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INTRODUCTION 

This manual is about machine language 
programming methods and techniques for the 
'8008 ' and similar microprocessors. Machine 
language programming is the most fundamen-
tal type of computer programming possible. 
It is by far the most efficien t method, in 
terms of utilization of the machine 's .capa-
cabilities, with which to program or set up a 
microcomputer to perform a task. Machine 
language programming is, on the other hand, 
the most demanding method of computer 
programming in terms of human endeavor 
and skill. However, the fundamental skills 
and techniques necessary for machine lan-
guage programming can be applied to vir-
tually any level of computer programming. 
A clear understanding of machine language 
programming will give one great insight into 
higher level language programming. 

Machine language programming is the 
actual step-by-step programming of the 
computer using the machine codes and 
memory addresses that arc used by the 
computer directly. It is considerably more 
detailed than programming in a high level 
language such as FORTRAN or BASIC. 
It is the level of programming from which 
those high level languages must be developed. 
In fact, if one learns how to develop programs 
in machine language , one will have the basic 
skills necessary for developing higher level 
languages. (That is a tremendous asset over 
one who only knows how to program using 
higher level languages.) 

The pri mary reason for having a manual 
devoted to machine language programming 
for microprocessors is because th is method 
is by far the most efficient method for 
packing a program into a small amount of 
memory. As user's know, memory e lements 
cost a good amount of money. The more 
one can program into a given amount of 
memory. the less memory required for a 
given task. Thus, the more one can do with 
a low cost machine. High level languages 
require much more memory because of two 
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major reasons. First, a large amount of 
memory must be used by the high level 
language itself. Second, higher level languages 
must convert user statements or commands 
to machine language codes. They generally 
cannot do this any where near as efficiently 
(memory usage wise) as a trained human 
programmer. 

Another reason for discussing machine 
language programming at length is because 
it is the only method whereby many capa-
bilities of the machine can be efficiently 
utilized. This is particularly true for " real-
time" and 1/0 operations. Many users will 
want to utilize their microprocessors for 
unique applications . The contents of this 
manual will present many ideas and concepts 
for these people to apply to their individual 
applications. 

Machine language programming in general 
is nowhere as difficult to learn as many 
people might tend to think when first intro-
duced to the subject. This is especially true 
for the '8008' type microprocessor. There 
are many fundamental concepts that can be 
readily learned. Once this has been accom-
plished th e novice is on the way to developing 
original solutions to programming problems 
that may be of special interest to the indivi-
dual. 

Computer programming, and machine 
language programming in particular, is in 
many respects an art, and in other respects 
a very rigid science. The fun part, and what 
can be considered artistic, is that individUals 
can tailor or fashion series of instructions 
to accomplish a particular task in a variety of 
ways. The scien tific part of programming 
involves acquiring some basic skills and 
knowledge about what can and cannot be 
done. At a higher level this requires an under-
standing of basic mathematic algorithms 
and procedures that can be readily applied 
using computer techniques. Some of the basic 
skills include knowing just what the available 



machine instructions are, and some of the 
most frequently used combinations of in-
structions that will perform frequently reo 
quired tasks. These skills are as fundamental 
as a painter knowing the primary colors and 
how to combine t hem to create the common-
ly used secondary colors. However , like the 
pain ter wh o combines the basic pigments, 
beyond a certain point the task of computer 
programming becomes a highly creative 
individualistic art. It is an art in which o ne 
can constantly gai n new skills and abili ty. 
A high school student or a college professor 
can both find equally rewarding challenges 
in computer program ming. There are often 
many differen t ways to program a computer 
to perform a given task and many " trade· 
offs" to consider when developing a program. 
(Such as how much memory to use, what 
functions have priority, and how much 
burden to place on the human operator 
when the program is operating.) Individuals 
soon learn to capitalize on the aspects con-
sidered most important for the specific 
applications at hand and to develop their 
own personal meth ods for handling various 
types of programming tasks . 

Remember as you read this manual that 
there are man y other ways of programming 
a computer to perform many of the example 
programs illustrated . Don 't be afraid to 
develop your own solut ions. See if they work 
as planned. Practice being a creative program-
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mer' By the t ime you have completed ab-
sorbing a nd understandin g the co ntents of 
this pu blication you should be well equipped 
to develop programs of your own. You will 
th us be in a posit ion to reap greater benefits 
from your microprocessor than just being 
able to operate programs that other people 
have prepared. 

The first chapter of this manual contains 
a detai led presen tat;on of the instruction set 
that the ' 8008' CPU is capable of performing. 
It goes almost withou t saying, that the first 
step towards becom ing a proficient machine 
language programmer is to become thorough-
ly familiar with all the types of instructions 
that the machine being ut il ized can execute. 
One sh ould especially learn about any special 
conditi ons that apply to the execution of 
specific types of commands. The lead-off 
chapter presents a comprehensive explanation 
of all the instructions in the ' 8008' repertoi re 
along with the mnemonics a nd machine 
codes. The reader should become quite 
familiar with the informat ion presented there 
before going further in this manual. (At least 
to the point where one can rapidly locate 
any class o f instructions in the chapter in 
order to refresh one's memory on just how an 
instruction operates . Additionally , such fami-
liarity will enable one to be able to quickly 
locate machine codes when one is preparing 
the final version of a machine language 
program') 



THE '8008' CPU INSTR UCTION SET 

The '8008' microprocessor has quit.p. ::l 

comprehe nsive instruction set that consists 
of 48 basic instructions, which, when the 
possible permutations are considered, result 
in a total set of about 170 instructions. 

The instruction set allows the user to direct 
the computer to perform operations with 
memory. with the seven basic registers in the 
CPU, and with INP UT and OUTPUT [lorts. 

It should be pointed out that the seven 
basic registers in the CPU co nsist of one 
Haccumu lator ," a register that can perform 
mathematical and logic operations, plus an 
additional six registers, which, while not 
having the fu ll capability of the accumulator, 
can perform various useful operations. These 
operations include the ability to hold data, 
serve as an "operator" with the accumulator, 
and increment or decrement their contents. 
Two of these six registers have special sig-
nificance because they may be used to serve 
as a "pointer" to locations in memory. 

The seven CPU registers have arbitrarily 
been given sy mbols so that we may refer to 
them in an abbreviated language. The first 
register is designated by the symbol ' A' in the 
following discuss ion and will be referred to 
as the "accumulator" regisLer. The next four 
registers will be referred to as the 'B,' 'C,' 'D ' 
and ' E' registers. The remaining two spec ial 
memory pointing registers shall be designated 
the 'H' (for the HIGH portion of a memory 
address) and the' L' (for the LOW portion of 
a memory address) registers . 

The CPU also has several " f1ip-nops" which 
shall be referred to as "FLAGS." The f1ip-
flops are set as the result of certain operations 
and are important because they can be "test-
ed" by many of the instructions with the in-
struction 's meanin g changing as a conse-
quence of the particular status of a FLAG at 
the time the instruction is executed. There are 
four basic flags wh ich will be referred to in 
this manual. They are defined as follows: 

The 'C' flag refers to the carry bit status. The carry bit is a one unit register which 
change& state when the accumulator overflows or underflows. This bit can also be 
set to a known condition by certain types of instructions. This is important to 
remember when developing a program because quite often a program will have a 
long string of instructions which do not utilize the carry bit or care about its status, 
but which will be causing the carry bit to change iis state frum iilue-to-time. Thus, 
when one prepares to do a series of operations that will rely on the carry bit, one 
often desires to set the carry bit to a known state. 

The 'Z' for zero flag refers to a one unit register that when desired will indicate 
whether the value of the accumulator is exactly equal to zero. In addition, immed-
iately after an increment o f decrement of the B, C, D , E, H or L registers , this flag 
will also indicate whether the increment or decrement caused that particular register 
to go to zero. 

The'S' fo r sign flag refers to a one unit register that indicates whether the value 
in the accumulator is a positive or negative value (based on two's co mplement 
nomenclature). Essentially, this flag monitors the most significant bit in the accumu-
lator and is "set" when it is a o ne . 

The 'P' flag refers to the last fl ag in the group which is for indicating when the 
accumulator contains a value which has even parity. Parity is useful for a number of 
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reasons and is usually used in conjunction with testing for error conditions on 
words of data especially when transferring data to and from external devices. Even 
parity occurs when the number of bits that are a logic one in the accumulator is an 
even value. Zero is considered an even value for this purpose . Since there are eight 
bits in the accumulator, even parity will occur when zero , two, four or six bits are in 
the logic one condition regardless of what order they may appear in within the 
register. 

It is important to note that the Z, S, and 
P flags (as well as the previously mentioned 
C flag) can all be set to known states by 
certain instructions . It is also important to 
note that some instructions do not result 
in the flags being set so that if the program-
mer desires to have the program make 
decisions based on the status of flags, the 
programmer should ensure that the proper 
instruction, or sequence of instructions 
is utilized. It is particularly important to 
note that load register instructions do not 
by themselves set the flags. Since it is often 
desirable to obtain a data word (that is , 
load it into the accumulator) and test its 
status for such parameters as whether or 
not the value is zero, or a negative number, 
and so forth, the programmer must remember 
to follow a load instruction by a logical 
instruction (such as the NDA - "and the 
accumulator") in order to set the flags before 
using an instruction that is conditional in 
regards to a flag's status. 

The description of the various types of 
instructions available using an 'SOOS ' CPU 
which follows will provide both the machine 
language code for the instruction given as 
three octal digits, and also a mnemonic name 
suitable for writing programs in "symbolic" 
type language which is usually easier than 
trying to remember octal codes! It may be 
noted that the symbolic language used is the 
same . as that originally suggested by Intel 
Corporation which developed the 'SOOS' 
CPU-on-a-chip. Hence users who may already 
be familiar with the suggested mnemonics 
will not have any relearning problems and 
those learning the mnemonics for the first 
time will have plenty of good company . 
If the programmer is not already aware of 
it, the use of mnemonics facilitates working 
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with an "assembler" program when it is 
desired to develop relatively large and 
complex programs. Thus the programmer is 
urged to concentrate on learning the 
mnemonics for the instructions and not 
waste time memorizing the octal codes. After 
a program has been written using the 
mnemonic codes, the programmer can always 
use a lookup table to convert to the machine 
code if an assembler program is not avail-
able. It's a lot easier technique (and less 
subject to error) than trying to memorize 
the 170 or so three digit combinations which 
make up the machine instruction code set! 

The programmer must also be aware, that 
in this machine, some instructions require 
more than one word in memory. 
"Immediate" type commands require two 
consecutive words . JUMP and CALL 
commands require three consecutive words. 
The remaining types only require one word. 

The first group of instructions to be 
presented are those that are used to load 
data from one CPU register to another, or 
from a CPU register to a word in memory , 
or vice-versa. This group of instructions 
requires just one word of memory. It is 
important to note that none of the 
instructions in this group affect the flags. 

LOAD DATA FROM ONE CPU REGISTER 
TO ANOTHER CPU REGISTER 

MNEMONIC 

LAA 
LBA 

LAB 

MACHINE CODE 

300 
310 

301 



The load register group of instructions 
allows the programmer to move the con tents 
of one CPU register into another CPU regis-
ter . The contents of the originating (fro m) 
register is not changed. The contents of the 
destination (to) register becomes the same as 
the originat ing register. Any CPU register can 
be loaded into any CPU register. Note that 
loading register A into register A is essen-
tially a NO P (no operation) command. When 
using mnemonics the load symbol is the letter 
L follo wed by the "to" register apd then the 
"from" register. The mnemonic LBA means 
that the con tents of register A (the accumu-
lator ) is to be loaded into register B. The 
mnemonic LAB states that register B is to 
have its con ten ts loaded in to register A. 
It may be observed that th is basic instruc-
tion has many variations. The mach ine lan -
guage coding for this instruction is in the 
same fo rmat as the mnemonic code except 
that the letters used to represen t the registers 
are replaced by numbers that the computer 
can use. Using octal code, the seven CPU 
registers are coded as follows: 

Register A = 0 
Register B = 1 
Register C = 2 
Register D = 3 
Register E = 4 
Register H = 5 
Register L = 6 

Also, since the machine can only utilize 
numbers, the octal number '3' in the most 
significant location of a word signifies that 
the computer is to perform a "load" 
tion. Thus, in machine coding, the instruc-
tion for loading register B with the contents 
o f register A becomes '310' (in octal form). 
Or, if one wanted to get very detailed, the 
actual binary coding for the eight bits of 
information in the instruct ion word would 
be ' 11 001 000.' It is important to note 
that the load instructions do not affect any 
of the flags . 
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LOAD DATA FROM ANY CPU REGISTER 
TO A LOCATIO N IN MEMORY 

LMA 
LMB 
LMC 
LMD 
LME 
LMH 
LML 

370 
371 
372 
373 
374 
375 
376 

This instruction is very similar to the 
previous group of instructio ns except that 
now the contents of a CPU register will be 
loaded in to a specified memory location . The 
memory location that will receive the con-
tents of the particular CPU register is that 
whose address is specified by the conten ts of 
the CPU Hand L registers at the time the in-
struction is executed. The H CPU register 
spec ifies the HIGH portion of the address 
desired, and the L CPU register specifies the 
LOW portion of the address into which data 
from the selected CPU register is to be loaded. 
Note that there are seven different instruc-
tions in this group. Any CPU register can have 

contents loaded into any location in mem· 
ory. This group of instructions does not 
affect any of the flags . 

LOAD DATA FROM A MEMORY 
LOCATION TO ANY CPU REGISTER 

LAM 
LBM 
LCM 
LDM 
LEM 
LHM 
LLM 

307 
317 
327 
337 
347 
357 
367 

This group of instructions can be consid-
ered the opposite of the previous group . 
Now, the contents of the word in memory 
whose address is specified by the H (for 
HIGH portion of the address ) and L (LOW 
portion of the address) registers will be 
loaded into the CPU register specified by the 
instruction. Once again, this group of in-
structions has no affect on the status of the 
flags. 



LOAD IMMEDIATE DATA INTO A 
CPU REGISTER 

LAI 
LBI 
LCI 
LDI 
LEI 
LHI 
LLI 

006 
016 
026 
036 
046 
056 
066 

An IMMEDIATE type of instruction 
requires two words in order to be complet-
ely specified. The first word is the instruc-
tion itself. The second word, or " immed-
iately fo llowing" word, must contain the 
data upon which "immediate" action is 
taken. Thus, a load IMMEDIATE instruc-
tion in this group means that the contents 
of the word immediately following the in-
struction wo rd is to be loaded into the speci-
fied register. For example, a typical load im-
mediate instruction would be LAI 001. 
This would result in the value 001 (octal ) 
being placed in the A register when the in-
struction was executed. It is important to 
remember that all IMMEDIATE type in-
structions MUST be followed by a data word. 
An instruction such as LDI by itself would 
result in improper operation because the 
computer would assume the next word con-
tained data . If the programmer had mistaken-
ly left out the data word, and in its place had 
another instruction, the computer would not 
realize the operator's mistake. Hence the pro-
gram would be fouled-up' Note too, that the 
load immediate group of instructions does not 
affect the flags . 

LOAD IMMEDIATE DATA INTO A 
MEMORY LOCATION 

LMI 076 

This instruction is essentially the same as 
the load immediate into the CPU register 
group except that now, using the contents of 
the Hand L registers as " pointers" to the de-
sired address in memory, the contents of the 
"immediately following word" will be p laced 
in the memory location specified. This in -
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struction does not affect the status of the 
flags. 

