complement of check-sum
Add it to check-sum formed by data
If result is 0, O.K., exit subroutine
Otherwise go to user error routine

The above routines, as the reader will note,
assume that data blocks are one page or less
in length, and do not cross page boundaries.
However, by this time the reader should
have little difficulty writing a check-sum
routine that could handle larger blocks.

The next chapter will contain more infor-
mation of interest to those developing pro-
grams for I/O operations that requ ire
consideration of real-time parameters.

7 - 16

REAL-TIME PROGRAMMING

Real-time programming as discussed in t his
manual applies to the development of pro-
grams whose proper execution are dependent
on the length of time it takes for the com-
puter to perform an operation or series of
instructions . The need for real-time program-
ming is invariably related to the receipt of in-
formation from devices at specific times or
the control of devices external to the co m-
puter whose proper operation depend upon
receiving commands from the computer at
specific times.

The discussion of the subject of real-
time programming has been deferred to the
latter portion of this manual as real-time
programming is generally more difficult
than the development of programs that are
not restricted by execution times . The reason
is sim ply that in addition to the logic and
technique factors that the programmer must
consider when developing any program , the
programmer must now add in the factor of
how much time it will take for the computer
to execute various instructions and instruc-
tional sequences. The problem is really one
of increased complexity in the program de-
velopment task.

However, real-time programming is often
vitally necessary m certain applications.
Hence the programmer must beco me aware
of some of the critical aspects of such pro-
gramming. The reader should not, however,
be over-whelmed by the prospects of such
complications. For, once one has an under-
standing of standard machine language
programm ing procedures and has gained a
little experience, which one should have
obtained by the time one is delving into
this section, one should find the aspects
of real-time programming simply one step
up in d ifficulty and an enjoyable challenge .

As with many other aspects a f program-
ming, proper preparation, such as clearly
defining the problem to be handled, and pro-
ceed ing in an o rderly fashion, using methods

8-1

already discussed , can greatly ease the overall
task of developing real-time programs.

The last several pages of Chapter One pre-
sented the typical execution times for the
various classes of instructions available in an
'8008' based microcomputer. The times
shown are those for an '8008' unit whose
master clock has been adjusted to a nominal
frequency of 500 kilohertz. When getting
down to practical applications, one must
realize that any system will have some
finite deviation from the nominal frequency.
For instance, if an '8008' system has a crystal
controlled master clock , the possible variation
from the nom inal frequency might be in the
order of 0.05 to 0 .1 percent. Some '8008'
systems migh t have resistor-capacitor con-
trolled master clocks and the possible de-
viation from the nominal frequency could be
co nsiderably more, up to four or five percent.
In any event, when contemplating the devel-
opment of real-time programs, one must
always take into account the possible varia-
tion from nominal of the master clock
frequency. In fact, one should plan programs
to operate under worst case variation condi-
tions. Thus, if one was thinking of using an
'8008' system to control a process that re-
quired timing accuracies of 0.01 percent,
o ne could immediately stop considering the
use of a computer that had a master clock
accurate to only 0 .05 percent! A seco nd
consideration regarding whether to use a
computer to control time dependent events
involves how close together events that need
to be controlled will occur . It may be obser-
ved by examining the information at the end
of Chapter One, that almost all instructions
require a minimum of 20 microseconds to
execute in an '8008' system. Thus, one
cannot plan on using such a computer to
control events that are less that that far
apart in time. In fact, because I/O operations
themselves take 24 to 32 microseconds,
and because those instructions would invar-
iably be required to be in use when dealing
with external devices, along with the fact

that one will almost certainly want to use
some other instructions between I /O com-
mands, it is a pretty good rule of thumb to
disqualify the use of an '8008' based system
as a real-time controller if any two events
dependent upon timing from the computer
will occur within 100 microseconds. A second
rule of thumb is to immediately reject the use
of such a system as a real-time controller if
the application will require much more than
one thousand I/O operations per second.
Unless such operations are strictly repeti-
tive and the previous rule (events are at
least 100 microseconds apart) can be met.
This second rule of thumb is derived from
practical experience with programming over-
head that results when a variety of time-
dependent events must be juggled in a real-
time program.

The prospective real-time programmer
should become familiar with the lengths of
time required to execute the various classes of
instructions. One of the first new habits to
learn when preparing real-time programs is
to write down the execution time required for

START 1 2 3

'l I a 1 a 1

I I

B

each instruction along side of the mnemonic
as the program is written. It then becomes an
easy matter to figure out totals for various
portions of the routine. Additionally , it is
often helpful to write down the total execu-
tion times along paths and ioops on a flow
chart of the program. Real-time programming
often requires a fair amount of juggling be-
tween choices of instructions used and alter-
nate sequences of commands in order to ob-
tain desired program execution times. Having
critical timing information on hand in the
forms suggested can provide the programmer
with a quick view of how the program devel-
opment effort is proceeding.

In any programming application, flow
charting is an extremely valuable aid to enab-
ling one to obtain an overall view of a pro-
gram 's operation. In real-time programming
another tool of equal importance should be
brought into use. That tool is a TIMING
DIAGRAM. A timing diagram illustrates the
relationships in time between the occurrences
of specific events of interest to the pro-
grammer.

4 5 STOP1 STOP2
5

a 1 1 1

I

)/
TIMING DIAGRAM FOR SENDING BAUDOT CHARACTER 'Y ' OR '6 ' TO PRINTER

A timing diagram is illustrated above . The
diagram indicates the desired status of a signal
line as a function of time for an electronic
signal that is to provide information to a
BAUDOT coded typing machine. The diagram
shows the signal conditions required to direct
the machine to print the letter Y or the figure
'6' depending on which mode the machine is

8-2

operating in (LETTERS or FIGURES) at the
time the code is sent. This diagram will be
used to develop a sample program for opera-
ting a BAUDOT printer mechanism as an
introduction to the considerations required
when dealing with real-time programming.

In order to clarify the diagram a brief

explanation of the operation of a BAUDOT
coded printing mechanism will be presented.
The printing mechanism is assumed to be an
AS YNC HRO NOUS device in that it requires
START and STOP information. Once the
printing mechanism has begun a cycle of
o peration as the result of receiving a START
signal level, t he machine will examine the
status o f a signal line during specific time
periods in order to rece ive a CODE that will
enable it to pr int a spec ific character. At the
end o f a mach ine cycle the machine expects
to see a STOP signal. The STOP signal must
last for a certain amoun t of time so that the
machine may complete various mechanical
operations and reset itself in order to be
ready to receive more signals and comme nce
a new cycle. A CYCLE in this co ntext shall
mean a certain number of units of time. The
TIM ING DIAGRAM just illustrated shows a
cycle that is d iv ided into eight eq ual units of
time. The first unit of time is reserved for a
START pulse. By definition in this example,
the start pulse is a logic zero level as shown
in the diagram. The next five units of time
in the cycle are used to t ransmit the
BA UDOT code for whatever character is to
be printed by the machine. The last t wo
u n its of t ime are defined to be a logic one
level to serve as STOP pulses. This info rma-
tion is summarized in the timing diagram .
To put the diagram to practical use, one must
define the length of a unit of time in the dia-
gram! For instance, suppose one had a print-
ing mechanism that was designed to operate
co rrectly when each unit of time (the length
of time denoted by the distance labeled A in
the above diagram) was 20 milliseconds (nom-
inally). An entire cycle would thus require

24
20

BDOUT , LCI006
NDA
RAL

MORBDO, OUT X
RAR

160 milliseconds (the time span marked off
by the distance labeled B in the diagram) .

If it was desired to have the computer send
a signal on an output line that closely approx-
imated the desi red signal pattern, one would
have to d evelop a program t hat would change
the state of the line on an output port that
was supplying the signal to the machine at the
t imes indicated by the marker lines in the dia-
gram (where the signal changes state). Such a
program would be a real-time program !