The above rather large group of LOAD in-
structions permits the programmer to direct 
the computer to move data about. They 
are used to bring in data from memory where 
it can be operated on by the CPU. Or, to 
temporarily store intermediate results in the 
CPU registers during complicated and ex· 
tended calculations, and of course allow data, 
such as results, to be placed back into mem-
ory for long term storage . Since none of them 
will alter the contents of the four CPU flags, 
these instructions can be called upon to set 
up data before instructions that may affect 
or utilize the flag's status are executed. The 
programmer will use instructions from this 
set frequently. The mnemonic names for the 
instructions are easy to remem ber as they are 
well ordered. The most important it"m to 
remember about the mnemonics is that the 
TO register is always indicated firs t in the 
mnemonic, and then the FROM register. 
Thus LBA equals "load TO register B FROM 
register A. 

INCREMENT THE V ALUE OF A 
CPU REGISTER BY ONE 

INB 
INC 
IND 
INE 
INH 
INL 

010 
020 
030 
040 
050 
060 

This group of instructions allows the pro· 
grammer to add one to the present value of 
any of the CPU registers except the accumu-
lator. (Note carefully that the accumulator 
can NOT be incremented by this type of in· 
struction. In order to add one to the accumu· 
lator a mathematical addition instruction , 
described Illter , must be used.) This instruc· 
tion for incrementing the defined CPU regi· 
sters is very valuable in a number of appli-
cations. For one thing, it is an easy way to 
have the L register successively "point" to a 
string of locations in memory. A feature that 
makes this type of instruction even more 



powerful is that the result of the incremented 
register will affect the Z, S, 'and P flags . (It 
will not change the C or "carry"flag.) Thus, 
after a CPU register has been incremented by 
this instruction, one can utilize a flag test in-
struction (such as the conditional JUMP and 
CALL instructions to be described later) to 
determine whether that particular register has 
a value of zero (Z flag) . or if it is a negative 
number (S flag) , or even parity (P flag). It is 
import ant to note that this group of instruc-
tions, and the decrement group (described in 
the next paragraph) are the on ly instructions 
which allow the flags to be manipulated by 
operations that are not concerned with the 
accumulator (A) register. 

DECREMENT THE VALUE 0[<' A 
CPU REGISTER BY ONE 

DCB 
DCC 
DCD 
DCE 
DCH 
DCL 

Oll 
021 
031 
041 
051 
061 

The DECREMENT group of instructions 
is simi lar to the INCREMENT group except 
that now the value one will be subtracted 
fro m the speci fi ed CPU register. This in-
struction will not affect the C flag. But , it 
does affect the Z, S, and P flags. It should 
also be noted that this group, as with the 
increment group, does not include the 
accumulator register. A separate mathemat-
ical instruction must be used to subtract one 
from the accumulator. 

ARITHMETIC INSTRUCTIONS USING THE 
ACCUMULATOR 

The fo llowing group of instructions allow 
the programmer to direct the computer to 
perform arithmetic operations between other 
CPU registers and the accumulator, or be-
tween the contents of words in memory and 
the accumulator. All of the operations for the 
described addition, subtraction, and compare 
instructions affect the status of the flags . 
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ADD THE CONTENTS OF A CPU 
REGISTER TO THE ACCUMULATOR 

ADA 
ADB 
ADC 
ADD 
ADE 
ADH 
ADL 

200 
201 
202 
203 
204 
205 
206 

This group of instructions will simply ADD 
the present contents of the accumulator 
register to the present value of the speci-
fied CPU register and leave the result in the 
accumulator . The value of the specified 
register is unchan ged except in the case of 
the ADA instruction. Note that the ADA 
instruction essentially allows the program-
mer to double the value of the accumulator 
(which is the A register)! If the addition 
causes an overflow or underflow then the 
carry (C flag) will be affected. 

ADD THE CONTENTS OF A CPU 
REGISTER PLUS THE VALUE OF THE 

CARRY FLAG TO THE ACCUMULATOR 

ACA 210 
ACB 2ll 
ACC 212 
ACD 213 
ACE 214 
ACH 215 
ACL 216 

This group is identical to the previous 
group except that the content of the carry 
flag is considered as an additional bit (MSB) 
in the specified CPU register. The combined 
value of the carry bit plus the contents of the 
specified CPU register are added to the value 
in the accumulator. The results are left in the 
accumulator . Again, with the exception of 
the ACA instruction, the contents of the 
specified CPU register are left unchanged. 
Again too, the carry bit (C flag) will be 



affected by the results of the operation. 

SUBTRACT THE CONTENTS OF A CPU 
REGISTER FROM THE ACCUMULATOR 

SUA 
SUB 
SUC 
SUD 
SUE 
SUH 
SUL 

220 
221 
222 
223 
224 
225 
226 

This group of instructions will cause the 
present value of the specified CPU register to 
be subtracted from the value in the accumu-
lator . The value of the specified register is not 
changed except in the case of the SUA in-
struction. (Note that the SUA instruction 
is a convenient instruction with which to 
"clear" the accumulator.) The carry flag 
will be affected by the results of a 
SUBTRACT instruction . 

SUBTRACT THE CONTENTS OF A CPU 
REGISTER AND THE V ALUE OF THE 

CARR Y FLAG FROM THE 
ACCUMULATOR 

SBA 
SBB 
SBC 
SBD 
SBE 
SBH 
SBL 

230 
231 
232 
233 
234 
235 
236 

This group is identical to the previous 
group except that the content of the carry 
flag is considered as an additional bit (MSB) 
in the specified CPU register. The combined 
value of the carry bit plus the contents of the 
specified CPU register are SUBTRACTED 
from the value in the accumulator. The re-
sults are left in the accumulator. The carry 
bit (C flag) is affected by the result of the 
operation . With the exception of the SBA 
instruction the content of the specified CPU 
register is left unchanged. 
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COMPARE THE V ALUE IN THE 
ACCUMULATOR AGAINST THE 

CONTENTS OF A CPU REGISTER 

CPA 
CPB 
CPC 
CPD 
CPE 
CPH 
CPL 

270 
271 
272 
273 
274 
275 
276 

The COMPARE group of instructions 
are a very powerful and somewhat unique 
set of instructions. They direct the com-
puter to compare the contents of the 
accumulator against another register and to 
set the flags as a result of the comparing 
operation. It is essentially a subtraction 
operation with the value of the specified 
register being subtracted from the value of 
the accumulator except that the value of the 
accumulator is not actually altered by the 
operation. However, the flags are set in the 
same manner as though an actual subtrac-
tion operation had occured . Thus, by sub-
sequently testing the status of the various 
flags after a COMPARE instruction has been 
executed, the program can determine whether 
the compare operation resulted in a match or 
non-match. In the case of a non-match, one 
may determine if the compared register con-
tained a value greater or less than that in the 
accumulator . This would be accomplished by 
testing the Z flag and C flag respectively 
utilizing a conditional JUMP or CALL in-
struction (which will be described later). 

ADDITION, SUBTRACTION, AND 
COMPARE INSTRUCTIONS THAT USE 
WORDS IN MEMORY AS OPERANDS 

The five types of mathematical operations: 
ADD, ADD with CARRY, SUBTRACT, 
SUBTRACT. with CARRY , and COMPARE , 
which have just been presented for the cases 
where they operate with the contents of CPU 
registers, can all be performed with words 
that are in memory. As with the LOAD in-
structions that operate with memory, the H 
and L registers must contain the address of 



the word in memory that it is desired to 
ADD , SUBTRACT, or COMPARE to the 
accumulator . The same conditions for the 
operations as was detailed when using the 
CPU registers apply. Thus, for mathematical 
operations with a word in memory, the fol-
lowing instructions are used. 

ADD THE CONTENTS OF A MEMORY 
WORD TO THE ACCUMULATOR 

ADM 207 

ADD THE CONTENTS OF A MEMORY 
WORD PLUS THE VALUE OF THE 

CARRY FLAG TO THE ACCUMULATOR 

ACM 217 

SUBTRACT THE CONTENTS OF A 
MEMORY WORD FROM THE 

ACCUMULATOR 

SUM 227 

SUBTRACT THE CONTENTS OF A 
MEMOR Y WORD AND THE VALUE 
OF THE CARRY FLAG FROM THE 

ACCUMULATOR 

SBM 237 

COMPARE THE V ALUE IN THE 
ACCUMULATOR AGAINST THE 

CONTENTS OF A MEMORY WORD 

CPM 277 

IMMEDIATE TYPE ADDITIONS, 
SUBTRACTIONS , AND COMPARE 

INSTRUCTIONS 

The five types of mathematical opera-
tions discussed above can also be performed 
with the operand being the word of data 
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immediately after the instruction. This group 
of instructions is similar in format to the 
previously described LOAD IMMEDIATE 
instructions. The same conditions for the 
mathematical operations as discussed fo r the 
operations with the CPU registers apply . 

ADD IMMEDIATE 

ADI 004 

ADD WITH CARRY IMMEDIATE 

ACI 014 

SUBTRACT IMMEDIATE 

SUI 024 

SUBTRACT WITH CARRY IMMEDIATE 

SBI 034 

COMPARE IMMEDIATE 

CPI 074 

LOGICAL INSTRUCTIONS WITH THE 
ACCUMULATOR 

There are several groups of instructions 
which allow BOOLEAN LOGIC operations to 
be performed between the contents of the 
CPU registers and the A (accumulator) regis-
ter. In addition there are logic IMMEDIATE 
type instructions. The boolean logic opera-
tions are valuable in a number of program-
ming applications. The instruction set allows 
three basic boolean operations to be per-
formed . These are: the LOGICAL AND, the 
LOGICAL OR , and the EXCLUSIVE OR 
operations. Each type of logic operation is 
performed on a bit-by-bit basis between the 
accumulator and the CPU register or memory 
location specified by the instruction. A de-



tailed explanation of each type of logic 
operation , and the appropriate instructions 
for each type is presented below. The logic 
instruction set is also valuable because all of 
them will cause the C (carry) flag to be placed 
in the zero condition. This is important if 
one is go ing to per form a sequence of in-
stru ctio ns that will eventual ly use the status 
of the C flag to arrive at a decision as it 
allows the programmer to set th e C flag to 
a known state at the start of the sequence. 
All other flags are set in accordance with the 
result of the logic operation. Hence , the group 
often has value when the programmer desires 
to determ ine the contents of a register that 
has just been loaded in to a register. (Since 
the load instru ctions do not alter the fl ags.) 

THE BOOLEAN 'AND ' OPERATION 
INSTRUCTION SET 

When the boolean AND instruction is ex-
ecuted, each bit of the accum ulator will be 
compared with the corresponding bit in the 
register or memory location specified by the 
instruction . As each bi t is compared a logic 
resu lt will be placed in the acc umulator for 
each bit comparison. The logi c result is de-
termined as follows. If both the bit in the 
accumulator and the bit in the register with 
which the operation is being performed are a 
logic one, then the accumulator bit will be 
left in the logic one condi tion. For all other 
possible combinations (A bit eq uals one, X 
bit equals zero; A bit equals zero, X bit eq uals 
one; or A bit equals zero, X bit equals zero), 
then the accumulator bit will be cleared to 
the zero state . An examp le will illustrate the 
logical AND operation . 

INITIAL STATE OF THE ACCUMULATOR 

101010 10 

CONTENTS OF OPERAND REGISTER 

11001100 

FI NAL STATE OF THE ACCUMULATOR 

10001 000 
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There are seven logical AND instructions 
that allow any CPU register to be used as the 
AND operand . They are as follows. 

NDA 
NDB 
NDC 
NDD 
NDE 
NOH 
ND L 

240 
241 
242 
243 
244 
245 
246 

The conten ts of the operand register is 
not altered by an AN D logical instruction. 

There is also a logical AND instru ction 
that allows a word in memory to be used as 
an operand. The address of the word in mem-
ory that will be used is pointed to by the con-
tents of the H and L CPU registers. 

NOM 247 

And finally there is also a logical AND 
IMMEDIATE type of instruction that will use 
the contents of the word immediately follow-
ing the instruction as the operand. 

NDI 044 

The next group of boolean logic instruc-
tions direct the computer to perform the 
logical OR operation on a bit-by-bi t basis 
with the accumulator and the contents of a 
CPU register or a word in memory . The 
logical OR operation will resul t in the 
accumulator havi ng a bit set to a logic one if 
either that bit in the accumulator, or the 
corresponding bit in the ope rand register is 
a logic o ne. Since the case where both the 
accumulator . bit and operand bi t are a one 
also satisfies the cri teria, that condi tion will 
also result in the accumulator bit being left 
in the one state. If neither register has a logic 
one in the bit position, then the accumulator 
bit for that position remains in the zero 
state . An example illustrates the results of 



a logical OR operation. 

INITIAL STATE OF THE ACCUMULATOR 

10101010 

CONTENT OF THE OPERAND REGISTER 

11001100 

FINAL STATE OF THE ACCUMULATOR 

11101110 

There are seven logical OR instructions 
that allow any CPU register to be used as 
the OR operand. 

ORA 
ORB 
ORC 
ORD 
ORE 
ORH 
ORL 

260 
261 
262 
263 
264 
265 
266 

By using the Hand L registers as pointers 
one can also use a word in memory as an 0 R 
operand. 

ORM 267 

There is also the logical OR IMMEDIATE 
instruction . 

ORI 064 

As with the logical AND group of instruc· 
tions, the logical OR instruction does not 
alter the contents of the operand register. 

The last group of boolean logic instruc· 
tions is a variation of the logic OR. The 
variation is termed the EXCLUSIVE OR 
logical operation. The EXCLUSIVE OR oper· 
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ation is similar to the 0 R except that when 
the corresponding bits in both the accumu· 
lator and the operand register are a one then 
the accumulator bit will be cleared to zero. 
Thus, the accumulator bit will be a one after 
t.he operation only if just one of the registers 
(accumulator register or operand register) has 
a one in the bit position. (Again, the opera· 
tion is performed on a bit·by·bit basis.) An 
example provides clarification . 

INITIAL STATE OF THE ACCUMULATOR 

10101010 

CONTENTS OF THE OPERAND REGISTER 

11001100 

FINAL STATE OF THE ACCUMULATOR 

01100110 

The seven instructions that allow the CPU 
registers to be used as operands are shown 
next. 

XRA 
XRB 
XRC 
XRD 
XRE 
XRH 
XRL 

250 
251 
252 
253 
254 
255 
256 

The instruction that uses registers Hand L 
as pointers to a memory location is: 

XRM 257 

And the EXCLUSIVE OR IMMEDIATE 
type instruction is: 

XRI 054 



As in the case of the logical OR operation, 
the operand register is not altered except for 
the special case when the XRA instruction is 
used. This instruction, which directs the com-
puter to EXCLUSIVE OR the accumulator 
with itself, will cause the operand register, 
since it is the accumulator, to have its con-
tents altered (unless it should happen to be 
zero at the time the instruction is executed). 
This is because, regardless of what value is in 
the accumulator, if it is EXCLUSIVE OR'ed 
with itself, the result will be zero! The 
example below illustrates the specific 
operation. 

ORIGINAL VALUE OF ACCUMULATOR 

10101010 

EXCLUSIVE OR'ed WITH ITSELF 

10101010 

FINAL VALUE OF ACCUMULATOR 

00000000 

This only occurs when the logical 
EXCLUSIVE OR is performed on the 
accumulator itself. It can be shown that 
the results of performing the logical OR or 
logical AND between the accumulator and 
itself will result in the original accumulator 
value being retained. 

INSTRUCTIONS FOR ROTATING THE 
CONTENTS OF THE ACCUMULATOR 

It is often desirable to be able to shift the 
contents of the accumulator either right or 
left . In a fixed length register, a simple shift 
operation would result in some information 
being lost because what was in the MSB or 
LSB (depending on in which direction the 
shift occured) would be shifted right out of 
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the register' Therefore, instead of just shifting 
the contents of a register, an operation 
termed ROTATING is utilized. Now, instead 
of just shifting a bit off the end of the regis-
ter , the bit is brought around to the other end 
of the register. For instance, if the register is 
rotated to the right, the LSB (least significant 
bit) would be brought around to the position 
of the MSB (most significant bit) which 
would have been vacated by the shifting of 
its original contents to the right. Or, in the 
case of a shift to the left, the MSB would be 
brought around to the position of the LSB. 