Real-time programming for this type of ap-
plication is relatively straightforward. First of
all, there is only one signal line to be con-
cerned with (in many real-time applications
there may be a multitude of lines to con-
tro l)! Secondly , t he amount of t ime between
events is quite large so that there will not be
any requiremen t for fancy programming
that has to be streamlined for maximum
speed of operat ion . In fact, all one really has
to do is make some sim ple mathematical
calculations and develop so me TIMING
LOOPS that will make the program wait for
the desired length of time between sending
bits of information to the ou tput port that
will carry the signal to the typing unit. The
program becomes simply a little fancier ver-
sion of the PARALLEL TO SERIAL output
program discussed in the previous chapter .

A suitable program is presented below.
A discussion will be presented after the pro-
gram. Note now that the execution times have
been provided alongside the time-dependent
portions of the program .

Set bit counter = number of bits + 1
Set carry bit equal to ' 0'
Bring ' 0 ' fro m carry into LSB of ACC
Send START or CODE bits to machine
Position next bit of information

44 + 19,848
20

CAL BDELAY
DCC

Give machine one unit of time
See if finished START and CODE bits
If not, send next bit 44 / 36

32
24

JF Z MORBDO
LAI001
OUT X

8-3

Prepare to send,STOP bits
Send STOP bit number one

44 + 19,848 CAL BDELAY Give machine one more unit of time
44 + 20 CAL DUMMY Provide a little more time
44 + 20 CAL DUMMY Provide a little more time
24 OUT X Send stop bit number two
44 + 19 ,848 CALBDELAY Give machine one more unit of time
44 + 20 CAL DUMMY Provide a little more time
44 + 20 CAL DUMMY Provide a little more time

RET Exit outputting a character routine

20 DUMMY, RET Short routine to eat up time

32 BDELAY , LDI 215 Set timer loop counter
24 OUT Z Output to unused port to t rim time
24 OUT Z Output to unused port to trim time
44 + 20 CAL DUMMY Use a little more time B4 starting loop
44 + 20 MDELAY , CAL DUMMY Form a time consuming loop
20 DCD See if time expired (counter = zero?)
12 / 20 RTZ Exit back to calling routine when done
44 JMPMDELAY Otherwise continue using up time

The above routine assumed that the data to
the printing machine originated from the least
sign ificant bit in the accumulator.

The reader should note that for cases where
there are two possible execution times for an
instruction) such as a conditional instruction,
that the time required for the condition most
often occurring in the program was shown
first, followed by the time required when the
other condition occurred.

The program was initially developed by
writing the main portion with the time re-
quired for the BDELA Y subroutine consid-
ered as an unknown factor. When the basic
format of the program had been determined
the execution time of the loop starting at the
label MORBDO which included the five in-
structions:

MORBDO, OUT X
RAR
CAL BDELAY
DCC
JFZ MORBDO

was calculated, leaving out the as yet un-

8-4

determined time of BDELAY. The time re-
quired by the five instructions when looping
was found to be 152 microseconds. Since it
was known that a total of 20,000 micro-
seconds (20 milliseconds) was desired be-
tween outputting each bit in the code it
was then easy to calculate that:

20,000 - 152 = 19 ,848

microseconds delay was required in the
subroutine BDELA Y.

The subroutine BDELA Y is a typical
example of a timing delay loop . The main
portion of the delay loop starts at MDELA Y
and includes the four instructions:

MDELAY, CAL D UMMY
DCD
RTZ
JMP MDELAY

The theory behind the BDELAY subroutine
was to execute the MDELA Y loop the re-
quired number of times to get close to a
delay of 19 ,848 microseconds and then close
any gap by the setup instruction(s) for the
loop.

The time required to complete the four
instructions in the MDELA Y loop when the
RTZ condition is not met is 140 micro-
seconds. Finding out how many times it is
necessary to execute the loop to get close to
a delay of 19,848 microseconds is a simple
matter of dividing. Doing so yielded a figure
of almost 142 (decimal). Taking into account
the fact that it was not desirable to go over
the alloted time, and the fact that setting up
the loop would take some time, the figure of
141 decimal was chosen, which is 215 octal .
One other factor had to be considered. When
the counter in the loop reached zero, the RTZ
instruction would be executed and the JMP
MDELA Y command would not . Thus, the
fu ll loop would only be executed 140 (deci-
mal) times . The last t ime through the
MDE LA Y routine would only take 104
microseconds. Thus, at this point it was
possible to calculate the total delay caused by
executing the MDELA Y loop the selected
number of times: 140 X 140 = 19,600 plus
104 for a total of 19 ,704 microseconds.
Then it was an easy matter to determine
how much time to use to setup the MDELA Y
subroutine. The desired total delay of
19,848 minus the 19 ,704 microseconds
consumed by executing the MDELA Y rout-
ine 141 (decimal) times left 144 micro-
seconds to be consumed. The LDI 215 at
the start o f BDELA Y only required 32 micro-
seconds so 112 more microseconds were con-
sumed by adding the filler instructions
CAL DUMMY and two OUT X commands.
The total BDELA Y subroutine then was
exactly equal to the desired delay time of
19,848 microseconds!

After sending the START and five CODE
bits it was necessary to send a two unit
STOP pulse. Since the STOP pulse by defi-
nition was to be a logic one , it was neces-
sary to setup the stop bit as a one in the
accumulator. The reader can calcu late that
the actual delay between the sending of the
last CODE bit and the first STOP unit in the
routine comes out to be 20,024 micro-
seconds. Remember in making the calcu-
lation that the JF Z MORBDO instruction
will o nly require 36 microseconds on the

8-5

final execution of the loop thereby reducing
the loop execution time to 19 ,992 micro-
seconds and the LAI 001 will add 32 micro-
seconds to that value before the next OUT X
instruction can be executed. However, for
the application , the value of 20,024 is plenty
close enough to 20 ,000 (off by about 0 .1%)
to operate a mechanical machine which can
typically operate reliably with the timing off
as much as 10 to 20 percent'

The delay between the first stop unit and
the second, as well as the final delay to co m-
plete the second stop unit , was made to come
out nicely to 20,000 microseconds by the in-
sertion of the CAL DUMMY commands fol-
lowing the CAL BDELA Y instructions.

The routine just presented, as the reader
can undoubtably see, could be modified to
serve a variety of electro-mechanical printing
machines operating at different speeds by
changing the timing loops. The program
could also be modified to serve ASCII coded
machines, or other types of codes by chang-
ing the bit counter and possibly altering the
length of the STOP pulse(s) depending on the
type of machine being driven. Furthermore,
the techniques demonstrated can be applied
to many other types of problems.

A similar routine could be developed to
receive data from the same kind of BA UDOT
machine. However, when receiving data from
such a unit there are a few new concepts to
consider.

When the computer was sending infor-
mation to the printing mechanism it had
an advantage it will not have when it is used
to receive information from the machine .
Namely, when transmitting, the computer
had control of when the external machine
would be operated. In the reverse mode, the
computer will have no knowledge of when the
ex ternal device will begin to 0 perate and
transmit data to the computer '

Additionally, once a character starts
arriving on a line of an input port, the
tolerance situation reverses. What is meant by

this is that the computer sent data to
the printer mechanism, it was possible for the
computer to be much more accurate in pro-
viding proper timing to the machine, than the
machine required to operate successfully.
Thus, if the time period for a unit of time was
off a few tenths of a percent when generated
by the com pu ter, it would not affect the
operation of the machine. However , when the
computer is receiving data from the machine,
the start of each unit of time may be off by as
much as 10 percent because of the loose tol-
erance of the electro-mechanical machinery .
If the computer program does not make pro-
per allowances for such possible variations,
then incorrect data may be received.