The carry bit (C flag) can be considered as 
an extension of th e accumulator register. The 
instruction set for this machine allows two 
t.ypes of ROT ATE instructions. One con-
siders the carry bit to be part of the accumu-
lator register for the rotate operation. The 
other type does not. In addition, each type 
of rotate can be done either to the right or to 
the left . 

It should be noted that the rotate opera-
tions are particularly valuable when it is de-
sired to multiply a number or divide a num-
ber. This is because shifting the contents of 
a register to the left effectively multiplies 
a binary number by a power of two. Shifting 
a binary number to the right provides the 
inverse 

ROTATING THE ACCUMULATOR LEFT 

RLC 002 

Rotating th e accumulator left with the 
RLC instruction means the MSB of the 
accumulator will be brought around to the 
LSB position and all other bits will be shift-
ed one position to the left. While this in-
struction does not shift through the carry 
bit, the carry bit will be set by the status 
of the MSB of the accumulator at the start 
of the ROTATE LEFT operation. (This 
feature allows the programmer to determine 
what the MSB was prior to the shifting opera-
tion by testing the C flag after the rotate 



instruction has been executed. 

ROTATING THE ACCUMULATOR LEFT 
THROUGH THE CARRY BIT 

RAL 022 

The RAL instruction will cause the MSB 
of the accum ulator to go into the carry bit. 
The initial value of the carry bit will be 
shifted around to the LSB of the accumu-
lator. All other bits are shifted one position 
to the left. 

ROTATING THE ACCUMULATOR 
RIGHT 

RRC 012 

The RRC instruction is simi lar to the 
RLC instruction except that now the LSB of 
the accumulator is placed in the MSB of the 
accumulator . All other bits are shifted one 
position to the right. Also, the carry bit 
will be set to the initial value of the LSB of 
the accumulator at the start of the operation. 

ROTATING THE ACCUMULATOR RIGHT 
THROUGH THE CARRY BIT 

RAR 032 

Here, the LSB of the accumulator is 
brought around to the carry bit. The initial 
value of the carry bit is shifted to the MSB of 
the accumulator. All other bits are shifted a 
position to the righ t. 

It should be noted that the C flag is the 
only flag that is altered by a rotate instruc-
tion. All other flags remain unchanged . 

JUMP INSTRUCTIONS 

The instructions discussed so far have all 
been "direct action" instructions. The pro-
grammer arranges a sequence of these types 
of instructions in memory. When the program 
is started the computer proceeds to execute 
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the instructions in the order in which they 
are encountered. The computer automati-
cally reads the contents of a memory loca-
tion, executes the instruction it finds there, 
and then automatically increments a special 
address register called a PROGRAM 
COUNTER that will result in the machine 
reading the information contained in the 
next sequential memory location. However, 
it is often desirable to perform a series of 
instructions located in one section of mem-
ory, and then skip over a group of memory 
locations and start executing instructions in 
another section of memory . This action can 
be accomplished by a group of instructions 
that will cause a new address valu.e to be 
placed in the PROGRAM COUNTER. This 
will cause the computer to go to a new sec-
tion of memory and then execute instruc-
tions sequentially from the new memory 
location. 

The JUMP instructions in this computer 
add considerable power to the machine's 
capabilities because there are a series of 
"conditional" JUMP instructions available . 
That is , the computer can be directed to 
test the status of a particular FLAG (C, Z, 
S or Pl. If the status of the flag is the de-
sired one, then a JUMP will be performed. 
If it is not, the machine will continue to 
execute the next instruction in the current 
sequence. This capability provides a means 
for the computer to make "decisions" and 
to modify its operation as a function of the 
status of the various flags at the time that a 
program is being executed. 

In a manner similar to IMMEDIATE types 
of instructions, the JUMP instructions require 
more than one word of memory. A JUMP in-
struction requires three words to be proper-
ly defined. (Remember that IMMEDIATE 
type instructions required two words.) The 
JUMP instruction itself is the first word. The 
second word must contain the LOW 
ADDRESS portion of the address of the word 
in memory that the PROGRAM COUNTER is 
to be set to point to, which is the new loca-
tion from which the next instruction is to be 
fetched. The third word must contain the 



HIGH ADDRESS (sometimes referred to as 
the PAGE) of the memory address that the 
program counter will be set to. That is, the 
high order portion of the address in memory 
that the computer will JUMP to in order to 
obtain its next instruction. 

THE UNCONDITIO NAL JUMP 
INSTRUCTION 

JMP 1X4 

Note: The machine code 1X4 indicates that 
any code for the second octal digit of the 
machine code is valid. It is recommend ed as a 
standard practice that the code '0' be used. 
Thus, the typical machine code would be 104. 

Remember , the JUMP instruction must be 
followed by two more words which contain 
the LOW, and then the HIGH (PAGE) portion 
of the address that the program is to JUMP 
to' 

JUMP IF THE DESIGNATED FLAG 
IS TRUE (CONDITIONAL JUMP) 

JTC 
JTZ 
JTS 
JTP 

140 
150 
160 
170 

As with the UNCONDITIONAL JUMP 
instruction, the CONDITIONAL JUMP in-
structions must be followed by two words of 
information. The LOW portion, then the 
HIGH portion, of the address that program 
execution is to continue from if the jump is 
executed. The JUMP IF TRUE group of in-
structions will only jump to the designated 
address if the condition of the appropriate 
flag is TRUE (logical one). Thus, the JTC 
instruction states that if the carry flag (C) is 
a logical one (TRUE) then the jump is to be 
executed. If it is a logical zero (FALSE) then 
program execution is to continue with the 
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next instruction in the current sequence of 
instructions. In a similar manner the JTZ 
instruction states that if the ZERO FLAG is 
TRUE then the jump is to be performed. 
Otherwise the next instructio n in the present 
seq uence is executed. Likewise for the JTS 
and JTP instructions. 

JUMP IF THE DESIGNATED FLAG 
IS FALSE (CONDITIONAL J UMP) 

JFC 
JFZ 
JFS 
JFP 

100 
110 
120 
130 

As with all J UMP instructions these in-
structions must be followed by the LOW 
address then the HIGH address of the mem-
ory location that program execution is to 
continue from if the jump is executed. This 
group of instructions is the opposite of the 
jump if the flag is true group. For instance, 
the JFC instruction commands the com-
puter to test the status of the carry (C) flag. 
If the flag is FALSE (a logic zero), then the 
jump is to be performed. If it is TRUE, then 
program execution is to continue with the 
next instruction in the current sequence of 
instructions. The same procedure holds for 
the JFZ, JFS and JFP instructions . 

SUBROUTINE CALLING INSTRUCTIONS 

Quite often when a programmer is develop-
ing computer programs the programmer will 
find that a particular algorithm (sequence of 
instructions for performin g a function) can be 
used many times in different parts of the pro-
gram. Rather than having to keep entering the 
same sequence of instructions at different 
locations in memory , which would not o nly 
consume the time of the programmer, but 
would also result in a lo t of memory being 
used to perform one particular function , it is 
desirable to be able to be able to put an often 



used sequence of commands in just one 
location in memory. Then, whenever the par-
ticular algorithm is required by another part 
of the program, it would be convenient to 
jump to the section that contained the often 
used algorithm, perform the sequence of in-
structions, and th en return back to the main 
part of the program. This is a standard prac-
tice in computer operations. A frequently 
used algorithm can be dpsignated a 
SUBROUTINE. A special set of instruct io ns 
allows the programmer to CALL a 
SUBROUTINE. In o the r words, specify a 
special type of JUMP command that will 
eventually allow the program to RETURN 
to the original "jumping" point in th e pro-
gram. A second type of instruction is used to 
terminate a SUBROUTINE . This special 
terminator will cause th e program to revert 
back and pick up the next sequential in-
struction in memory that immediately fol-
lows the original CALLING instruction . A 
great deal of computer power is provided by 
the instruction set in this machine that allows 
one to CALL and RETURN from SUB-
ROUTINES. This is because, in a manner 
similar to that provided for the CONDI-
TION AL JUMP instructions, there are a 
number of CONDITIONAL CALL and 
CONDITIONAL RETURN commands in the 
instruction set. 

Like the JUMP instructions, the CALL in-
structions all require three words in order to 
be fully specified. The first word is the CALL 
instruction itself. The next two words must 
contain the LOW and HIGH portions of the 
starting address of the subroutine that is 
being "called." 

When a CALL instruction is encountered 
by the computer, the CPU will actually save 
the current value of the PROGRAM COUNT-
ER by storing it in a special PROGRAM 
COUNTER PUSH-DOWN STACK. This 
stack is capable of holding six addresses plus 
the current operating address. What this 
means is that the machine is capable of 
"nesting" up to seven subroutines at one 
time. Thus , one can have a subroutine, that 
in turn calls another subroutine, that in turn 
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calls another one, up to seven levels, and the 
machine will still be able to return to the 
initial calling location . The programmer must 
ensure that subroutines are not nested more 
than seven levels otherwise the P ROG RAM 
COUNTER PUSH-DOWN STACK will push 
the original calling addressees) completely out 
of the push-down stack. The program could 
th en no longer automatically return to the 
initial calling location. 

The RETURN instruction which termi-
nates a SUBROUTINE only requires one 
word. When the CPU encounters a RETURN 
instruction it causes the PROGRAM COUNT-
ER PUSH-DOWN STACK to " pop" up one 
level. This effectively causes the address saved 
in the stack by the calling routine to be taken 
as the new program counter. Hence , program 
execution returns to the calling location . 

THE UNCONDITIONAL CALL 
INSTRUCTION 

CAL 1X6 

This instruction followed by two words 
containing the LOW and then the HIGH order 
of the starting address of the SUBROUTINE 
that is to be executed is an UNCONDITION-
AL CALL. The subroutine will be executed 
regardless of the status of the FLAGS. The 
next sequential address after the CAL in-
struction is saved in the PROGRAM COUNT-
ER PUSH-DOWN STACK. 

THE UNCONDITIONAL RETURN 
INSTRUCTION 

RET OX7 

This instruction directs the CPU 
to unconditionally "pop" the program 
counter push-down stack UP one level. 
Program execution will continue from 
the address saved by the subroutine 
calling instruction. 



CALL A SUBROUTINE IF THE 
DESIGNATED FLAG IS TRUE 

CTC 
CTZ 
CTS 
CTP 

142 
152 
162 
172 

In a manner similar to the conditional 
JUMP IF TRUE instructions, these instruc-
tions (which must all be followed by the 
LOW and HIGH portions of the called sub-
routine's starting address) will only perform 
the "call" if the designated flag is in the 
TRUE (logical one) state. If the designated 
flag is FALSE then the CALL instruction is 
ignored. Program execution then continues 
with the next sequential instruction. 

RETURN FROM A SUBROUTINE IF THE 
DESIGNATED FLAG IS TRUE 

RTC 
RTZ 
RTS 
RTP 

043 
053 
063 
073 

These one word instructions will cause a 
SUBROUTINE to be TERMINATED only if 
the designated flag is in the logical one 
(TRUE) state. 

CALL A SUBROUTINE IF THE 
DESIGNATED FLAG IS FALSE 

CFC 
CFZ 
CFS 
CFP 

102 
112 
122 
132 

These instructions are the opposit of the 
previous group of calling commands . The sub-
routine is called only if the designated flag 

1 - 14 

is in tbe FALSE (logical zero) condition. 
Remember, these instructions must be fol-
lowed by two words which contain the 
LOW and HIGH part of the starting address 
of the SUBROUTINE that is to be executed 
if the designated flag is FALSE. If the flag 
is TRUE, the subroutine will not be called 
and program operation will continue with 
the next instruction in the current sequence. 

RETURN FROM A SUBROUTINE IF THE 
DESIGNATED FLAG IS FALSE 

RFC 
RFZ 
RFS 
RFP 

003 
013 
023 
033 

These one word instructions will termi-
nate a subroutine ("pop" the program count-
er stack UP one level) if the designated flag 
is FALSE. Otherwise, the instruction is ig-
nored and program operation is continued 
with the next instruction in the subroutine. 

THE SPECIAL RESTART SUBROUTINE 
CALL INSTRUCTIONS 

There is a special purpose instruction avail-
able that effectively serves as a one word 
SUBROUTINE CALL. (Remember that it 
normally requires three words to specify a 
subroutine call.) This special instruction 
allows the programmer to call a subroutine 
that starts at anyone of eight specially 
designated memory locations. The eight 
special memory locations are at locations: 
000, 010, 020 , 030, 040, 050, 060 and 070 
on page zero. There are eight variations of the 
machine code for the REST AR T instruction. 
One for each of the above addresses. Thus, 
the one word instruction can serve to CALL a 
SUBROUTINE at the specified starting loca-
tion (instead of having two additional words 
to specify the starting address of a sub-
routine). It is often convenient to utilize a 



RESTART command as a quick CALL to an 
often used subroutine. Or, as an easy way to 
call short "starting" subroutines for large pro-
grams . Hence. the name for the type of in-
struction. The eight RESTART instructions , 
in their mnemonic and machine code forms, 
along with the starting address associated with 
each one is listed below. 

RST 0 
RST 1 
RST 2 
RST 3 
RST 4 
RST 5 
RST 6 
RST 7 

005 
015 
025 
035 
045 
055 
065 
075 

00000 
00010 
00020 
00030 
00040 
00050 
00060 
00070 

INPUT INSTRUCTIONS 

In order to receive information from an ex-
ternal device the computer must utilize a 
group of special signal lines. The typical 
'8008' computer is designed to handle up to 
eight groups (each group having eight signal 
lines) of INPUT signals. A group of signals is 
accepted at the computer by what is referred 
to as an INPUT PORT. The computer con-
trols the operation of the INPUT PORTS. 
Under program control, the computer can be 
directed to obtain the information that is on a 
group of lines coming in to any INPUT 
PORT. When this is done the information 
will be transferred to the accumulator. 
Various types o f external equipment, such as 
an electronic keyboard or measuring instru-
ments , can be connected to the INPUT 
PORTS. The INP UT PORTS are typically re-
ferred to as having numbers from '0' to ' 7.' 
The typ ical mnemonics and machine codes 
for INPUT instructions are shown next. 

INP 0 
INP 1 

INP 6 
INP 7 

101 
103 

115 
117 
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It may be interesting to note that the 
machine codes for input ports increase by a 
factor of two for each port. Note too, that 
while the mnemonic fo r an input instruction 
has two parts, the machine code only requires 
one word in memory. It is also important to 
realize that while an input instruction brings 
data into the accumulator it does not affect 
the status of any of the CPU flags! 

OUTPUT INSTRUCTIONS 

In o rde r to output information to an ex-
ternal device the computer utilizes another 
group of signal lines which are referred to as 
OUTPUT PORTS. A Typical '8008 ' system 
may be equipped to service up to twenty-four 
OUTPUT PORTS. (Each OUTPUT PORT ac-
tually consists of eight signal lines.) An 
OUTPUT instruction causes the contents of 
the accumulator to be transferred to the sig-
nal lines of the designated OUTPUT PORT. 
The output ports are normally designated by 
octal numbers in the range 10 to 37. The list 
below shows the typical mnemonics used to 
specify an OUTPUT PORT along with the 
associated machine code. (It may be 
interesting to note again that the machine 
code increases by a factor of two for each 
port.) 

OUT 10 
OUT 11 

OUT 21 

OUT 36 
OUT 37 

121 
123 

141 

175 
177 

An OUTPUT instruction only requires one 
machine code word (even though the mne-
monic is typically specified in two parts). 
OUTPUT PORTS are connected to external 
devices that one desires to have the com pu ter 
transmit information to, such as a CRT dis-
play, or machinery that is to be placed under 
computer control. 