Fortunately, the problems related to these
concepts are not too difficult to overcome.
The first problem, determining when the
external machine is starting to send, can be
solved by periodically checking the input
line for the presence of a zero logic condi-
tion indicating a START bit. (Note : while
there is another manner in which one could
detect the beginning of an external opera-
tion in a properly equipped microcomputer
system , through the use of a hardware gen-
erated INTERRUPT scheme, such a method
is more properly concerned with hardware
considerations which are not within the in-
tended subject matter of this manual. If such
a detection scheme were used, the remainder
of this discussion on handling the receipt of
the incoming data would still apply.) Natur-
ally, how often one checked for the presence
of a START bit would have an affect on the
overall ability of a real-time program to re-
ceive the data. For instance, assuming a
START bit is present for 20 milliseconds as in
the case for the hypothetical machine being
discussed , it would be foolish to test for the
presence of such a start bit at periods that
were 21 milliseconds apart! In fact , because
of other considerations, it would not be wise
to check for a START bit much less often
than every few milliseconds .

The second problem of dealing with the
loose tolerance of the machinery can be ef-
fectively dealt with by adjusting the receive

8-6

routine so that it SAMPLES the incoming
signal at the theoretical middle of a unit of
time rather than at the beginning or end of a
time period. Of course the ability to do this
also depends on how closely one is able to
detect the actual start of a character as it is
sent by the machine.

A timing diagram showing a BAUDOT
character being sent by a machine is illus-
trated at the top of the next page. Short
upward point arrows along the bottom of
the diagram illustrate the times at which a
real-time program would need to sample
the incoming line in order to correctly
receive the data. Note that prior to the time
a START signal is detected, t he computer
should sample the line often in order to
minimize the period of t ime in which a
START signal might be present but unde-
tected. Next, it is desirable to adjust the
sample period so that it coincides with the
theoretical middle of a unit of time, rather
than sample at integers of units of time
after the start signal was detected. This
method compensates for the tolerance pro-
blem mentioned previously .

Finally, after the fifth code bit has been
received , one may observe that it will not
be necessary to start testing for a new start
pulse for about two and a half t im e units as
it is known that the mach ine will be using
that time to complete its operation cycle.
Thus, the computer would be able to per-
form some other functions for about 50
milliseconds before going back to the
SAMPLE mode to look for a new START bit.
That is enough time to perform a few
thousand or more instructions in a typical
microcomputer system!

A sample routine for receiving information
from a device in accordance with the timing
diagram illustrated, assuming that the time
span marked C in the timing diagram was 10
milliseconds, and that marked D was 20 milli-
seconds, is illlustrated following the diagram.
The reader may not that it is essentially an
expanded version of a SERIAL TO PARAL-
LEL routine.

I

'l
START 1 2 3 4 5 STOP1 STOP2 J

I I I I I
0 1 0 1 0 1 1 1

t t t t t t t t t t t t

TIMING DIAGRAM FOR R ECEIVING BA UDOT CHARACTER 'V ' OR '6'

BDIN, LBIOOO Clear incoming storage register
LCI005 Set bit counter

32 STRTIN, INP X Look for START bit
32 NDI 200 Mask off irrelevant data
44 / 36 JTS STRTIN If no START bit , fonn sampling loop
44 + 9796 CAL HDELAY If find logic '0' assume start, delay
32 INP X To middle of START unit & verify
32 NDI 200 By making appropriate test
36 / 44 JTS STRTIN If not '0 ' here assume false START pulse
44 + 20 CAL DUMMY Stretch the delay a little
44 JMP MORBD1 Stretch the delay a little mo re
44 + 19748 MORBDI, CAL IDELAY Main delay loop , almost 1 full time unit
32 INP X Get next bit
32 NDI 200 Trim to just desired data
20 RAL Save incoming bit in carry flag
20 LAB Get any previous bits
20 RAR Rotate new bit fm carry to register
20 LBA Save in register B
20 DCC Decrem ent bits counter
44 / 36 JF Z MORBDI Delay & fetch next incoming bit
20 RRC Have all 5 bits, right justify
20 RRC In accumulator by rotating
20 RRC Before preparing to exit routine
44 + 9796 CAL HDELAY Optional delay to make sure into STOP
44 + 20 CAL DUMMY Part of optional delay
44 + 20 CAL DUMMY Part of optional delay
20 RET Units area before exiting subrout ine

32 !DELAY, LDI 215 Set time loop counter
12 RTS Trim time, this condition never met
44 + 20 RDELAY, CAL DUMMY T ime consum ing loop
20 DCD Decrement counter
12 / 20 RTZ Exit to calling rtn when counter = zero
44 JMP RDELAY Otherwise continue using up time

8-7

HDELAY , LDI 106 Set time loop counter 32
44 JMP RDELAY Go use up about half a t ime unit

20 DUMMY, RET

While the routine just presented is similar
in many respects to the one described earlier
for transmitting data from the computer,
several different features will be high-lighted .
First, the read er may note that the program
expects data to be arriving at the most sig-
nificant bit position of the accumulator (as in
the SERIAL TO PARALLEL · routine in the
previous chapter).

Next, the reader should note that the three
instructio ns starting at the label STRTIN
fo rm a loop to test for a START bit arriving
from the input port. The reader can see that
the loop requ ires 108 microseconds to exe-
cute and thus it is possible for a start unit to
have been present for almost that length of
t ime before it is detected . F or instance, if the
start pulse actually started just a microseco nd
after the INP X instruction at STRTIN was
executed, that pulse would not be detected
until the INP X instruction was executed on
the next round . However , it is also possible
fo r the program to detect t he start bit at
just about the instant it actually happens.
Thus, t here can be a variation in d etecting
t he beginning of the START t ime unit of
about 108 microseconds. Now, the actual
detection of the start pulse is used as a
reference for delaying to the middle of a time
unit in ord er to samp le the remaining bits
in the desired region. On the average , one
could assum e that the start pulse was d e-
tected in about the m iddle of the possible
range of variation, which would be about
54 microseconds after th e pulse actually
started. This information is used to establish
approximately how long the HDELA Y loop
should be in order to get close to the theo-
retical middle of a tim e uni t. Thus, if one
assum es that on an average, the start pulse is
detected 54 microseconds after it began, and
one adds 144 microseconds for the execu-
tion of t he instructions from STRTIN to the
CAL HDELA Y instruction , one can deter-

8-8

Short routine to use up time

mine that HDELA Y needs to consum e 9802
microseconds. The value 9796 actually de-
veloped was a close enough com promise for
the situation.

Another area of interest near the end of
the main routine is marked by t he comments
as an optional delay to make sure that the
program has consumed enough t ime so that
the sending unit will be sending the STOP
units before the routine is exited. As pointed
out earlier, after the five data bits have been
sampled the computer has quite a bit of t ime,
up to about 50 milliseconds in which to per-
form some other functions because the send-
ing machine would be unable to send a new
START pulse until it had completed its cur-
rent cycle which includes two units of time
for the STOP pulses . However, in som e
instances, the computer may not require
anywhere near that amount of t ime to pro-
cess the character it had just received. In
such cases the programmer would want to
make sure the program did not start looking
for a new START bit before the last DATA
bit had been completed . The optional half
a time unit delay ensures in such a case that
the machine would be in its stop uni ts phase,
which by definition here would be a logic
one state , before the computer began looking
for a new logic zero condition that would
signify the start of a n ew character.