THE HALT INSTRUCTION 

There is one more instruction in the 
'8008 ' instruction set. This instruction 
directs the CPU to stop all operations and 
to remain in that state until an INTERRUPT 
signal is received. In a typical '8008' system 
an INTERRUPT signal may be generated by 
an operator pressing a switch or by an exter-
nal piece of equipmen t se nding an elec-
tronic signal to the CPU. This instruction 
is normally used when the programmer 

desires to terminate a program or when it 
is desired to have the computer wait for an 
operator or external device to perform some 
action. There are three machine codes that 
may be used for the HALT command. 

HLT 
HLT 
HLT 

000 
001 
377 

The HALT instruction does not affect 
the status of the CPU flags. 

INFORMATION ON INSTRUCTION EXECUTION TIMES 

When programming fo r "real-time" appli-
cations it is important to know how much 
time each type of instruction requires to be 
executed. With this information the pro-
grammer can develop "timing loops" or de-
termine with substantual accuracy how much 
time it will take to perform a particular series 
of instructions. This information is espec-
ially valuable when dealing with programs 
that control the operations of external 
devices which might require events to occur 
at specific times. 

The following table provides the nominal 
instruction execution time for each cate-
gory of instruction used in an '8008' system. 
The precise time needed for each instruction 

depends on how close the master clock has 
been set to a nominal value of 500 kilo-
hertz. The table shows the number of cycle 
states required by t he type of instruction 
followed by the nominal time required to 
perform the entire instruction. Since each 
state executes in four microseconds, the 
total t ime required to perform the instruc-
tion as shown in the table was obtained by 
multiplying the number of states by four 
microseconds. By knowing the number of 
states required for each instruction the pro-
grammer can often rearrange an algorithm 
or substitute different types of instructions 
to provide programs that have events occur-
ing at precisely timed intervals . 

INSTR UCTION EXECUTION TIME TABLE 

LOAD DATA FROM A CPU REGISTER TO ANOTHER CPU REGISTER 5 20 Us 

LOAD DATA FROM A CPU REGISTER TO A LOCATION IN MEMORY 7 28 

LOAD DATA FROM MEMORY TO A CPU REGISTER 8 32 

LOAD IMMEDIATE DATA INTO A CPU REGISTER 8 32 

LOAD IMMEDIATE DATA INTO A LOCATION IN MEMORY 9 36 
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INSTRUCTION EXECUTION TIME TABLE (CONCLUDED) 

INCREMENT OR DECREMENT A CPU REGISTER 5 20 Us. 

ARITHMETIC/COMPARE BETWEEN ACCUMULATOR & A CPU REGISTER 5 20 

ARITH/COMPARE BETWEEN ACCUMULATOR & A WORD IN MEMORY 8 32 

IMMEDIATE ARITHMETIC AND COMPARE 8 32 

BOOLEAN OPS BETWEEN ACCUMULATOR AND CPU REGISTERS 5 20 

BOOLEAN OPS WITH ACCUMULATOR & A WORD IN MEMORY 8 32 

IMMEDIATE BOOLEAN OPERATIONS 8 20 

ROTATE THE ACCUMULATOR 5 20 

JUMP AND CALL COMMANDS (UNCONDITIONAL) 11 44 

JUMP/CALLS WHEN CONDITION NOT SATISFIED (CONDITIONAL) 9 36 

JUMP/CALLS WHEN CONDITION SATISFIED (CONDITIONAL) 11 44 

RETURN (UNCONDITIONAL) 5 20 

RETURN WHEN CONDITION NOT SATISFIED (CONDITIONAL) 3 12 

RETURN WHEN CONDITION SATISFIED (CONDITIONAL) 5 20 

RESTART COMMAND 5 20 

OUTPUT COMMAND 6 24 

INPUT COMMAND 8 32 

HALT COMMAND 4 16 
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INITIAL STEPS FOR DEVELOPING PROGRAMS 

The first task that should be done prior 
to starting to write the individual instruc-
tions for a computer program is to decide 
exactly what it is that the computer is to 
perform and to write the goal(s) down on 
paper! This statement might seem unneces-
sary to some because it is such an obvious 
one. It is stated because the majority of 
people learning to develop programs will 
realize its significance when they discover, 
halfway through the writing of a large mach-
ine language program, that they left out a 
vital step. Such an error can typically result 
in the programmer having to start back at 
the beginning and rewrite the entire pro-
gram. The practice of writing down just 
what tasks a particular program is to perform 
and the steps in which they are to be done , 
will save a lot of work in the long run. The 
written description should be as complete 
and detailed as necessary to ensure that 
exactly each step of the program will be 
clear when actually writing the program in 
machine language. It is generally wise for 
the novice programmer to take pains to be 
quite detailed in the initial description. 

The act of actually writing down the 
proposed operation of the program desired 
serves several valuable purposes . First, it 
forces one to carefully review what is 
planned. In doing so, it often vividly 
reveals flaws In original mental ideas . 
Secondly, it serves as a guide and a check 
list as the machine language program is 
developed. Remember, it will often take 
a number of hours to write a fair sized 
program. These hours might be spread over 
several days or weeks. In this period of time 
the human mind can easily forget original 
intentions and plans if the human memory 
is not refreshed by written notes. A pro-
gram that is not kept carefully organized 
as it is developed can become a real mess . 
This is especially so if one keeps forget-
ting key concepts or has to constantly 
add in forgotten routines. The time wasted 
by such sloppy procedures can be avoided 
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if proper work habits are developed from 
the beginning. 

Once one has written a description of 
the general task(s) to he performed, and 
has ascertained that there are no flaws to 
the overall concepts or ideas, it is a good 
idea to draw up a set of FLOW CHARTS 
for the proposed program . FLOW CHARTS 
are detailed written and symbolic descrip-
tive diagrams of the flow of operations 
that are to occur as t he program is executed . 
They also show the interrelationships he-
tween different portions of a program. 

Over the years a variety of symbols and 
methods have been developed for creating 
flow charts. All of the varieties have the same 
basic purpose and most of the differences are 
the result of individuals pushing their own 
preferences. Most people can do admirably 
well using just a few basic symbols to denote 
fundamental types of operations in a com-
puter program. The small group to be pre-
sented here will enable most microcomputer 
programmers to develop flow charts rapidly, 
with little confusion, and without having to 
learn a host of special symbols. 

A CIRCLE may be used as a general 
purpose symbol to specify an entry or exit 
point in a routine or subroutine. Information 
may be printed inside the circle. This in-
formation might denote where the routine 
is corning from or going to (such as the page 
number and location on a page for a program 
that requires several sheets of paper to be 
flow charted) . It might contain transfer 
information . Or, it could denote the starting 
and stopping points within a program . Some 
typical examples· of the CIRCLE symbol 
are illustrated next . 



r:::\ 
'0 
(;;\ v 
G 
8 

A square or rectangel may be used to 
denote a general or specific operation. The 
ty pe of operation may be described inside the 
box such as illustrated in the follow ing 
examples. 

J CLEAR THE ACCUMULATOR J 

STORE THE 
INCOMING 
MESSAGE 

SET 
I/O 

FLAGS 

A diamond form may be used to symbolize 
a decision or branching point in a program. 
The determining factor(s) for the decision or 
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branching operation may be indicated inside 
the symbol. The two sid e points of the 
diamond are used to illustrate t he path 
taken when a decision has been made. The 
diamond symbol is illustrated next . 

NO 

NO 

IS 
X > Y 

INFO 
READY? 

YES 

YES 

Lines with arrows may be used to inter-
connect the three types of symbols pre-
sented. In thi s way, the symbols may be 
connected to form readily understood FLOW 
CHARTS of operations that are to occur 
in a program and to show how various 
operations relate to each other. Flow charts 
are extremely valuable references when 
developing programs as well as when one 
wants to update o r expand a program and 
needs to quickly review t he operatio n of the 
program of specific interest. 

An example of a fl o w chart for a relatively 
simple program will be sho wn next. The pro-
gram illustrated by the fl o w chart is to accept 
characters from an ASCII encoded electric 
typewriter and send out the equivalent 
character to a BAUDOT cod ed device. In 
this illustration it is assumed that the I/O 
interfaces to the machines are parallel inter-
faces (versus the possibility of being bit-
serial interfaces). Thus, complex timing 
operations do not have to be discussed in 
the example . A written description of the 
example program could be stated as follows . 

The computer is to mo nitor bit B7 of 
INPUT PORT 01 , which is the control port 



fo r an interface to an ASCII encoded elec-
tric typewriter_ Whenever bit B7 on INPUT 
PORT 01 goes low (logic '0') it indicates a 
new character is waiting in parallel format 
fro m t he typewriter at INPUT PORT 00_ 
The computer is to immediately obtain the 
character that is waiting at INPUT PORT 00 
and as soon as it has obtained the data it is 

to send a logic '1' (high) signal to bit BO of 
OUTPUT PORT 11 to signal the ASCII in-
terface that the character has been accepted 
by the computer. (The receipt of this signal 
by the ASCII interface w ill then cause the 
ASCII interface to restore the control signal 
on bit B7 of INPUT PORT 01 to a high 
(logic '1') condition_) 

- 8 -r 

NO IS B7 YES 
OF INP PORT 01 

A LOGIC 'O'? 

GET ASCII 
CHARACTER 
FROM INPUT 

PORT 00 

SEND A LOGIC '1 ' ON BO 
OF OUTPUT PORT 11 TO 

CLEAR THE ASCII 
INTERFACE 

GO TO LOOK-UP TABLE 
ROUTINE AND FIND 

THE EQUIV ALENT BAUDOT 
CHARACTER 

SEND THE BA UDOT CODE 
TO OUTPUT PORT 10 IN 

BITS B5 THROUGH BO 
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Whenever a character has been received 
from the ASCII typewriter on INPUT PORT 
00, the computer is to compare the charac-
ter just received against an ASCII to 
BAUDOT look-up table which is stored in the 
computer's memory until it finds a match. It 
will then obtain the equivalent BAUDOT 
character from the conversion table. It will 
then send the BAUDOT code for the charac-
ter in bit positions B5 through BO of 
OUTPUT PORT 10. Bit B5 will serve to in-
dicate to the BAUDOT interface whether 
the code in bits B4 through B'O is to be pro-
cessed by the BAUDOT device when it is in 
the LETTERS or FIGURES mode. It is 
assumed that the character rate (but not 
necessarily the baud rate) is the same for both 
machines so that the example may be simpli-

fied by eliminating the requirement for 
character buffering or stacking in the memory 
of the computer . However, in practical appli-
cations such capability might be required. 
The feature could be added to the program. 
However, for this case, as soon as the 
BAUDOT code has been transmitted ' (in 
parallel format) to the BAUDOT device, the 
computer will simply go back to waiting for 
the next character to come in from the ASCII 
machine. The written description of the pro-
gram just presented is ruccinctly rummarized 
in the flow chart shown on the previous page! 

The flow chart of the program shown on 
the previous page could be considered an 
outline of the program . Portions of that flow 
chart could be expanded into more detailed 

INITIALIZE POINTERS TO 
START OF LOOK-UP TABLE 

COMPARE THE CONTENTS OF THE 
CURRENT LOCATION IN THE LOOK-UP 

T ABLE AGAINST THE CHARACTER 
PRESENTLY IN THE ACCUMULATOR 

NO .--_-< 

ADVANCE THE 
TABLE POINTER 
BY TWO WORDS. 

ARE THEY 
THE SAME? 

YES 
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HA VE FOUND THE DESIRED 
CHARACTER. ADVANCE THE 

POINTER TO THE NEXT WORD 
IN THE TABLE AND FETCH 

THE BAUDOT EQUIVALENT . 



flow charts to present a detailed view of 
special operations. For instance, the rectangle 
labeled GO TO LOOK-UP TABLE ROUTINE 
AND FIND THE EQUIVALENT BAUDOT 
CHARACTER really refers to a portion of the 
program that consists of a number of opera-
tions. Those operations could be described 
in a separate flow chart such as the one just 
presented . 

The reader can see that the expanded 
flow chart illustrates the operation of the 
table look-up routine portion of the program. 
With a little study o ne can discern that the 
look-up table co nsist of an area in memory 

ADDRESS 

PAGE: XX LOC: Z 
PAGE: XX LOC: Z+1 
PAGE: XX LOC: Z+2 
PAGE : XX LOC : Z+3 

PAGE: XX LOC : Z+2(N-1) 
PAGE: XX LOC: Z+2(N-1)+1 

that has an ASCII encoded character in one 
word, followed in the next word by the 
same character in BAUDOT code. This 
sequence continues for all the possible 
characters as illustrated below. The flow 
chart illustrates how the data in the look-up 
table is scanned by skipping over every other 
memory location (which contains the 
BAUDOT codes) until the proper ASCII 
character is located. When that is located, 
the routine simply extracts the proper 
BAUDOT code from the next memory 
locaction in the table. The flow chart makes 
the sequence easier to understand than a 
purely verbal explanation of the routine. 

MEMORY CONTENTS 

ASCII code for letter A 
BAUDOT code for letter A 
ASCII code for letter B 
BAUDOT code for letter B 

ASCII code for N'th letter 
BAUDOT code for N'th letter 

ILLUSTRATION OF LOOK-UP TABLE ORGANIZATION FOR THE EXAMPLE PROGRAM 

It is strongly recommended that beginning 
programmers develop the habit of first writing 
down the function(s) of the desired program 
they intend to create. Next, one should draw 
up flow chart s as detailed as one feels is neces-
sary to clearly show the operation of the pro-
gram that is to be developed. A novice pro-
grammer will be wise to prepare quite detailed 
flow charts. More experienced programmers 
may prefer to leave out details of operations 
that they tho roughly understand. Flow charts 
should serve as ready references when the pro-
grammer goes on to actually develop the step-
by-step machine language instruction sequen-
ces for the computer. 

Flow charts are also an excellent method 
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for communicating programming concepts 
to fellow computer technologists. 
Remember that general flow charts do not 
have to be machine specific!) Learning how 
to prepare and read flow charts is an 
important (yet easy) skill for all computer 
programmers to acquire. It can also be fun 
and a highly creative process. Using the 
technique, one may review the overall 
operation of a program under development 
and gain new insights into where to 
interconnect routines, where common loops 
exist (which can save valuable memory room 
if they are subroutined), and find other ways 
in which to enhance a program's 
capabilities. 



FUNDAMENTAL PROGRAMMING SKILLS 

Before one can effectively develop machine 
language programs for a computer, one must 
be thoroughly familiar with the instruction 
set for the machine . It is assumed for the re-
mainder of this manual that the reader has 
studied the detailed information for the in-
struction set of the 8008 CPU which was 
provided in the first chapter. The programmer 
shou ld become intimately familiar with t he 
mnemonics (pronounced kneemonics) for 
each type of instruction. Mnemonics are 
easily remembered symbolic representations 
of machine language instructions. They are far 
easier to work with than the actual numeric 
codes used by the computer when the pro-
grammer is developing a program. While the 
programmer will develop programs and think 
in terms of the mnemonics, t he programmer 
must eventually convert the mnemonics to 
the machine codes used by the computer . 
This, however, is almost purely a look-up 
procedure. In fact, as will be seen shortly , 
this task can actually be performed by t he 
computer through the use of an ASSEMBLER 
program. 

Machine language programmers should also 
be familiar with manipulating numbers in 
binary and octal form. It is assumed that 

readers are familiar with representing numbers 
as binary values. However, there may be a few 
readers who are not used to the convention of 
representing binary numbers by their octal 
equivalents. The technique is quite simple. 
It co nsists merely of grouping binary digits 
into groups of three and representing their 
value as an octal number. The octal num-
bering system only uses the digits 0 through 
7. This is exactly the range that a group of 
t hree binary digits can represent. The octal 
numbering system makes it a lot easier to 
manipulate binary numbers. For instance, 
most people find it considerably more con-
venient to remember a t hree digit octal num-
ber such as 104 than the binary equivalent 
01000100. An octal number is easily ex -
panded to a binary number by simply placing 
the octal value in binary form using three 
binary digits. 