Finally, the reader might take note of an
interesting t rick to get a rather short addi-
tional delay by the use of th e RTS instruc-
tion as the second command in the IDELA Y
subroutine . A condit ional return instruction
when the condi t ion is not met is the only
type of command in an '8008 ' CPU that will
use 'just 12 microseconds of time . The RTS
instru ction inserted at that point will never
have the TRUE condit ion met as the reader
may verify by close examination of the pos-
sible condition of the SIGN FLAG at that

point in the program. It is a good technique
to remember if a 12 microsecond delay is
required. However, the programmer must
make certain that the condition will never be
satisfied when used for that purpose' (Re-
member, virtually all other types of instruc-
tions take up at least 20 microseconds of
time to be executed in a nominally adjusted
'8008' based system.)

As another example of the details of
real-time programming, the above example
will be expanded to demonstrate how the
program could be improved to increase the
reliability of receiving correct data from
the external machine. As many readers
may know , the incoming data from an
electro-mechanical machine may be noisy.
That is, a signal that is supposed to be, for
instance, in the logic one state for an entire
unit of time may occasionally go to the logic
zero condition for small fractions of a unit
of time, or vice-versa. In the program just
presented the computer sampled the state
of the incoming signal just once in each
unit of time. If by chance it should sample
the signal at the moment that noise was
present on the signal line, incorrect data
might be received . In a critical application,
it might be desirable to reduce the chance
of such an error occurring . This could be
done by sampling the incoming signal
several times during each unit of time and
then computing an average of the value
received to determine whether the signal
was truly in a logic one or logic zero state .
For instance, one could elect to sample
the signal five times near the middle of each
time unit and then make a decision as to
whether the signal was a logic one or zero
by determ ining which state was detected
three or more times out of the five samples.
Such a sampling method would greatly re-
duce the chances of noise causing an in-
correct signal level to be received by the
computer.

The timing diagram illustrated at the
top of the next page shows a signal being
sampled at multiple points as indicated by
the arrows at the bottom of the signal

8-9

diagram. Developing a program to give the
improved performance is not difficult but
it does require a few more time related
considerations when developing the soft-
ware. These considerations will be pointed
out in the following discussion .

To begin development of the multiple-
sampling program a major subroutine was
developed that would perform the task of
sampling five times in succession, keeping
track of whether a logic one or zero was
received, and finally determining which
state was received most often. The sub-
routine with the execution time for each
instruction IS presented immediately fol-
lowing the timing diagram on the next
page. The reader might pay special atten-
tion to the manner in which the predom-
inant signal state was determined in the
program.

Information regarding the amount of
time required to execute portions of the
multiple sampling routine were required
before the overall routine could be developed
for reasons that will soon be apparent.

The reader may confirm that the time
between each of the five samples will be
280 microseconds for a typical '8008 ' sys-
tem regardless of what signal state is re-
ceived. It is important to notice how the
samp ling routine was balanced by the
appropriate choice of instructions so that
the receipt of either signal state resulted
in the same total time to execute the sam-
pling loop . If this requirement were not met
the programmer would have quite a difficult
time trying to develop an accurate routine
based on all the possible combinations of
one and zero signal states the could be re-
ceived!

The reader should also note that the setup
time, that is the time to execute the instruc-
tions from the label SAMPLE to BITEST plus
the time to actually call the subroutine would
require 108 microseconds. That is, it will take
108 microseconds from the time the program
starts to call the subroutine until the first

START 1 2 3 4 5 STOP1 STOP2

I
0

I
1

I
0

I
1

I
0

I
1 1 1

t t t mn mn nm !TTtT nm mT1

T IMING DIAGRAM FOR MULTIPLE SAMPLING OF INCOMING SIGNAL

32 SAMPLE, LDI 005 Set counter for number of samples
32 LEI 377 Setup register E for storing signal state
32 BITEST, INP X Sample current signal on input line
32 NDI 200 Mask off unused input lines
44 / 36 CTS PLUSE Increment E if signal a logic one
32 NDI 200 Restore flags to reflect ACC contents
36 / 44 CFS MINUSE Decrement E if signal a logic zero
20 DCD Decrement sampling counter
44 / 36 JFZ BITEST Sample again if counter not equal to '0'
20 LAE
32 NDI 200
20 RET

20 PLUSE, INE
20 RET

20 MINUSE, DCE
20 RET

INP X instruction is encountered.

Additionally , the reader should note that
it will require 344 microseconds from the
time the fifth sample is taken until the sub-
routine is actually exited.

It is important to know these relation-
ships so that t he entire subroutine can be
properly located within a time frame. For
instance, since it would be desirable to have
the third sample take place at the theoretical
middle of a unit of time it will be necessary
to start calling the sample subroutine when
there are about 668 microseconds remaining
before the theoretical middle of the unit of
t ime. This is because it will require 108 micro-

8 - 10

When have 5 sam ples place E into ACC
Mask o ff all but most significant bit
Exit with predominant state in MSB

Increment register E
Exit subroutine

Decrement register E
Exit su broutine

seconds between the first and second sample
and another 280 microseconds between the
second and third sample.

Similarly it is important to know that there
will be 904 microseconds from the time the
third sample is taken until the routine is
exited . As 280 microseconds will be taken
between sample number three and four,
another 280 microseconds between samples
four and five, and an additional 344 micro-
seconds from sample number five to the time
the routine is exited.

With this information now available one
can calculate how much time should be used
from the time a start bit is received until it is

time to call the sample subroutine so that the
third sample point will be in the middle of a
unit of time. And, after that, how much delay
to provide from the time the sample sub-
routine is exited in one unit of time until
it is to be called again to sample the signal
in the middle range of the next unit of time .

In a situation such as the one being dis-

START

cussed, it is often helpful to produce an
expanded timing diagram to illustrate small-
er portions of critical time relationships.
An expanded diagram showing the informa-
tion just derived as it applies to the START
bit and the first OAT A bit of the example in-
coming signal is shown below. Remember, the
diagram only illustrates two units of time out
of the eight contained in the character!

1 Jl
t t t t t LJ

54
904-1--- 18,428 ------{668

9041
10,000 -*----- 20,000

EXPANDED TIMING DIAGRAM

With the timing requirements of the
SAMPLE subroutine known, the approp-
riate delays to place the sampling subroutine
such that the third sample is at the middle of
a unit of time can be ascertained as shown on
the above expanded timing diagram. It is then

a relatively easy matter to modify the pro-
gram previously developed for the case when
.only a single sample was taken per time unit
so that it calls the SAMPLE subroutine. An
example of such a routine is presented next_

32
32
44 / 36
44 + 9184
44 + 1528
36 / 44
44 + 20
20
20
44 + 18240

BDIN , LBI 000
LCI005

STRTIN, INP X
NDI 200
JTS STRTIN
CAL HDELAY
CAL SAMPLE
JTS STRTIN
CAL DUMMY
NDA
NDA

MORBDI, CAL IDELAY

8 -11

Clear incoming storage register
Set bit counter
Look for a START bit
Mask off irrelevant data
If not START bit, form sampling loop
If find logic zero, assume start, delay
and then do multiple sample on start bit
If result not zero assume false start
Add compensating delay before entering
Main DATA sampling routine
With these three instructions
Execute main delay loop

44 + 1528 CAL SAMPLE Multiple sample routine on DATA bits
20 RAL Save resulting state in carry flag
20 LAB Get any previous bits
20 RAR Rotate new bit from carry into ACC
20 LBA Save formation in register B
20 DCC Decrement bits counter
44 / 36 JFZ MORBDI Delay and then fetch next DATA bit
20 RRC Have all five DATA bits so right justify
20 RRC In accumulator by rotating
20 RRC Before preparing to exit
44 + 9184 CALHDELAY Optional delay to reach STOP area
20 RET Exit BAUDOT input subroutine

32 !DELAY, LDI 202 Set time loop counter
20 NDA Trim time delay
20 NDA Trim time delay
44 + 20 RDELAY, CAL DUMMY Time consuming loop
20 DCD Decrement counter
12 / 20 RTZ Exit to calling routine when cntr is zero
44 JMP RDELAY Otherwise continue using up time

32 HDELAY, LDI 101 Set time loop counter
20 NDA Trim time delay
20 NDA Trim time delay
44 JMP RDELAY Go use up more time

20 DUMMY, RET

The information presented to this point in
the chapter has been concerned with illus-
trating techniques to coordinate the exe-
cution of a program with the timing require-
ment of an external device, through the
method of providing time delays to effec-
tively slow down the execution of a program.
However, another aspect of real-time
programming involves essentially the opposite
objective. That is to obtain maximum speed
of operation from a computer program so
that it may handle events that might be
occurring quite rapidly. The balance of this
chapter will present several basic guide lines
for streamlining the operation of a program to
obtain maximum speed of execution .