The information in an eight bit binary re-
gister can be readily converted to an octal 
number by grouping the bits into groups of 
three starting with the least significant bits. 
The two most significant bits in the register 
which form the last group will only be able to 
represent the octal numbers 0 to 3 . The dia-
gram below illustrates the convention. 

EIG HT CELL REGISTER 

o 
************************************************* 
* * t * * t * * * 
*0 *ltO*0*Ot1*0*0* 
* * t * * t * * * 
************************************************* 

1 o 4 

CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS 
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Note in the diagram how an imaginary ad-
ditional binary digit with a value of zero was 
assigned to the left of the most significant bit 
so that the octal convention for the two most 
significant bits could be maintained. 

A table illustrating the relationship 
between the binary and octal systems is 
provided for reference below. 

BINARY 
PATTERN 

000 
001 
a 1 a 
all 
100 
101 
110 
111 

REPRESENTATIVE 
OCTAL NO. 

a 
1 
2 
3 
4 
5 
6 
7 

A person who desires to develop machine 
language programs for computers should 
become familiar with standard conventions 
used when dealing with closed registers 
(groups of binary cells of fixed length such as 
a memory word or CPU register). One very 
simple point to remember is that when a 
group of cells in a register is in the all ones 
condition: 

11111111 

and a count of 1 is added to the register, the 
register goes to the value: 

00 000 000 

Or, if a count of: 10 (binary) was added to a 
register that contained all ones, the new value 
in the register would be as shown: 

11111111 
+00 000 010 

00 000 001 

Similarly, going the opposite way, if one sub-
tracts a number such as 100 (binary) from a 
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register that contains some lesser value, such 
as 010 (binary), the register would contain 
the result shown below : 

00 000 010 
00 000 100 

11111110 

It may be noted that if one uses all the bits 
in a fixed length register, one may represent 
mathematical values with an absolute magni-
tude from zero to the quantity two to the 
Nth power, minus one (0 to (2**N - 1)) 
where N is the number of bits in the register . 
If all the bits in a register are used to 
represent the magnitude of a number, and it is 
also desired to represent the magnitude as 
being either positive or negative in sign, then 
some additional means must be available to 
record the sign of the magnitude . Generally, 
this would require using another register or 
memory location solely for the purpose of 
keeping track of the sign of a number. 

In many applications it is desirable to es-
tablish a convention that will allow one to 
manipulate positive and negative numbers 
without having to use an additional register 
to maintain the sign of a number. One way 
this may be done is to simply assign the most 
significant bit in a register to be a sign in-
dicator. The remaining bits represent the 
magnitude of the number regardless of 
whether it is positive or negative. When this is 
done, the magnitude range for an N cell re-
gister becomes a to (2**(N-1))-1 rather than 
a to (2**N) - 1. The convention normally 
used is that if the most significant bit in the 
register is a one then the number represented 
by the remaining bits is negative in sign . If 
the MSB is zero, then the remaining bits 
specify the magnitude of a positive number. 
This convention allows computer 
programmers to manipulate mathematical 
quantities in a fashion that makes it easy for 
the computer to keep track of the sign of a 
number. Some examples of binary numbers in 
an eight bit register are shown next. 



BINARY 
REPRESENTATION OCTAL DECIMAL 

00 001 000 010 + 8 

10 001 000 210 8 

01 III III 177 + 127 

1 1 111 1 1 1 377 - 127 

00 000 001 001 + 1 

10 000 001 201 1 

While the signed bit convention allows the 
sign of a number to be stored in the same re-
gister (or word) as the magnitude, simply 
using the signed bit co nvention alone can still 
be a somewhat clumsy method to use in a 
computer. This is because of the method in 
which a computer mathematically adds the 
contents of two binary registers in the accum-
ulator. Suppose, for example , that a computer 
was to add together positive and negative 
numbers that were stored in registers in the 
signed bit format. 

PLUS 
00001000 
10001000 

(+ 8 decimal) 
(- 8 decimal) 

EQUAL 10010000 (This is not O!) 

The result of the operation illustrated 
would not be what the programmer intended! 
In order for the operation to be performed 
correctly , it is necessary to establish a method 
for processing the negative number called the 
two's complement convention. In t he two's 
complement convention, a negative number is 
represented by complementing what the value 
for a positive number would be (comple-
menting is the process of replacing bits 
that are ' 0' with a '1,' and those that are '1' 
with a 0) and then adding the value one (1) to 
the complemented value. As an example , the 
number minus eight (-8) decimal would be 
derived from t he number plus eight (+8) by 
the fo llow ing operations. 
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00 001 000 (Original + 8) 

11 110 1 1 1 (Complemented ) 
a 0 a a a 001 (now add +1) 
-- --- ---------- ------
11111000 (2's complement 

form of - 8) 

Some examples of numbers expressed in 
two 's complement notation with the signed 
bit convention are shown below. 

BINARY 
REPRESENTATION OCTAL DECIMAL 

00 001 000 010 + 8 

1 1 III 000 370 8 

01 III III 177 + 127 

10 000 a 01 201 - 127 

00 000 001 001 + 1 

11 III III 377 1 

00 000 000 000 + a 
10 000 000 200 - 128 

Note that when using the two's comple-
ment method, one may still use the conven-
tion of having the MSB in the register estab-
lish the sign. If the MSB = 1 , as in the above 
illustration, the number is assumed to be 
negative. Since the number is in the two's 
complement form, the computer can readily 
add a positive and a negative number and 
come up with a result that is readily inter-
preted. Look! 

a 0 a a 1 0 0 0 (+ 8 decimal) 
ADD 1 1 1 1 1 a a 0 (- 8 dec as 2's camp) 

o a a a 0 a a 0 (Correct answer = 0) 

Another estab lished co nvention in handling 
numbers with a computer is to assume that '0' 
is a positive value. Because of this co nvention , 



the magnitude of the largest negative number 
that can be represented in a fixed length re-
gister is one more than that possib le for a 
positive number. 

The various means of storing and mani-
pulating the signs of numbers as just dis-
cussed have advantages and drawbacks, and 
t he method used d epend s on the specific 
application . However , for most user 's, the 
two 's complement signed bit co nvention will 
be the most convenient , mo st often used, 
m ethod . The prospective machine language 
programmer should make sure that the co n-
vent ion is well understood. 

Another area that the machine language 
programmer must have a thorough knowledge 
of is t he co nversion of numbers between the 
decimal numbering system that most people 
work with on a daily basis, and the binary and 
octal numbering system utilized by computer 
technologist s. Programmers wo rking with 
microcomputers will generally find the octal 
numbering system most convenient. Becau se 
the conversion from octal to binary is simply 
a matter of grouping binary bits into groups 
of three as discussed at the start of t his 
chapter I it is easier to remember octal codes 
than long strings of binary digits. However, 
most people are used to thinking in decimal 
terms, which the computer does not use at 
the machine language level. Thus, it is nec-
essary for programmers to be able to convert 
back and forth between the various num-
bering systems as programs are· developed. 

ORIGINAL NUMBER 1234 

LAST Q UOTIENT BECOMES 
NEW DIVIDEND 154 

LAST QUOTIENT BECOMES 
NEW DIVIDEND 19 

LAST QUOTIENT BECOMES 
NEW DIVIDEND 2 

The conversion process that is generally the 
most troublesome for peo ple to learn is from 
decimal to binary, or decimal to octal (and 
vice-versa)! It is usually a bit easier for people 
to learn to convert from d ecimal to octal, and 
then use the simple octal to binary expansion 
technique , than to co nvert directly from 
decimal to binary . The easier method will be 
presented here. It is assumed that the read er 
is already familiar with going from octal to 
binary (and vice-versa). Only the conversions 
between decimal and octal (and the reverse) 
will be presented at th is po int. 

A decimal number may be converted to its 
octal equivalent by the fo llow ing technique: 

Divide the decimal number by 8. Record 
the remainder (note that IS the RE-
MAINDER") as the least significant digit 
of the octal number being d erived . Take t he 
quotient just obtained and use it as the new 
dividend. Divide the new dividend by 8. 
The remainder from this operation becomes 
the next significant digit of the octal number. 
The quotient is again used as the new divi-
dend. The process is continued until the quo-
tient becomes '0 .' The number obtained from 
placing all the remainders (from each division) 
in increasing significant order (first remainder 
as the least significant digit , last remainder as 
the mo st significant digit) is the octal number 
equivalent of the original decimal. The 
process is illustrated below for clarity. 

The octal equivalent of 1234 decimal is: 

I 8 154 2 

I 8 19 2 . 

I 8 2 3 . 

I 8 2 . 
--------------

Thus the octal eq uivalent of 1234 d ecimal is: 2 3 2 2 
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The above method is quite easy and 
straightforward. Since a majority of the time 
the user will be interested in co nversions of 
decimal numbers less than 255 (the maximum 
decimal number t hat can be expressed in an 

ORIGINAL NUMBER 

LAST QUOTIENT BECOMES 
NEW DIVIDE ND 

LAST QUOTIENT BECOMES 
NEW DIVIDE ND 

255 

31 

3 

Thus the octal equivalent of 255 is: 

For numbers less than 63 decimal (and 
"-lch numbers are used frequently to set 
cou nters in loop routines) the above method 
reduces to one division with the remainder 
being the LSD and the quotient the MSD. 

/ 

/ 

eight bit register) only a few divisions are 
necessary: 

The octal equivalent of 255 decimal is: 

QUOTIENT REMAINDER 

8 31 7 

8 3 7 

/ 8 3 
-----_.----------

377 

This is a feat most programmers have little 
difficulty doing in their head ! 

The octal equivalent of 63 decimal is: 

ORIGINAL NUMBER 63 / 8 7 7 

LAST QUOTIENT BECOMES 
NEW DIVIDEND 7 / 8 

Thus the octal equivalent of 63 is: 

7 

77 

Going from octal to decimal is quite easy 
too. The process consists of simply multi-
plying each octal digit by the number 8 raised 
to its positional (weighted) power, and then 

adding up the total of each product for all 
the octal digits: 

2322 Octal 

· . .. . 2 X (8*0) (2 X 1) 2 

· .. 2 X (8*1) (2X8) 16 

· . 3 X (8*2) (3 X 64) 192 

2 X (8*3) (2 X 512) 1024 
- ------------

Thus the decimal equivalend of 2322 Octal is : 1234 
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Besides the basic mathematical skills in-
volved with using octal and binary numbers, 
there are some practical bookkeeping consid-
erations that machine language programmers 
must learn to deal with as they develop pro-
grams_ These bookkeeping matters have to do 
with memory usage and allocation. 

As the reader who has read chapter one in 
this manual know s, each type of instruction 
used in the 8008 CPU requires one , two, or 
three words o f memory. As _a general rule, 
simple register to register or register to 
memory commands require but one memory 
word. Immediate type commands require two 
memory locations (the instruction code 
followed immediately by the data or oper-
and). Jump or call instructio ns require three 
word s of memory storage . One word for the 
instruction code and two more words for the 
address of the location specified by the in-
struction. The fact that different types of in-
structions require different amounts of 
memory is important to the programmer. 

As programmers write a program it is often 
necessary for them to keep tabs on how many 
word s of memory the actual operating por-
tion of the program will require (in addition 
to controlling the areas in memory that will 
be used for data storage) . One reason for 
maintaining a count of the number of 
memory word s a program requires is simply 
to ensure that the program w ill fit into the 

MEMORY TOTAL 
WORDS WORDS 
THIS THIS 
INSTR. ROUTINE 

2 2 
2 4 
2 6 
1 7 
1 8 
1 9 
1 10 

In t he example the total number of words 
used in co lumn was kept using decimal num-

available memory space. 

Often a program that is a little too long to 
be stored in an available amount of memory 
when first developed can be rewritten, after 
some thought, to fit in the available space. 
Generally, the trade-off between writing com-
pact programs versus not-50-compact routines 
is simply the programmer's development time. 
Hastily constructed programs tend to require 
more memory storage area because the pro-
grammer does not tak e the time to consider 
memory conserving in stru ction combinations. 

However, even if o ne is not concerned 
about co nserving t he amount of memory used 
by a particular program , one still often needs 
to know how mu ch space a group of in-
structions will co nsume in memory. This is 
00 that one can tell wh ere another program 
might be placed without interfering with a 
previous program. 

For these reason s, programmers often find 
it advantageous to develop the habit of 
writing down the number of memory word s 
utilized by each instruction as they write the 
mnemonic sequences for a routine. Addition-
ally, it is often desirable to maintain a column 
showing the total number of word s required 
for storage of a routine . An example of a 
work sheet with this practice being followed 
is illustrated here : 

MNEMONICS COMMENTS 

LAIOOO 
LHI001 
LLI150 
ADM 
INL 
ADM 
RET 

Place 000 in accumulator 
Set Register H to 1 
And Regis L to 150 
Add t he content s of memory 

- Locations 150 & 151 on page 1 
Adding second number to first 
End of rub routine 

bers. Many programmer s prefer to maintain 
this column using octal numbers because of 

3-6 



the direct correlation between the total num-
ber of words used, and the actual memory 
addresses used by the 8008. 

The example just presented can be used to 
introduce another consideration during pro-
gram development. That is memory alloca-
tion. One must distinguish between program 
",orage areas in memory, and areas used to 
hold data that is operated on by the program. 
Note that the sample subroutine was designed 

PC LOC MACHINE CODE LABELS 
01 000 ADD, 
01 010 
01 020 
01 030 
01 040 
01 050 
01 060 
01 070 
01 100 
01 llO 
01 120 
01 130 
01 140 
01 150 
01 151 
01 152 
01 153 
01 154 
01 155 
01 156 
01 157 
01 160 
01 170 
01 200 

to have the computer add the contents of 
memory locations 150 and 151 on page Ol. 
Thus , those two locations must be reserved 
for data. One must ensure that those 
specific memory locations are not inadver-
tantly used for some other purpose. In a 
typical program, one may have many lo-
cations in memo ry assigned for holding or 
manipulating data . It is important that one 
maintain some sort of system of recording 
where one plans to store block s of data and 

MNEMONICS COMMENTS 
Add no 's @ 150 & 151 

Number storage 
Number storage 

MEMORY USAGE MAP 

3-7 



where various operating routines will reside 
as a program is developed. This can be readily 
accomplished by setting up and using memory 
usage maps (often commonly referred to as 
core maps). An example of a memory usage 
map being started for the subroutine just dis-
cussed is shown on the previous page. 

The same type of form may also be used as 
a program development sheet as shown below. 
One may observe that the form provides for 

PG LOC MACHINE CODE LABELS 
01 000 006 000 ADD, 
01 002 056 001 
01 004 066 150 
01 006 207 
01 007 060 
01 010 207 
01 all 007 

memory addresses, the actual octal values 
of the machine codes , labels and mnemonics 
used by the programmer, and additional in-
formation. 

Memory usage maps are extremely valuable 
for keeping large programs organized as they 
are developed, or for displaying the locations 
of a variety of different programs that one 
might desire to have residing in memory at 
the same time. It is suggested that the person 

MNEMONICS COMMENTS 
LA! 000 Set ACC = 000 
LHI 001 Set pntr PG = 1 
LL! 150 Set pntr LOC = 150 
ADM Add l'st no. to ACC 
INL Adv pntr to 2 'nd no . 
ADM Add 2 'nd no. to l 'st 
RET Exit subroutine 

PROGRAM DEVELOPMENT WORK SHEET 
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intending to do even a moderate amount of 
machine language programming make up a 
supp ly o f such forms (using a ditto or mimeo-
graph machine) to have on hand . 

There are so me important factors about 
machine language programming that should 
be pointed out as they have considerable im-
pact on the total efficiency and speed at 
which o ne can develop such programs and get 
them operating correctly. The factors relate 
to one simple fact. Peop le d eveloping machine 
language programs (especially beginners) are 
very pro ne to making programming mistakes! 
Regardl ess o f how carefully one proceeds, it 
always see ms t hat any fair sized program 
need s to be revised befo re a properly 
operating program is achieved. The impact 
that changes in a program have on the de-
velopment (or redevelopment) effort vary 
accord ing to where in the program such 
changes mu st be made. The reason for the 
seriousness of the problem is because program 

MEMORY 
PAGE LOC CONTENTS 

01 000 006 
01 001 000 
01 002 056 
01 003 001 
01 004 066 
01 005 150 
01 006 207 
01 007 060 
01 010 207 
01 011 066 

** 01 012 160 
** 01 013 370 
** 01 014 007 

The ** locations denote the additio nal 
memory locations required by the modified 
subroutine . If the programmer had already 
developed a routine that resided in locations 
012, 013, o r 014, the change would requ ire 
that it be moved! 

If o ne was using a program development 

changes generally result in t he addresses of 
the instructions in memory being altered. 
Remember, if an instruction is added, or de-
leted, then all the remaining instructions in 
the routine being altered mu st be moved to 
different locations! This can have multiplying 
effects if the instructions t hat are moved are 
referred to by other routines (such as call and 
jump command s) because t hen the addresses 
referred to by those types of commands must 
be altered too I To illustrate the situation, a 
change will be made to the sample program 
presented several pages ago. Suppose it was 
decided that the subroutine should place the 
rerult of the addition calculat io n in a word in 
memory before exiting t he subroutine, 
instead of simply having the resu lt in the ac-
cumulator. The original program, fo r 
example , could have been residing in t he 
locations shown on the program development 
work sheet on the previous page. Changing 
the program would result in it occupying t he 
following memory locations: 

MNEMONICS COMMENTS 
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LAIOOO Place 000 in accumulator 

LHI001 Set Reg H to 1 

LLI150 Set Reg L to 150 

ADM Add contents of memory 
INL Locations 150 & 151 
ADM Add 2nd to 1 st 
LLI160 Set Reg L to 160 

LMA Save answer @ 160 
RET End of subroutine 

work sheet, one would have had to erase t he 
original RET instruction at the end of the 
routine and then written in the two new 
command s, and added the RET instruction 
at the end . The effects would not be too de-
vestating since the change was inserted at t he 
end of the subroutine. But, suppose a similar 
change was necessary at the start of a rub-



routine that had 50 instructions in it? The 
programmer would have to do a lot of 
erasing! 

The effects of changes in program source 
listings was recognized early as a problem in 
developing programs. Because of this people 
developed programs called EDITORS that 
would enable the computer to assist people in 
the task of creating and manipulating source 
listings for programs. An EDITOR is a 
program that will allow a person to use a com-
puter as a text buffer. Source listings may be 
entered from a keyboard or other input 
device and stored in the computer's memory . 
Information that is placed in the text buffer is 
kept in an organized fashion, usually by lines 
of text. An Editor program generally has a 
variety of commands available to the operator 
to allow the information stored in the text 
buffer to be manipulated. For instance, lines 
of information in the text buffer may be 
added , deleted, moved about or inserted 
before other lines, and so forth . Naturally, the 
information in the buffer can be displayed to 
the operator on an output device such as a 
cathode ray tube (CRT) or electromechan-
ical printing mechanism. Using this type of 
program, a programmer can rapidly create a 
source listing and modify it as necessary. 
When a permanent copy is desired, the 
contents of the text buffer may be punched 
on paper tape or written on a magnetic 
tape cassette . It turns out that the copy 
placed on paper tape or a cassette can often 
be further processed by another program to 
be discussed shortly which is termed an 
ASSEMBLER program. However, an 
important reason for making a copy of the 
text buffer on paper tape or magnetic cassette 
tape is because if it is ever necessary to make 
changes to the source listing, then the old 
listing can be quickly reloaded back into the 
computer. Changes may then be rapidly made 
using the Editor program, and a new clean 
listing obtained in a fraction of the time that 
might be required to erase and rewrite a large 
number of lines using pencil and paper. 

3 - 10 

Relatively small programs can be developed 
using manual methods. That is, by writing the 
source listings with pencil and paper. But, 
anyone that is planning on doing extensive 
program development work should obtain an 
Editor program in order to substantually 
increase their overall program development 
efficiency . Besides, an Editor program can be 
put to a lot of good uses besides just making 
up source listings' Such as enabling one to 
edit correspondence or prepare written 
documents that are nice and neat in a fraction 
of the time required by conventional 
methods . 

Changes in source listings naturally result in 
changes to the machine codes (which the 
mnemonics simply symbolize). Even more 
important, the addresses associated with 
instructions often must be changed due to 
additions or deletions of words of machine 
code . For instance, in the example routine 
being used in this section, memory address 
PAGE 01 LOCATION 011 originally 
contained the code for a RET (RETURN) in-
struction which is 007. When the subroutine 
was changed by adding several more 
instructions (so the answer could be stored in 
a memory location), the RET instruction was 
shifted down to the address PAGE 01 
LOCATION 014. The address where it 
formerly resided was changed to hold the 
code for the first part of the LLI 160 
instruction which is 066 . Had changes been 
made earlier in the routine , then many more 
memory locations would need to be assigned 
different machine codes. However, the 
changes caused by adding on to the sample 
program previously discussed are not as far 
reaching as the one presented on the follow-
ing page. There the changes result in the 
addresses of subroutines referred to by other 
routines being changed, so that it is then 
necessary to go back and modify the machine 
codes in all of the routines that refer to the 
subroutine that was changed! 



MEMORY 
PAGE LOC CONTENTS MNEMONICS COMMENTS 

00 000 026 OVER, LCI100 Load reg C with 100 
00 001 100 
00 002 106 CAL NEWONE Call a new subroutine 
00 003 013 
00 004 000 
00 005 106 CAL LOAD And then another 
00 006 023 
00 007 000 
00 010 104 JMPOVER Jump back & repeat 
00 Oll 000 
00 012 000 
00 013 056 NEWONE, LH I OOO Load reg H with zeroes 
00 014 000 
00 015 066 LLI200 And L with 200 
00 016 200 
00 017 317 LBM Fetch mem contents to B 
00 020 010 INB Increment the value in B 
00 021 371 LMB Place B back into memory 
00 022 007 RET End of subroutine 
00 023 056 LOAD, LHI003 Set H to PG 03 
00 024 003 
00 025 361 LLB Place register B into L 
00 026 370 LMA Place ACC into memory 
00 027 021 DCC Decrement value in reg C 
00 030 013 RFZ Return if C is not zero 
00 031 000 HLT Halt when C = zero 

Suppose it was decided to insert a single mand in the above program. The new program 
word instruction right after the LCI 100 com- would appear as shown next. 

MEMORY 
PAGE LOC CONTENTS MNEMONICS COMMENTS 

00 000 026 OVER, LCI100 Load reg C with 100 
00 001 100 
00 002 250 XRA Clear the accumulator 

• 00 003 106 CAL NEWONE Call a new subroutine 
* 00 004 •• 014 
• 00 005 000 
• 00 006 106 CAL LOAD And then another 

• 00 007 •• 024 
• 00 010 000 
• 00 Oll 104 JMP OVER Jum p back and repeat 

• 00 012 000 
• 00 013 000 
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MEMORY 
PAGE LOC CONTENTS MNEMONICS COMMENTS 

, 00 014 056 NEWO NE, 
, 00 015 000 
, 00 016 066 
, 00 017 200 
, 00 020 317 
* 00 021 010 
* 00 022 371 
, 00 023 007 
, 00 024 056 LOAD, 
, 00 025 003 
, 00 026 361 
, 00 027 370 
, 00 030 021 
, 00 031 013 
, 00 032 000 

Note in the illustration how not only the 
addresses of all the instructions beyond 
location 002 (denoted by the *) change, but 
even more important , that parts of the in-
structions themselves (the address portion 
of the CAL instructio ns, denoted by the ") 
must now be altered _ The essential point 
being made here is that if the start ing address 
of a routine or subroutine that is referred to 
by any other part of the program is changed, 
then each and every reference to that routine 
must be located and the address portion 
corrected I This can be an extremely formi-
dable, time co nsum ing, tedio us, and down 
right frustrating task if all the references mu st 
be found and corrected by manual means in a 
large program I 

Early computer technologist soon became 
disgusted with making such program correc-
tio ns by hand methods after learning that it 
was almost impossible to d evelop large pro-
grams without making a few error s_ They 
went to work on find ing a method to ease the 
task of making such co rrections and came up 
with a type of program called an ASSEM-
BLER that could utilize the computer it-
self to perfo rm such exacting task s. 
ASSEMB LER programs are types of programs 
that are able to process source listings when 
they have been written in mnemonic (sym-

LHI 000 Load Reg H with zeroes 

LLI 200 And L with 200 

LBM Fetch mem co ntents to B 
INB Increment the value in B 
LMB Place B back into memory 
RET Exit 
LHI003 Set H to PAGE 03 

LLB Place reg B in to L 
LMA Place ACC into memory 
DCC Decrement value in reg C 
RFZ Return if C is not zero 
HLT Halt when C is zero 

bolic) form and t ranslate them into the 
OBJECT cod e (actual machine language code) 
that is util ized directly by t he computer . An 
ASSEMBLER also keeps t rack of assigning 
the proper addresses to references to rout-
ines and subroutines. Th is is acco m plished 
through a process initiated by the program-
mer assigning LABELS to routines in t he 
source listing. One may now see t hat the 
combination of an Editor and an Assembler 
program can greatly ease t he task of d e-
veloping machine language programs over 
that of the purely manual method. The use 
of such programs is almost mandatory when 
programs become large because the manual 
method becomes highly unwieldy. A pr imary 
reason t hat an Editor and Assemb ler are so 
useful is because if a mistake is made in the 
program, one can use the relatively quick 
method of ut il izing the Editor program to 
revi se the source list ing. Then, one may use 
the Assembler program to reprocess the 
corrected source listing and produce a new 
version of the machine cod e assigned to new 
addresses if appropriate. 

For quite small programs, say less than 
100 instru ctions, t he use of Ed itor and 
Assemb ler programs are not mandato ry. 
In fact, even if o ne uses these aids for small 
programs, o ne should know how to manually 
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convert mnemonic listings to object code. 
This is because it may occasionally be de-
sirable to make minor program changes 
(patches) without having to go through 
the process of using an Editor and Assem-
bler. This is particu larl y true when one 
is DEB UGG ING large programs and wants 
to ascertain whether a minor co rrection will 
correct a problem. The process of convert-
ing from a mnemonic listing to actual mach-
ine code is not difficult in concept. Many 
readers will have discerned the process from 

MNEMONIC 

LHI 001 
LLI 000 

AGAIN, LMIOOO 

INL 

JFZ AGAIN 

HLT 

To convert the so urce listing to machine 
(object) code the programmer must first 
decide where the program is to reside in 
memory. In this particular case it would 
certainly not be wise to place the program 
anywhere on PAGE 01 as the program would 
self-destruct' The program could safely be 
placed anywhere else . For the sake of demon-
stration it will be assumed that it is to reside 
on PAGE 02 starting at LOCATION 100, To 
co nvert the source listing to machine code the 
programmer would simply make a list of the 
addresses to be occupied by the program. 
Then the programmer would simply look up 
the machine code corresponding to the 
mnemonic for each instruction and place this 
number next to the address in which it 
will reside. (The machine code for each 

the examples already provided. However, for 
any who are in doubt, the process will be 
explained for the sake oi clarity. 

Suppose a person desired to produce a 
small program that would set the contents 
of all the words in PAGE 01 of memory to 
000. The programmer would first develop 
the algorithm and write it down as a mne-
monic (source) listing. Such an algorithm 
might appear as follows. 

COMMENTS 

Set the high address register to PAGE Ol. 
Set the low address register to the first 
location on the page assigned by reg. H. 
Load the contents of the memory location 
specified by registers H & L to 000. 
Advance register L to the next memory 
location (but do not change the page) . 
If the value of register L is not 000 
after it has been incremented then JUMP 
back to the part of the program denoted by 
the label AGAIN and repeat the process. 
If the value of register L is 000, then have 
the computer stop as the program is done' 
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mnemonic used by the '8008' CPU is 
provided in Chapter ONE of this manual.) 
Since some instructions are location 
dependent in that they require the actual 
address of referenced routines, it is often 
necessary to assign the machine code in two · 
processes. The first process consist of 
assigning the machine codes to specific 
memory addresses wherever possible. When 
the machine code requires an address that 
has not yet been determined, the memory 
location is left blank. The second process 
consist of going back and filling in any blanks 
once the addresses of referenced routines have 
been determined. In the example being used 
for illustration, only one process is required 
because the address specified by the label 
AGAIN is defined before the label (address) is 



referenced by the JFZ 
sample program when 

instruction. The 
converted to 

ORIGINAL MEMORY MEMORY 
MNEMONIC ADDRESS CONTENTS 

LHI001 02 100 056 
02 101 001 

LLIOOO 02 102 066 
02 103 000 

AGAIN, LMI 000 02 104 076 

02 105 000 
INL 02 106 060 
JFZ AGAIN 02 107 110 

02 110 104 

02 111 002 

HLT 02 112 377 

Once the program has been put in machine 
language form the actual machine code may 
be placed in the assigned locations in memo 
ory. The programmer may then proceed to 
verify the algorithm 's valid ity. For small 
programs such as the example just illustrated 
the machine code can simply be loaded into 
the correct memory locations using manual 
methods typically provided on microcom· 
puter systems. Such small programs can then 
be easily checked out by stepping through 
the program one instruction at a time. 

If the program is relatively large then a 
special loader program which is typically 
provided with an ASSEMBLER program 
could be used to load in the machine code. 

Checking out and DEBUGGING large 
programs can sometime s be difficult if a 
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machine language code would appear as 
shown next. 

COMMENTS 

Machine code for LHI mnemonic 
Immediate part of LHI mnemonic 
Machine code for LLI mnemonic 
Immediate part of LLI mnemonic 
Machine code for LMI mnemonic 
Note that the label AGAIN now 
defines an address of LOCATION 
104 on PAGE 02 
Immediate part of LMI mnemonic 
Increment low address here 
Machine code for JFZ mnemonic 
Low address portion of the CONDI· 
TIONAL JUMP instruction as 
defined by label AGAIN above 
PAGE address portion of the 
CONDITIONAL JUMP instruction 
defined by label AGAIN 
Alternately , the code 000 or 001 
could have been used here as the 
machine code for a HALT command 

few simple rules are not followed. A good 
rule of thumb is to first test out each sub· 
routine independently. One may choose to 
STEP through a subroutine, or else to place 
HALT instructions at the end of each sub· 
routine. Then one may verify that data was 
manipUlated properly by a particular sub· 
routine before going on to the next section 
in a program. The use of strategically located 
HALT instructions in a program initially 
being tried out is an important technique 
for the programmer to remember. When a 
HALT is encountered the user may check the 
contents memory locations and examine 
the contents of CPU registers to determine 
if they contain the proper values at that 
point in the program. (U sing the manual 
operator controls and II1d icator lamps typi· 
cally provided with microcomputer develop· 
ment systems.) If all is well at a check point 



then the programmer may replace the 
HALT instruction with the actual In-

struction for that point. One may then 
continue checking the operation of 
the program after mak ing certain that 
any registers that were altered by the 
examination procedure (typically 
registers Hand L in an '8008' system) 
have been reset to the desired values 
if they will effect operation of the 
program as it continues! 