Perhaps the first point to present is that
there is a corollary between obtaining maxi-
mum operating speed and the amount of
memory required by the program that may at

8 - 12

Short routine to use up time

first seem a little strange. That is that as one
attempts to program most microcomputers to
execute a function in a minimum amount of
time, one generally will increase the amount
of memory required to hold the program!
The reason for this relationship is that stream-
lining a program generally requires the elimi-
nation or reduction in the use of loops and
subroutines, which, the reader may recall,
were earlier stressed for their ability to save
memory storage space!

To illustrate how the elimination of loops
can dramatically reduce the time required
to execute a specific function , consider the
exaniple presented next. In this case, a pro-
grammer needs to load three consecutive
words in memory with the contents of the
accumulator in as little time as possible. A
routine using a loop might appear as shown
next.

32
28 AGAIN,
20
20
44 / 36

LBI003
LMA
INL
DCB
JFZ AGAIN

The reader may easily calculate that the
total time required to execute the above
loop would be 360 microseconds . A routine
that did not use a loop cou ld be executed in
about one third the time in this particular
case as illustrated next.

28
20
28
20
28

LMA
INL
LMA
INL
LMA

The straight routine only requires 124
microseconds to do the same job. While the
corollary mentioned above might not seem
evident when such a short loop is involved,
consider the same case if 20 locations in
memory were to be loaded with the data that
was in the accumulator. One can calculate
that the loop method would only require
eight (decimal) locations in memory for the
operating portion of the program and would
execute in 2,264 microseconds. On the other
hand, the straight routine method would re-
quire some 39 locations in memory for
storage of the operating program , but that
straight routine would be executed in a mere
940 microseconds.

The elimination of subroutines can also
greatly speed up the operation of a critical
portion of a program as shown by the fol-
lowing example. The following subroutine
method might be used as part of a program
that was to rapidly output the contents of
the accumulator as a series of octal digits .

24
44 + 80
24
44 + 80
24
16

OUTX
CAL ROTAND
OUTX
CAL ROTAND
OUTX
HLT

8 - 13

Where the subroutine ROT AND appears as:

20
20
20
20

ROTAND, RAR
RAR
RAR
RET

One can calculate tbat executing the above
subroutined program would require 336
microseconds. The straight program method
shown below only requires 208 microseconds
to do the same function.

24
20
20
20
24
20
20
20
24
16

OUTX
RAR
RAR
RAR
OUT X
RAR
RAR
RAR
OUTX
HLT

While the above example does not support
the memory usage corallary one can see that
if the subroutine were somewhat longer, say
it contained eight or nine instructions, then
the corallary would be true.

Another rule of thumb to apply towards
developing programs to operate in a minimum
amount of time is to do as much work as pos-
sible with CPU registers instead of with mem-
ory. For instance, suppose one had an in-
strument interfaced to an '8008' system that
periodically needed to send a short burst of
data to the computer for storage . For tech-
nical considerations assume that is was de-
sired to receive the burst as rapidly as pos-
sib le , after which the computer would have
some idle time to process the data. One can
readily see by the following example that it
will take much less time to store, for instance,
four characters in CPU registers, than to store
the same amount directly in memory loca-
tions. A routine to store the characters
directly in memory as illustrated next would
require a total of 300 microseconds.

Storing the data in CPU registers would
only require 216 microseconds using the
following routine.

32
20
32
20
32
20
32
20

INP X
LBA
INP X
LCA
INPX
LDA
INP X
LEA

The factor that m igh t be particularly
valuable in a time-tight situation is that
each character in the second routine could
be accepted at 52 microsecond intervals
while the first routine could not accept
the characters at a rate faster than every
80 microseco nds. Naturally, the above
example is strictly limited to the case where
very short bursts are being handled as there
are a limited number of CPU registers avail·
able in which to store data . However, the
principle can be valuable.

The concept of utilizing CPU registers
as much as possible can be extended to a
variety of applications besides the one just
illustrated. For instance, it is often advan-
tageous to setup CPU registers in advance of
a critical time period in order to streamline
a program during selected operating periods.
For instance, suppose one needed to input
data at a fast rate and also perform some
manipulation of the data, such as perform a
two's complement operation and then depo-
sit the data in memory. One way to develop
the routine would be as follows.

32 RECEIV , INP X
32 NDI377
32 ADI001
28 LMA
20 INL
44 / 36 JFZ RECEIV

The above routine could have the time

8·14

factor decreased by about 12 percent if,
prior to entering the loop (a necessary evil
in this example because a large block of data
is hypothetically being processed), one first
set CPU register B to contain ' 377' and CPU
register C to hold '001 ' and used t.he routine
shown next.

32 RECEIV,
20
20
28
20
44 / 36

INP X
NDB
ADC
LMA
INL
JFZ RECEIV

A few closing comments on the subject of
streamlining real-time programs would include
the mention that if subroutines are necessary,
to use those valuable RESTART commands
which only require 20 microseconds for an
effective CALL instead of 44 microseconds.
Additionally, the programmer should pay
strict attention to overall program organi-
zation in order to reduce time consuming
overhead operations. Or, at least to defer
such operations for execution during non-
critical time periods.

Finally, real·time programming is an
area where the creative programmer can
have a lot of fun. Experiment, look for new
methods to solve a particular problem. You
may find a better, faster way! Such as:

Have the first instruction of the above
routine located at the address of restart
location 'X.' Modify the routine as il-
lustrated below and cut another seven per·
cent off the execution time of the routine!

32
20
20
28
20
12 / 20
20

INP X
NDB
ADC
LMA
INL
RTZ
RST X

PROM PROGRAMMING CONSIDERATIONS

For readers who may not be familiar with
t he abbreviation, a PROM is a PROGRAM-
MABLE READ-ONLY MEMORY element. A
programmable read-only memory element is
an electronic device that can be programmed
with a program using a special instrument so
that it contains a permanent program. Some
PROM elements can be ERASED and repro-
grammed by using special instruments which
are generally too expensive for the average
user to have readily available. When the pro-
grams in such elements need to be changed it
is generally necessary to send the device back
to the manufacturer or representative for
processing.

The key feature that a READ-ONLY
MEMORY element has over a RAM (read and
write memory) device is that once a program
has been placed in a ROM it is non-volatile,
or permanent. A semiconductor RAM device
will lose its contents if power is removed from
the device. A ROM will retain the information
placed in it if power is removed. Thus, the
ROM is an ideal memory device in which to
store programs that are permanent in nature,
or that have frequent uses in a system where
power may frequently be removed. It elimi-
nates the process of having to load programs
back into memory when a computer system
is initially powered-up for a period of
operation .

The key disadvantage of t he ROM is that
the computer cannot alter the contents of
those memory locations assigned to a ROM
device. Thus one must take special pre-
cautions when designing programs that are to
reside in a ROM device .

For instance, one cannot use memory
addresses in a ROM to store temporary
pointers and counters for a program that
needs to alter such pointers and counters
during the program's operation. Similarly, one
cannot use any such locations for any kind of

9 - 1

temporary storage of data or other temporary
infonnation because, as just mentioned, the
computer will not be able to write the in-
formation into the ROM!