It is often help ful to use a utility pro-
gram known as a MEMORY DUMP pro-
gram to check the contents of memory 
locations when test ing a new program. 
A memory dump program is a small utility 
program that will allow the contents of 
areas in memo ry to be displayed on an 
output device. Naturally, the memory dump 
program must re side in an area 0 f memory 
outside that being used by the program 
being checked. By using t his type of pro-
gram the operator may read ily verify the 
content s of memory locations before and 
after specific operations occur to see if 
their contents are as expected. A memory 
dump program is also a valuable aid in 
determining whether a program has been 
properly loaded o r that a portion of a 
program is still intact after a program 
under test has gone errant. 

One will find that having flow charts 
and memory maps at hand during the 
DEBUGGING process is also very help-
ful. They serve as a refresher on where 
routines are supposed to be in memory 
and what the routines are supposed to 
be doing . 

If minor co rrectio ns are necessary or 

MNEMONIC 
MEMORY 

ADDRESS 
MEMORY 

CONTENTS 

LAI 200 03 000 
03 001 

006 
200 
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desired, then one may often make program 
corrections, or PATCHES as they are co m-
monly referred to by software people, to 
see if the corrections believed appropriate 
w ill work as planned . An easy way to make 
a PATCH to a program is to replace a CALL 
or JUMP instruction with a CALL to a new 
subroutine that contains the desired cor-
rections (plus the original CALL or J UMP 
instruction if necessary). If a CALL or 
JUMP instructio n is not available in the 
vicinity of the area where a correction must 
be made then one can replace three words 
of instruction s with a CALL patch provided 
that o ne is very careful not to sp lit up a 
multi-word in struction. If this cannot be 
avoided, then the remaining portion of 
a split-up multi-word instruction must be 
replaced with a NO-OPERATION instruc-
tio n such as a LAA command (in an '8008' 
system). One must also make certa in that 
the instructions displaced by the inserted 
CALL instruction are placed in the patch-
ing subroutine (provided that they are not 
being removed purposely) . An example 
of several patches being made to the small 
example program previously discussed will 
be illustrated next. 

Suppose, in the example just presented, 
that the operator decided not to clear (set 
to 000) all the word s in PAGE 01 of mem-
ory, but rather to only clear the locations 
000 to 177 (octal) o n the page . The pro-
gram could be modified by rep lacing the 
JFZ AGAIN instruction which started at 
LOCATION 107 on PAGE 02 with the 
co mmand CAL 000 003 (CALL the sub-
routine starting at LOCATION 000 on 
PAGE 03 which will be the PATCH). 
Now at LOCATION 000 on PAGE 03 
one could put: 

COMMENTS 

Put value 200 into the ACC 
Note value of 200 used because 
contents of register L has 
been incremented 



MEMORY MEMORY 
MNEMONIC ADDRESS CONTENTS 

CPL 03 002 276 

JFZ AGAIN 03 003 110 
03 004 104 
03 005 002 

RET 03 006 007 

Suppose instead of filling every word on 
PAGE 01 with zeroes the programmer de-
cided to fill every other other word? A patch 
could be made by replacing the LMI 000 

MEMORY MEMORY 
MNEMONIC ADDRESS CONTENTS 

LMIOOO 03 000 076 
03 001 000 

INL 03 002 060 
INL 03 003 060 

RET 03 004 007 

Finally, to illustrate a patch that splits a 
multi-word command, consider a hypo-
thetical case where the programmer decided 
that prior to doing the clearing routine, it 
would be important to save the contents 
of register H before setting it to PAGE 01 . 
If a three word CALL command is placed 
starting at LOCATION 100 on PAGE 02 in 
the original routine to serve as a PATCH, it 
may be observed that the second half of the 
LLI 000 instruction would cause a problem 
when the program returned from the patch . 

MEMORY MEMORY 
MNEMONIC ADDRESS CONTENTS 

LEH 03 000 345 
LHI001 03 001 056 

03 002 001 
LLIOOO 03 003 066 

03 004 000 
RET 03 005 007 
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COMMENTS 

Compare contents of the ACC 
with the contents of register L 
If accumulator and L do not 
match then continue with the 
original program 
End of PATCH ,.,broutine 

command at LOCATION 106 on PAGE 02 
and again inserting a CAL 000 003 command 
to a patch ,.,broutine that might appear as 
illustrated below. 

COMMENTS 

Keep the LMI instruction 
as part of the PATCH 
Keep original increment L 
And add another increment 
L to skip every other word 
Exit from PATCH subroutine 

(The value of 000 at LOCATION 103 on 
PAGE 02 in the example program would be 
interpreted as a HLT command by the com-
puter when it returned from the patch sub-
routine.) In order to avoid this problem the 
programmer could place a LAA (effectively a 
NO-OPERATION command) at LOCATION 
103 on PAGE 02 after placing the patch 
command CAL 000 003 instruction beginning 
at LOCATION 100 on PAGE 02. The actual 
patch subroutine might appear as shown 
below. 

COMMENTS 

Save register H in register E 
Now set register H to point 
to PAGE 01 
And set the low address 
pointer to LOCATION 000 
End of PATCH subroutine 



In the balance of this manual numerous 
techniques for developing machine language 
programs will be presented and discussed. 
Many of the exa mples used will be presented 
as subroutines that the reader may use when 
developing custo mized programs. It is im-
portant for the new programmer to learn 
to think of programs in term s of routines 
or subroutines and then learn to combine 
9.lbroutines into larger programs. This prac-
tice makes it easier for the programmer to 
initially develop programs. It is generally 
much easier to create small algorithms and 
then combine them, in the form of sub-
routines, into larger programs. Remember, 
subroutines are sequences of instructions 
that can be CALLED by other parts of a 
program. They are terminated by RETURN 
or CONDITIONAL RETURN command s. 
It is also wise when developing programs to 
leave some room in memory between sub-
routines so that patches can be inserted 

or routines lengthened without having to 
rearrange the contents of a large amount of 
memory. Finally, while speaking of sub-
routines, it will be pointed out that the 
user would be wise to keep a note book 
of subroutines that the ind ividual develops 
in order to build up a reference library 
of pertinent routines. It takes time to think 
up and check out algorithms. It is very easy 
to forget just how one had solved a par-
ticular problem six months after one init-
ially accomplished the task. Save your 
accrued efforts. The more routines yo u 
have to utilize, the more valuable your 
machine becomes. The power of the machine 
is all determined by WHAT YOU PUT IN ITS 
MEMORY' 

Before going on to the next section of 
this manual, the essential steps in the process 
of creating a program will be presented fo r 
review and to serve as a reference . 

l. First, the programmer should clearly define and write down on paper exactly 
what the program is to accomplish. 

2. Next, flow charts to aid in the complex task of writing t he mnemonic (source) 
listings are prepared. They should be as detailed as necessary for the program-
mer's level of experience and ability. 

3. Memory maps sho uld be used to distr ibute and keep track of program storage 
areas and data manipu lating regions in available memory. 

4 . U sing the flow charts and memory maps as guides, the actual source listings of 
the algorithms are written using the symbolic representations of the instructions. 
An Editor program is frequently used to good advantage at this point. 

5. The mnemonic ,purce listings are co nverted into the actual machine language 
numerical codes assigned to specific addresses in memory. An Assembler pro-
gram makes this task quite easy and should be used fo r large programs. 

6. The prepared machine code is loaded into the appropriate addresses in the 
computer's memory and operation of the program is verified. Often the initial 
check out is done using the STEP mode of operation, or by exercising indiv i-
dual sub routines. The judicial use of inserted HALT instructions at key loca-
tions will often be of value during the initial testing phase. 

7. If t he program is not performing as intended then problem areas must be iso-
lated. Program PATCHES may be utilized to make minor corrections. If serious 
problems are fou nd it may be necessary to return to step no . 3, o r step no. I' 

3 - 17 



BASIC PROGRAMMING TECHNIQUES 

The first section o f this chapter wi ll be d e-
voted to illustrating a number of simple in-
structions and sequences o f instructio ns that 
may be used to ac co mplish co mmonly 
required func tion s. Novi ce programmers need 
to build up a reperto ire o f such rout ines in 
their mind so that they can learn to thin k in 
terms of t he fun ctions they perform as t hey 
prepare to develop programs of th eir own. 
Alternative ways of performing functions will 
sometimes be presented to illustrate ad -
vantages and disadvantages of o ne method 
over another. There will often be many other 
ways of performing the d esired function other 
than that presented and the reader should feel 
free to think of other ways and loo k at pos-
sible advantages and negative aspects of such 
alternatives . 

CLEARING THE ACCUMU LATOR 

It is often desirable to set the contents of 
the accumulator (ACC for abbreviation in this 
text) to zero before starting an operation, 
such as a mat hematical calculation . One 
obvio us way to d o this is to use an LA! 000 
instruction _ A less o bvious way is to use an 
XRA (EXCLUSIVE OR the contents of the 
ACC with itself)! The XRA method o nly re-
quires one word, whereas the LAI 000 re-
quires two. Also, the XRA method will set 
all the CPU flags to known states as any 
Boolean Logic instruction causes the Sand 
P flags to be affected and the C flag to be 
set to the zero state. (Whenever necessary 
the reader should refer to t he appropriate 
section in Chapter One of this programming 
manual to review the detailed fun ction(s) 
of each type o f instruction available in an 
8008 based microcomputer ). Since the XRA 
instruction will set the ACC to all zeroes, then 
the Z and P flags will be placed in the '1' 
condition, and the S flag to the '0' state at 
the conclusion of the instruction 's execution . 
It is im portan t to remember the types of ins-
tructio ns that affect the o peration of the CPU 
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flags . This is because it is often necessary to 
use the status of a flag or flags to control the 
a peration a f a program. Or, to see if a flag 's 
status has changed . To do this, o ne must at 
so me time kn ow what the condition o f a flag 
was. That is often achieved by using an in-
struction such as the XRA that will force 
them to d esired states. On t he other hand, 
while the LA! 000 method of clearing the 
ACC requires two memory words, t he 
execution of an LAl 000 instruction does 
not affect the status of the CPU flags. This 
fact should be remembered , because there 
may be ti mes when it is desirab le to set the 
ACC to the zeroes condition without altering 
the CPU flags ' 

SETTING THE ACCUMULATOR 
TO ALL ONES 

This function can be accomplished with 
several types of instructions, such as the 
LAl 377 o r ORI 377 . Both these instruc-
t ions requ ire two words of memory . It 
should be noted again that the LA! 377 
type will not affect the status of the CPU 
flags, while t he ORr 377 one will result in 
the C and Z flags being set the the '0' state, 
and the Sand P flags set to the '1 ' co ndition. 
If a particular program requires the accumu-
lator to be set to the all o nes state frequently, 
then it may be worthwhile to set up a CPU 
register to contain 377 . Then one may use a 
one word instruction, such as LAX (X = a 
CPU Register ) or an ORX, depending on 
whether o r not one wants to save the status 
of the CPU flags. 

COMPLEME NTING THE ACCUMULATOR 

Often it is desirable to COMPLEMENT the-
value in the accumulator . That is to change 
all the bits set to a ' 1 ' to be 'a' and vice-
versa. This can be readily accomplished by 
using an XRr 377 instruction . Again, if the 



function must be performed often in a rou-
tine, it may be worthwhile to keep the value 
377 in a CPU register and use a XRX in-
struction . The complement function is often 
utilized when performing mathematical op-
erations using signed numbers (as explained 
in the previous chap ter) in order to o btain the 
two 's complement form of a number. The 
two's complement of a num ber is obtained 
by first complementing the value and then 
addi ng one to the complemented value. Thus, 
this fun ction could be qbtained by per-
forming two kinds of instructions in 
sequence. First an XRI 377, and then an 
AD I 000 command. 

FORMING BIT MASKS 

When utilizing a computer , it is frequently 
desirable not to use all the bit positions with-
in a word, or to isolate and determine the 
status of a particular bit within a register. 
This technique may be used to quickly de-
termine whether a number in a register is odd 
or even (by examining just the least sig-
nificant bit). Or, whether a number has 
reached a certain size (by sampling the most 
significant bit of interest) . Or, whether some 
part icu lar external event has occurred (by 
checking a specific bit on an input port). 

The process of ridding a register of un-
wanted data in selected bit positions is 
commonly referred to by computer tech-
nologists as MASKING. Masking can be ac-
complished in several ways depending on 
what the programmer desires . Suppose , for 
instan ce, that one desired to determine 
whether a number in the accumulator was 
odd or even. One way to do t his would be to 
simply execute an ND I 001 instru ction . Then 
test to see if the accumulator was zero (using 
a JT Z or JFZ command) . Suppose the o riginal 
number in the accumulator had been 251. 
(Remember that this text is using octal num-
bers un less otherwise stated!) The result of 
performing the logic AND operation between 
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the accumulator con taining 251 and the 
number 001 is illustrated below . 

ACC = 1 0 1 0 1 0 0 1 = Octal 251 

AN I 001 = a 0 0 0 0 0 0 1 = Octal 001 

RESULT = 0 0 000 001 = Octal 001 

It may be observed that all the bit positions 
ANDED with a '0' will go to the '0' condition 
regardless of whether they were a '1 ' o r a '0 .' 
Thus , t he seven most signifi cant bit positions 
in the example have been e ffectively elimi-
nated. However , a bit position ANDED 
against a '1' will be a '1 ' if , and only if, the 
position under test co ntains a '1.' In the 
above case, a '1' was present in the test posi-
tion and thus the resul t was a'!.' A JFZ 
instruction would quickly direct the program 
to proceed o n the basis that the original 
number in the ACC had been an odd number . 

Note that the above particular masking 
method was destructive to the original value 
in the accumulator. Had it been important , 
the original num ber could have been saved in 
a CPU regist er or a memory location. A 
slightly different approach could have been 
taken. The number to be masked could be 
placed in a memory location , or a CPU 
register. Then the accumulator could be filled 
with the appropriate MASK . Finally, a simple 
one word NDM or NDX instruction could 
be utilized . The result of the masking 
operation would be left in t he accumulator 
after the execution of the instruction . The 
original number would be available for further 
manipulation. This different approach IS 

pointed out as an example of h ow a pro-
grammer should look for the best method to 
approach a particular problem . The co m puter , 
with its variety of instructions, provides many 
different methods to choose from [or such 
problems. 

Masking is most effective when there are 
several bits in a register to be isolated, or 
when a bit of interest is in the middle of a 



word. Or, when it may not be expedient to 
bring a piece of data into the accumulator. 
For if one desires to examine the status of a 
bit in the ACC that is at either end of a 
register, o ne may do this by using a rotate 
instruction such as RAL or RAR to put 
the bit of interest into the CARRY position 
of the ACC (represented by the CARRY 
FLAG) . Then use a JTC or JFC instruction to 
determine the status of the bit. Naturally, 
if the programmer wanted to · retain the 
original setting of the accumulator after 
the test, the program would have 'to execute 
the reverse rotate instruction (to the one 
originally used). This would bring the ACC 
back to its original position. 

SETTING UP POINTERS AND COUNTERS 

In many applications it is desirable to per-
form a particular sequence of operations a 
precise number of times. The number of times 
an operation is performed can be controlled 

in a routine by forming a program loop . 
A program loop is established by setting up a 
counter system that keeps track of how many 
times an operation is performed and including 
a program test to ascertain when a particular 
value has been reached so that program 
control can be branched out of the loop. 

In an 8008 system, CPU registers make 
handy loop counters as they not only can be 
directly incremented or decremented by one 
word commands, but they also directly 
affect the status of the Z, S, and P CPU 
flags after each increment or decrement. 
It is thus an easy matter to use anyone of 
the conditional type instructions immediately 
following a CPU register increment or decre-
ment to see if a critical value has been 
reached! 

For instance, suppose register B is initially 
set to the value 012 (10 decimal) by a LBI 
012 instruction prior to execution of the 
fo llowing program loop. 