Thus, if a program is to be stored in a
ROM, and it is necessary to use pointers and
counters in a program (as wiil certainl y be the
case in many applications), one should
arrange the program to use CPU registers for
those purposes . Or, to use addresses in
memory that will contain RAM elements.

A ROM element can be considered as a
hardware memory element and as such, one
of the first matters one should consider when
planning on instailing ROMs in a computer
system is where to assign the ROM elements
in memory . A good rule of thumb is to place
such elements at the upper extreme addresses
available in the system. For instance , if one
has an '8008' system capable of addressing up
to 4 K of memory, (PAGES 00 through 17)
it would be advisable in most cases to develop
programs for ROM(s) that are on page 17, or
if more pages are required for ROMs , to work
downward from that address. (Most ROM and
PROM devices can contain 256 eight bit
words, or one page in a typical '8008' sys-
tem.) This allows all addresses below the
ROM element(s) to be available as one con-
tinuous block of read and write memory.
This is generally a more convenient arrange-
ment than, say, sticking a ROM element on
page 10 in such a system , thus dividing the
available addresses for RAM memory into two
separate areas.

Alternatively, one might want to consid er
p lacing ROM e lements at the lowest avail-
able addresses for the system. and leaving the
upper addresses available as one continuous
block for RAM elements. However. unless a
system is being designed to serve as a special
function device, it is generally wise to not use
a ROM on page 00 in an '8008' system , as it

will occupy all the possible RESTART (RST)
instruction locations! The exception to this
would be if one deliberately wanted to have
power-up routines that used the interrupt
facility of the '8008' system in conjunction
with a ROM to automatically go to a RE-
START location. The RST class of instruc-
tions, which use the special locations on
page 00, are particularly useful commands
with general purpose applicatio ns, as dis-
cussed elsewhere in this manual. One should
consider their general purpose capabil ities
carefully before deciding to restriCt them to
a ROM application.

The types of programs that are generally
most suitable fo r placement on ROMs in-
clude: routines to assist getting a system o n-
line immediately following power turn-o n,
such as I/O routines and program loaders,
frequently utilized programs that one may
not want to have to be bothered loading each
time a system is started, or programs for
dedicated applications.

For instance, a user with an electronic
typewriter might want to put a standard rou-
t ine to input and output information to the
device (which could be called by general
routines) and possibly a loader program that
would enable the user to quickly load pro-
grams into RAM memory via a paper tape
reader. In such an application, one might also
have space on a PROM to include a simple
program that would enable one to examine
and modify memory locations using the
electronic typewriter device. Thus, whenever
power was applied to the computer system,
one would instantly be in a position to load
larger programs into RAM memory. Or, to
immediately use an electronic keyboard to

place information into RAM memory . With-
out a ROM, the user would have to use
manual control methods to load a loader
program or other routines into memory. The
savings in time one can achieve by using a
ROM to store start-up programs over having
to use purely manual procedures can be well
worth the cost of a ROM or PROM device.

However, a user who desired to develop
such a package for storage on a ROM device
would have to be particularly careful when
developing the I/O routine if such a routine
requ ired real-time programming consid-
erations, such as a timing loop. For instance,
the reader who has read the previous chapter
will realize that if the computer program itself
will control the actual operation of a device
such as an electronic typewriter, and timing
loops are established to control the precise
time at which events will occur, that the
actual timing required to properly operate a
device will be a function of the device being
controlled as well as the timing in the com-
puter itself. The accuracy at which such
timing must be maintained is a function of
the accuracy of the timing in the computer
system and the device itself. This accuracy
may vary between different units. If a fixed
timing loop was programmed into a PROM,
and at some later data the external device was
replaced with a different one, or the timing of
the computer was adjusted, the original
timing loop might be made invalid . Thus, in
such an application it might be wise to place
the actual data value that is to control the
timing loop in a RAM location, and then have
the program in the PROM access that value,
which would be manually inserted by the
operator, rather than having the value fixed in
the PROM. The following two subroutines
will help clarify the point.

PROM PROGRAM WITH A FL,,(ED TIMING LOOP VALUE

TIME,
TIMER,

LOIlOO
CAL DUMMY
OCD
RTZ
JMP TIMER

Set timing loop counter
Delay subroutine
Decrement timing loop counter
Exit subroutine when time delay done
Otherwise continue timing loop

9·2

PROM PROGRAM WITH CAPABILITY TO ALTER TIMING LOOP VALUE

TIME, LHI XXX
LLI YYY
LDM

Set pointer to RAM location where
Timing loop counter stored
Set timing loop counter value

TIMER, Same as previous routine

The second routine illustrated above
assumes that the CPU memory pointer regis-
ters will be setup to point to a location in
RAM memory where the actual loop counter
value will have been placed by the operator.
While the method necessitates the operator
having to set the proper value into RAM
memory before using the program in the
ROM, it avoids the problem of having a use-
less program in the ROM if a timing value
must be altered at some future date. It should
be apparent that this kind of scheme can be
applied to any similar situation where a value
used by a program might conceivably need to
be altered.

If, for some reason, one did not want to
have to dedicate a location in RAM memory
for a variable value in such a routine, there is
still another trick that can save the day in
such a situation . The operator could man-
ually load the D register in the CPU prior
to using the above type of subroutine (or
have an external routine in RAM memory
perform the same function before using the
routine). In that case, one could eliminate
the portion of the above routine labeled
TIME and simply use that portion labeled
TIMER.

A good rule of thumb to apply when con-
sidering the use of ROM in a system is to
tailor the program for compactness . After
all , the more routines or subroutines one
can store on a PROM, the more useful the
device will be. Make every effort to save

9-3

memory space by judicious use of sub-
routining, with multiple entry points if
applicable, and by use of program loops.
An earlier chapter stressed the concepts and
provided guide lines and formulas for cal-
culating when such techniques are appli-
cable. One should figure on spending some
extra time when developing programs to
be stored on ROMs in order to look for
ways to save memory space. Try to use
every available location on a PROM. After
all, any unused locations will be permanen-
tly wasted. If one finds one has some room
left in a PROM after one has placed the
programs required to be on the device for
a particular application, consider the pos-
sibility of tucking in a few small routines
that would have general usefulness. Such
subroutines as SWITCH, ADV, and CNTDWN
which were presented and used frequently
in examples throughout this publication
are typical kinds of generally useful sub-
routines that one might consider having on
a ROM rather than wasting locations. These
types of routines would then always be
available in the system for use by programs
residing in RAM memory.

Above all, however, once one has devel-
oped routines for a PROM, one should
thoroughly CHECK and TEST the program(s)
to make sure they are absolutely operating
as intended. It is a bit costly to have to make
a program patch on a read-only memory
element!

CREATIVE PROGRAMMING CONCEPTS.

Once one has become familiar with the fun-
damental aspects of machine language pro-
gramming. Once one is familiar with the
mnemonics that represent the machine
language commands and can mentally think
of the functions that those mnemonics repre-
sent. Once one has learned how to formalize
and plan out a program, understands flow
charting, and memory allocation or mapping.
Once one has had some practice at developing
algorithms and com bining smaller algorithms
into fuB sized programs by subroutining.
Once one is familiar with setting up pointers,
counters, forming program loops, utilizing bit
masks. Once one has a feel for organizing data
for tables, and understands how data can be
sorted . Once one understands how mathe-
matical information may be processed by t he
computer. And, once one knows how to get
data into and out of the CPU from and to
som e external device. For example, once one
has spent a little time studying the aspects of
machine language programming a computer ,
as one will have done by reading (and hope-
fuBy learning') the information presented
in the preceeding sections of this manuaL
Then, one should be in a position to under-
stand and appreciate the t rue potential of a
digital computer when its power is unleashed
under the auspices of a creative programmer.
That is when one can really start having fun
creating and developing completely original
programs to perform myriads of personally
desired functions. This is the point at which
one may take a broad view of the immense
capability of the machine by standing back
and pondering some scenes , much the wayan
artist would ponder a blank canvas before
starting to paint a concept or image that
existed purely in the artist's mind. The dis-
cussion that follows merely presents some
ways in which to view the capability of a
digital computer. Some points of view that
may help programmers approach program-
ming tasks with creativity. No great magic is
claimed for the ideas presented. No guarantee

10 - 1

is made that the points of view will inspire
everyone to greater programming creativity
or ability. But, it is known that the views
presented have helped at least one program-
mer to create countless programs, some of
which others had claimed couldn' t be done
on a small machine, and solve numerous
programming problems, while having a lot of
fun, and quite often saving a lot of time!
Thus, the ideas w,iB be presented in the hopes
that perhaps a few others will benefit a little,
or a lot .

It must be admitted that to some readers
the concepts discussed in this section might
seem trivial at first glance. Perhaps the reason
some people initiaBy see the concepts as
trivial is because they are profoundly broad,
and to some lucky people, perhaps instinc-
tively obvious. However, most readers will
probably find the concepts grow as one does
more and more programming, until one day
the reader discovers a profoundly simple way
to handle a programming problem based on
a variation of one sort or another of the con-
cepts presented in this section .

For what they are worth , the concepts to
be presented will be discussed in three parts.

THE ONE DIMENSIONAL VIEW

The underlying principal in this entire dis-
cussion on creative programming is to le£lVe
out the details of the operation of the CPU
and its associated registers. It is known tbat
the CPU and the associated registers can do
a whole host of specific operations, mathe-
matical, Boolean logic , execute conditional
branches and whatever. These functions will
be taken for granted in the following dis-
cussion. What is important in the present
situation is to realize that the power of the
computer is in its memory. The CPU obtains
its instructions from memory , and the CPU

is able to manipulate information in memory.
The CPU is able to access a particular word in
memory, in the case of an '8008' system, by
pointing to the address using the H & L re-
gisters. F or each specific address there is a
specific word in memory that contains eight
binary bits.

One way to view organization of memory is

to think of memory as being one long line of
words, stacked one after the other. In fact,
this is the way virtually any machine language
programmer first starts thinking of memory
because of the simple way in which each
memory address corresponds to a word in
memory, and memory addresses are simply
a series of consecutive words.

**
* ADDR NO. N * MEM WORn NO. N *
**
* ADDR NO. N + 1 * MEM WORn NO. N + 1 *
**
* ADDR NO. N+2 * MEM WORn NO. N + 2 *
**

**
* ADDR NO. N+X * MEMWORD NO. N+X *
**

Thus one can consider memory as simply
heing one long string of locations that may be
filled with whatever information is desired in
a serial sequence . If one were to fill each
memory word with a code that symbolized
a letter or digit, or punctuation symbol, one

N o w
ADDRN ADDR N+l ADDR N+2

Or, one could place mathematical values
in memory locations, separate those values by
operator symbols, and process columns of
mathematical data . (Assuming in this strict
case that the values were small enough to be
stored in one memory word.)

ADDR N
ADDR N+1
ADDR N+2
ADDR N+3

+100
MINUS

- 50
EQUAL

Or, the contents of memory words may be
used to sym bolize just about any abstract
item that the programmer might desire. The

could proceed to fill a string of memory lo-
cations with English (or French , or German,
or whatever) words, and go on to form sen-
tences, and by using other codes, to separate
sentences into paragraphs.

SPACE I S

ADDR N+3 ADDR N+4 ADDR N+5

10 - 2

programmer need simply form a code that the
programmer desires to have symbolize some-
thing.

ADDR N
ADDR N+l
ADDR N+2
ADDR N+3:
ADDR N+4:
ADDR N+5:

SYMBOL FOR APPLES
SYMBOL FOR PEARS
SYMBOL FOR BANANAS
SYMBOL FOR CHERRIES
SYMBOL FOR LEMONS
SYMBOL FOR BELLS

The reader should realize here that the con-
cept being presented is concentrating on how
memory is utilized for handling data or in-
formation. It is taken for granted that a por-

tion of memory will be used for the actual
operating program that controls the mani-
pulation of the memory that is being used for
the data_ Thus, in the previous examples, one
must realize that an operating program will
place the codes for letters or digits, punc-
tuation marks , spaces, and so forth, and per-
form whatever processing is desired _ An
operating program will take the values given
in the mathematical example and interpret
the symbols and perform the desired func-
tions . And, an operating program in the third
example would recognize a particular code to
mean apples, and print or display the entire
word (or picture!) when it interpreted that
code. The primary point being made is that
the data is organized as a long line of infor-
mation. That line of information can be
arbitrarily split up into many parts, and pieces
of the line be considered as forming one parti-
cular section, as in the case when one English
word is formed from a series of letters. The
long line is simply formed and locations along
the line are marked by a memory address.

However, and this the creative programmer
should take particular note of, the fact that
locations are marked along the line by mem-

ADDR N APPLE ADDR N+X+1
ADDR N+1 PEAR ADDR N+X+2
ADDR N+2 CHERRY ADDR N+X+3
ADDR N+3 BANANA ADDR N+X+4
ADDR N+4 LEMON ADDR N+X+5
ADDR N+5 BELL ADDR N+X+6

One could develop algorithms to spin the
memory pointer around each ring and ran-
domly come to a stop at a location within
each ring. The results of events in all
three rings could then be processed to de-
termine whether one hit a jackpot or missed.
The details of such a program will be left to
the creative programmer, but the concept of
how one could approach such a simulation
project is hopefully clear.

Finally , to take the one dimension view a
little further, one can go down to the bit

ory address can be transformed by the pro-
grammer so that memory addresses essentially
stand for any arbitrarily assigned marker. In
other words, to the programmer, memory
address number N can correspond to time T,
or distance D, or point Z. Thus, one can store,
say, the value of the amplitude of a signal at
time T in one location, the value at time T+T
in the next location, the value at time T+2T
in the next location. Furthermore, it should
be apparent that T can be scaled as desired
by appropriate programming so that T repre-
sents one microsecond , or millisecond, or
second, or a year!

Furthermore, one can actually go beyond
the point of considering the locations to be a
long straight line, by considering the possi-
bility of manipulating the line of locations
as a piece of string . One can figuratively cut
the piece of string at any desired location and
form the string into a ring or circle. This is
easily accomplished by simply having the
memory address pointer go back to location
N when it reaches location N+X. Consider the
possibility of doing such an operation with
three sections of the line , and using the tech-
nique to simulate a one armed bandit mach-
ine :

PEAR ADDR N+2X+1 BANANA
BANANA ADDR N+2X+2 LEMON
LEMON ADDRN+2X+3 APPLE
BELL ADDR N+2X+4 Bell
CHERRY ADDR N+2X+5 PEAR
APPLE ADDR N+2X+6 CHERRY

level. Since a memory word in an '8008'
system actually consists of eight individual
bits, one could consider memory to be a long
list of 'l 's' and 'O's.' Each memory location
contains eight bits, and by using consecutive
memory locations one can build up long
strings of bits. Again, the string can be broken
at any desired point and manipulated as de-
sired. This technique can be used , say, to
simulate a huge shift register (using rotate in-
structions), or to represent an event occuring,
or not occurring at points in time, or at dis-
tances along a line . In this view, a bit is ad-

10 - 3

dressed as being at a specific position within
a specific memory address location. While
the programming overhead to manipulate
such data will general ly be more complicated
than the case where entire memory words are
used to represent a symbol or piece of data,
one can see that the basic concept of con-
sidering all bits in memory as being formed of

one continuous line of ones and zeros , is a
valid, and often useful, image .

THE TWO DIMENSIONAL VIEW

The concept of viewing memory as a two
dimensional plane will be started by con-
sidering an image at the bit level.

ADDR N

ADDR N+X

ADDR N * ADDR N+X+1 * ADDR N+2X+1

1 '1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 000 0 0 0 0 0 1
101 0 0 0 0 0 0 0 1 0 1 0 0 000 0 0 101
100 1 0 0 0 0 0 1 000 1 0 0 0 0 0 1 0 0 1
1 000 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 000 0 1
1 0 0 0 0 0 1 0 0 0 0 1 0 000 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 001 0 0 0 0 0 0 1 0 0 0 0 0 0 1 000 1
100 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
1 0 1 0 0 0 0 1 1 1 111 1 1 1 000 0 1 0 1
100 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
1 000 1 0 0 0 0 0 0 1 0 000 0 0 1 000 1
10000 1 000 0 0 1 000 001 0 0 0 0 1
100 001 000 0 0 1 0 0 0 0 0 1 000 0 1
1 0 000 0 1 0 0 0 0 1 0 000 1 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 001 0 1 0 000 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 000 1 000 1
100 1 0 0 0 0 0 1 000 1 000 0 0 100 1
101 0 0 0 0 0 0 0 1 0 1 0 0 0 0 000 1 0 1
1 000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADDR N+X * ADDR N+2X * ADDR N+3X

The above diagram illustrates an image
created by the status of the bits in a plane of
memory. The plane was established by essen-
tially taking lines of memory addresses (as
presented in the one dimensional view) and
placing them alongside one another to form
a surface or plane. This convention would be
established by the manner in which the pro-
grammer manipulated the memory pointer in
the CPU. In the above illustration the p lane is
established at the most fundamental (and
complex) level, and bits within each word are
manipulated. As may be observed in the
above diagram, one can view and manipulate
bits in memory so as to form pictures or

diagrams_ The above represents a rectangle,
a diamond, and a cross as an image made up
of appropriate ones and zeros in selected bit
positions. One could manipulate portions
of memory to represent pictures . (Or charts,
graphs, plots!) The degree of detail which one
can obtain by such manipulations is a func-
tion of how many bits are used to represent
a given area of a real (or proposed real) ob-
ject. The above example presents all kinds
of possihities for the creative programmer.
One can use such techniques to form models,
create patterns, and so forth.

In fact, going the other way so to speak,

10 - 4

that is from having the computer generate
patterns or objects, one can also take the two
dimensional concept and apply it towards
having the computer recognize objects by
projecting their shape or form as a similar
image of ones and zeros in memory.

Much research is currently being con-
ducted towards developing algorithms that
can recognize objects . One approach that is
being studied is an interesting application of
the two dimensional concept. A picture of an
object is mapped into memory with '1 's'
being used to represent the area occupied by
the object, and 'O 's' for areas outside. Then,
the computer is trained to identify objects
by using algorithms based on a neighboring
bits scheme . In this manner, the computer de"
termines how many 'D's' surround a '1,' and
performs calculations to find the outline and
shape of the object. These findings are then
coupled with complex algorithms to attempt
to identify the object from a class of possibil-
ities.

Such programs are of course quite complex
and the details of such manipulations are
somewhat esoteric. But, the idea is intrigueing
and can provide fertilization for the creative
programmer's imagination.

N N+X N+2X

N 060 065 070

N+1 061 076 084

N+2 062 078 088

N+3 062 078 090

N+4 055 070 075

N+(X-1) 040 035 020

N+3X

075

083

098

102

053

010

Taking the two dimensional view to the
memory word level is perhaps a bit less com-
plicated (it is! it is!) than considering it at the
bit level. In this case, one needs only envision
a plane of memory words which can contain
codes for letters, numbers, symbols, or actual
mathematical values. The reader has already
seen examples of programs that could be con-
sidered as two dimensional in organization.
One, for instance , was described in chaoter
four in the presentation of the names sorting
program. There, lines of names were formed
one beneath the other in order to make the
sort routine easier to program. One might re-
view the diagram showing the sample names
stored in memory as they relate to the
memory addresses, which was presented near
the end of chapter four .

The programmer is again reminded that as
in the one dimensional view, the memory
addresses that form the X and Y boundaries
of a two dimensional memory plane can
actually be thought of as arbitrary units, such
as time, frequency, or distance , and the pro-
grammer also has the freedom to scale both
the X and Y boundaries by appropriate soft-
ware. The next illustration shows how an
altitude map of a geographical area might be
stored in a plane of memory .

N+4X N+5X N+6X

074 070 064 500 YDS

080 076 070 400 YDS

096 091 082 300 YDS

101 089 072 200 YDS

047 063 039 100 YDS

011 009 008 o YDS

o YDS 100 YDS 200 YDS 300 YDS 400 YDS 500 YDS 600 YDS

In the above illustration each memory 10- elevation of a piece of land. The top and left
cation contains a value that represents the side of the illustration shows the actual mem-

10-5

ory addresses in the computer while the
bottom and right side illustrate that each
address actually stands for 100 yards dis-
tance. It should be apparent that the eleva-
tion factors cou ld be, instead, inches of rain-
water, or a temperature profile for the area,
or, as previously mentioned, that the yards
can be almost anything else the programmer

might desire to define.

As a final example of the two dimensional
concept, the reader will be left with the fo l-
lowing diagram, which hopefully, will en-
courage one to consider the possibilities for
much more complex board games.

.N N + X + 1 N + 2X + 1

N x *
*
*

a *
*
*

X N + 2X + 1

************************** ***** ******

N + 1 a *
*
*

X
*
*
*

a N + 2X + 2

N+X a

N+X

*
*
*

Finally, the reader will be reminded, that in
a manner similar to forming a ring as discus-
sed in the one dimensional view, one can also
consider forming a cyclinder out of a p lane
with interesting ram ifications.

THE THREE DIMENSIONAL VIEW

It shou ld be apparent that if o ne can set up
memory locatio ns by appropriate addressing
to represent Ii"es and planes, one can extend
the principle out to the third dimension to
form cubes of memory. There are many in-
teresting possib ilities when memory is viewed
in th is manner. One can plot th ree dimen-
sional graphs or vectors. One can approach
many types of modeling and manipulate such
models so as to obtain different cross-sec-
tional views.

As in the case of the one and two d imen-

X
*
*
*

X N + 3X

N + 2X N + 3X

10 - 6

sional images, the programmer can substi-
tute (effectively) memory addresses for
special scale factors, now along three axis.
And, as in the previous examp les, one can
take such manipulations down to the bit
level if desired.

A diagram on the following page presents
an image of memory when viewed as a three
dimensional working area.

It is hoped that by this time the reader has
received sufficient information on the prac-
tical aspects of machine language program-
ming from the preceeding chapters, and that
this concluding chapter has provided some
st imulating concepts, so thilt the reader may
go on to develop programs that will be of
particular value to the individual. It is also
hoped that those who have been introduced
to the subject by this manual will find
machine language programming an exciting,
enjoyab le, and in as many ways as Dossib le,
a rewarding endeavor!

N

N+l

N+2

N+3

N+X

// ./ ./ ./ ./ /
L/ /' ./ ./ ./ ,/
/.// ./././ /v

,/ '/X./ ./ ./ ./ /'" /)1.
X VV;-V

x]I. ,/l-;' /V
x /V/V

oX)(

V ...
........

N+X N+2X N+3X N+4X N+5X N+6X

THREE DIMENSIONAL VIEW OF MEMORY

10 - 7

4(N+6X)
3(N+6X)
2(N+6X)

(N+6X)