MORE, LMA 
INL 
DCB 

Load contents of ACC into memory 
Advance memory pointer 
Decrement the loop counter 

JFZ MORE 
DONE, HLT 

If reg B is not = 000, continue loop 
Exit subroutine when counter = 000 

As may be observed, the above subroutine 
would loop upon itself and load data into 
consecutive words in memory until the value 
placed in register B (prior to starting the sub-
routine) reached zero. In the above example, 
B was loaded with 012 so 12 octal (10 
decimal) locations in memory would have 
been loaded with data. (It can be assumed 
that the calling routine set up registers Hand 
L to point to the proper memory locations, 
and placed the correct data into the accumu-
lator! ) 

To illustrate how powerful the simple con-
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cept of a program loop is, a second example 
will be used to illustrate how such a loop 
technique may be used to perform multipli-
cation of small numbers . (There are much 
more efficient programming techniques avail-
able for use with large numbers.) Since 
multiplication is really just repeated addition, 
one could multiply two numbers, designated 
X and Y, by performing the following 
operations. Assume X is the multiplicand 
and it has been loaded into CPU register C. 
The number Y is the multiplier, and it has 
been placed in register B. The following 
routine containing a program loop will 
multiply the two numbers. 



START, 
CONTIN, 

XRA 
ADC 
DCB 

Clear the accumulator 

EXIT, 
JF Z CONTIN 
RET 

Add contents of register C to ACC 
Decrement value of the multiplier 
Repeat addition if multo is not = zero 
Exit subrtn with multo answer in ACC 

As read ers know, the CPU registers Hand L 
are able to serve as ordinary CPU registers and 
also have the special function of being able to 
point to addresses in memory whenever 
memory reference instructions are used. The 
H register holds the high address or page 
portion of the pointer. The L register holds 
the low address or locat ion on a page. 
Naturally , when one desires to operate on 
data at a location in memory via a memory 
reference command , one must first set up the 
Hand L registers to contain the desired 

address. This is readily done with a LHI XXX 
and LLI YYY combination of instructions. 
However, many times it is desirable to do a 
who le sequence of operations that operate 
upon sequential locations in memory. In this 
case, once the initial starting address has been 
loaded into the memory pointer registers, all 
that is needed is a subroutine that can be re-
ferred to that will increment the address held 
in the two registers . A simple subroutine to 
accomplish that objective is presented here. 

ADV, INL 
RF Z 
INH 
RET 

Increase value of register L by 1 
Exit subrtn if not going to new page 
Increment H by 1 if on new page 
Exit subrtn 

The above subroutine takes care of the case 
where the address crosses page boundaries. 
Each time register L is advanced, the RFZ in-
struction is used to test whether or not 
register L went to 000. This would occur if 
the last value in the register had been 377. 
That is the largest octal address that can be re-
presented in an 8 bit register. Consequently, 
it is the highest address that can be assigned 
on a page of memory. If the RFZ instruction 
is executed (because the contents of L did not 
go to 000) then the routine is immediately 
exited. If the RFZ command is not followed , 
then the subroutine continues and advances 
t he contents of register H to update the 
pointer to a new page . 

Fine . But what about the opposite case 
when a programmer might desire to process 
areas of memory in descending order? Well, a 
similar subroutine to decrement the memory 
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pointer registers could be used . But, the pro-
grammer will have to be careful when going to 
a new page . In the previous case, when the L 
register was advanced beyond location 377 to 
000 , it was an easy matter to check for the 
000 condition to see if it was necessary to 
advance the H register too. Now, however, 
when the L register goes from 000 to 377 it 
will be necessary to decrement the H register 
to the next lower page. Testing for this 
condition is not quite as easy . Remember, the 
status of the CPU flags are set by the 
co nditions in the register immediately after 
they have been incremented or decremented, 
not before. While o ne may use a JTZ or RFZ 
type of instruction to quickly determine if a 
register went to 000, the case where it did not 
go to 000 does not mean it is necessarily at 
377. It cou ld be at any non-zero value. How-
ever, the case can be handled. One way to 
handle the problem would be with the sub-
routine shown next . 



DEC, XRA Clear ACC to 000 
CPL 
JTZ DECH 
DCL 

Compare contents of ACC with L 
If 000 now, then DECR both H & L 
Otherwise just decrement L 

RET And exit subroutine 
DECH, DCL 

DCH 
RET 

For this case decrement L 
And register H 
Then exit subroutine 

While the above subroutine will" accomplish 
the objective, it does have several minor flaws 
that the programmer might want to consider. 
First, it alters the contents of the accumu-
lator. Remember that the above subroutine 
might often be used in a program that is mani-
pulating data between the accumulator and 
memory. The above subroutine would require 
that the programmer make sure any valuable 
data in the accumulato r is saved elsewhere 
before the subroutine is called. This is one 
more burden on the programmer who is de-

veloping a large program and many have a lot 
of other details to think about. Secondly , the 
above routine requires 10 decimal memory 
storage locations . It is always a good practice 
to try and develop routines that operate in a 
minimum amount of memory. Lets take a 
look at another subroutine that accomplishes 
exactly the same objective, that saves 20 per-
cent of memory space, and that will not inter-
fere with the original contents of the accum-
ulator. 

DECR, DCL Decrement contents of L 
INL N ow check to see if it had been 000 
JFZ NOTa 
DCH 

NOTa, DCL 
RET 

If not 000 then not going to new page 
If 000 then DECR H to next lower page 
Decrement L to complete subroutine 
Exit subroutine 

The above subroutine used a little pro-
gramming creativity to come up with a 
method of accomplishing the desired 
objective. Register L was decremented and 
then incremented back to its original value. 
The process of incrementing it back to its 
original value would cause the CPU flags to be 
set so that a flag testing instruction could be 
used to see if the original value was 000. If 
that was the case, decrementing it would 
cause it to go to 377, and thus register H 
shou ld be decremented to the next lower 
page. That is done if necessary . Then register 
L is decremented to its final value whether or 
not the address is going to a new page! 

While registers Hand L are the only re-
gisters that may be used to point to memory 
locations when using memory reference in-
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structions in an 8008 machine, it is often 
necessary to use other CPU registers to tem-
porarily hold memory addresses. It may be 
desirable, for instance, to transfer blocks of 
data from one area in memory to another. 
This must be done one word at a t ime. First 
a word must be extracted from memory 
location M by say a LAM instruction , with 
registers Hand L pointing to address M. Then 
Hand L must be altered to an address, lets 
call it N, where the data is to be deposited. 
An LMA instruction could then be used to 
place the data in the new memory location. 
Often a string of data words might be trans-
ferred in such a fashion. It would be rather 
cumbersome if one had to keep using 
LHI MMM and LLI MMM commands 
followed by LHI NNN and LLI NNN in-
structions in order to keep altering the 



memory pointer registers between the two 
areas in memory. However, if Hand L were 
initially set to point to memory location M, 
and CPU registers D (say for the page address) 
and E (for the address on the page) were set 

to point to memory location N , then a 
switching program to exchange the contents 
of H with D and L with E could be developed 
to considerably ease the task. Such a sub-
routine might be as follows. 

SWITCH, LCH 
LHD 
LDC 
LCL 
LLE 
LEC 
RET 

Load contents of H into C temporarily 
Now load D into H 
Move original H from C into D 
Similarly load L into C temporarily 
Put E into L 
And store original L in E 
Exit subroutine 

Now, by simply calling the subroutine to 
switch the contents of the registers, the pro-
grammer has a means of changing the memory 
pointer registers between two different areas 
in memory. To illustrate how quickly a 
library of small subroutines starts developing 
into real potential, two subroutines illustrated 
on the last several pages will be used in a small 

program to accomplish the task just discussed, 
which is that of moving data from one area of 
memory to another. Let's assume that a pro-
grammer desired to move the data in 100 
(octal!) words of memory starting at location 
000 on page 02 up to an area starting at 
location 200 on page 03. The following pro-
gram would do the job nicely. 

SETUP, LHI002 
LLI 000 
LDI 003 
LEI 200 
LBI100 

MOVIT, LAM 
CALADV 
CAL SWITCH 
LMA 
CAL ADV 
CAL SWITCH 
DCB 
JFZ MOVIT 
RET 

Set up H to page of 1st memory area 
And L to starting location of 1st area 
Set D to page of 2nd memory area 
And E to starting location of 2nd area 
Set up a counter in CPU register B 
Get contents of word from 1st mem area 
Advance memory pointer (in 1st area) 
Change H & L to point to 2nd area 
Deposit word in 2nd area 
Advance memory pointer (in 2nd area) 
Change back to point to 1 st mem ory area 
Decrement counter 
If counter not = 000, then continue moving 
Exit RTN (or HLT , JMP, etc.) 

USING MEMORY LOCATIONS TO STORE 
POINTERS AND COUNTERS 

necessary to hold the values of counters and 
pointers in memory locations so that the CPU 
registers can· be opened up for other uses . This 
practice does have a drawback . Since the con-
tents of memory locations cannot be directly 
incremented, the contents must first be 
loaded into a CPU register, then the incre-
ment or decrement performed. Then the new 
value put back into its memory storage 

While CPU registers make ideal storage 
places for pointers and counters because they 
can be directly incremented and decremented, 
there are simply not enough of them to store 
all the pointers and counters that might be 
used in a fair sized program. It then becomes 
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location. This takes a lot of extra instru ctions 
over that required if the counter or pointer 
can be kept permanently in a CPU register . 
This is especially so since to even o btain the 
counter from memory. it will always be 
necessary to first set up the H & L registers 
to point to the memory location where the 
counter or pointer is stored ! However, since 
that is what has to be done in all but small 
programs. the best thing to do is to try and 
organize the process using subroutines that 
will reduce the amount of memory used by 
the operating program. 

Perhaps the first item to consider is wh ere 
to sto re the counters and pointers for a 
program. We ll . it is generally a good idea to 
set aside a section of memory to be used 
exclusively for storing counters and pointers 
for the program. Preferably this should be on 
one page of memory (versus crossing page 

boundaries). While essentially any page may 
be used . it may be that for large programs 
having the pointers and counters o n page 00 
will save a bit of programming room. This is 
because whenever the program needs to refer 
to a counter. register H (as well as L) must be 
set up to point to the page where the counter 
is stored. It seems that there is often a zero 
register (one set to 000) arou nd among the 
CPU registers. Thus a LHX one word in-
struction can be used to set H to the page 
instead of having to use a LHI XXX command 
as will generally be the case if the pointers 
and counters are not stored in an area on 
page 00. 

Once o ne has decided where particular 
counters are to be stored. a subroutine to 
retrieve anyone of them and increment or 
decrement the value. then restore it back to 
memory. is quite straigh t-forward . 

CNT UP. LCM 
INC 
LMC 
RET 

Fetch CNTR indicated by H & L 
Increment value of the counter in reg C 
Restore new counter value to memory 
Exit subroutine 

CNTDWN. LCM 
DCC 
LMC 
RET 

Fetch counter 
Decrement value 
Return counter to storage 
Exit subroutine 

The two subroutines just illustrated can be 
called as desired to o btain a counter and in-
crement or decrement the value once registers 
Hand L have been loaded with the address of 
the co unter. Note. too. that the subro utine 
would also allow the result of the increment 
or decrement to be tested by a co nditional in-
struction after the subroutine is finished. This 
is because there are no instructions after the 
INC or DCC that affect the status of the CPU 
flags! 

Storing pointers in memory is generally a 
little more complicated than sto ring counters 
because pointers generally require two storage 
locations. One word fo r the page address. and 
one fo r the locatio n on the page. In add itio n. 
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since the H & L registers will have to be used 
to point to where t he pointers are stored in 
memory. and since the pointers stored in 
memory cannot be used as pointers until they 
are placed in the H & L registers . a method of 
first obtaining the new pointer into unused 
CPU registers. then swapping it with the H & 
L registers. must be used. The process is not 
so difficult if use is made o f some of the sub-
routines (such as SWITCH) which have al-
ready been presented in this chapter. 

The example illustrated next shows a 
general subroutine that will obtain a two 
word po inter stored in memory . Then use the 
pointer obtained to put the cont ents of the 



accumulator into a memory location speci-
fied by the pointer just o btained _ Next, it will 
increment the pointer , then restore it back to 
its storage place in memory. The routine 
assumes that the H & L registers will be set to 

the page address of the location where the 
pointer is stored by the calling program, and 
that the pointer is stored in two consecutive 
words . First the page, and then the location 
on the page. 

POINT1, LDM 
INL 
LEM 

Fetch po inter page addr into reg D 
Advance to pick up contents of next word 
Get location addr into register E 

CAL SWITCH 
LMA 

Put new pointer into H & L 

CAL ADV 
CAL SWITCH 
LM E 

Put ACC in to mem indicated by new pointer 
Increment the new pointer 

DCL 
LMD 

Restore new pointer storage address 
Deposit pointer location addr in mem 
Decrement back to page addr storage wo rd 
Deposit pointer page addr in mem 

RET Exit subroutine 

The reader should note a nice feature of 
the above subrout ine. When the subroutine is 
finished the contents of H & L are set to 
point to the storage area of the pointer stored 
in memory . Thus , the subroutine could now 
be called again if desired without having to 
set up the H & L registers. Furtherm ore , when 

the routine is exited , CPU registers D & E 
will contain the latest value of the poin ter 
stored in memory . This might be valuable in 
cases where further processing was to be done 
in the section of memory wh ere the stored 
pointer was o perating. For instance, examine 
the small program illustrated next . 

BUFFIN , LHI 000 
LLI 240 

INAGN, CAL INPUT 
CAL POINTl 
CPI215 

Set page where huffer pointer stored 
Set locatio n on page of buffer po inter 
Get a character from input device 
Put the character into mem buffer area 
See if char was ASCII code for CR 

JF Z INAGN 
RET 

If not, get another character 
Exit rtn when find a CR character 

The above program, as short and simple as 
it looks, is really quite powerful. The reader 
may observe that it is a program that will 
store a string of characters receiveci fro m an 
inpu t device into a buffer area in memory . 
It will continue p lacing characters into the 
memory buffer area until it detects a CR 
(carriage-return ) character. The location of 
the memory buffer area is stored in a pointer 
that is located at locatio ns 240 (page) and 
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241 (iocation on the page) o n page 00. Of 
course, befo re th e above routine was used, 
t he programmer would want to put the 
proper address for t he buffer area into those 
locations. The above ro utine is reall y a general 
purpose routine to accept text sentences and 
store them in a memory buffer. To expand 
the above subroutine into a complete program 
requires very little additional effort. The fol-
lowing example illustrates this point. 



DATAIN, LHIOOO 
LLI240 
LMI003 
INL 
LMIOOO 
LLI250 
LMI012 

Set page where POINTI pointer stored 
And address o n the page for POINTI 
Set start of memory buffer area (PAGE ) 
Advance to next wo rd 
Set start of memory buffer area (LOCATION o n PAGE) 
Address of a LINE COUNTER 

MO RIN, CAL BUFFIN 
LHIOOO 
LLI250 

Set LINE COUNTER to 10 (decimal) 
Get a line of text 

CA L CNTDWN 
J FZ MORIN 
HLT 

Setup storage address of line counte r 
Setup storage address of line counter 
Decrement LINE COUNTER value 
If not 10 (decimal) lines then get another line 
End o f program (could be JMP, RET, and so fo rth ) 

The above program first. initia lizes the 
starting location of the text buffer to PAGE 
03 LOCATIO N 000 by setting those values 
into the POINTI memory storage words. 
It also initializes a counter stored in mem ory 
to a value determined by the programmer. 
Then the subroutine that inputs lines of text 
is called. Each time a line of text is obtained, 
the LINE CO UNTE R is decremented and a 
decision made as to whether or not another 
line of text should be obtained . When a pre-
determined number of lines of text have been 
obtained , the program sto ps. Instead of halt-
ing, however, the program could have been 
directed to proceed e lsewhere by using a JMP 
command . Or. the entire program could have 
been made a subrou tine by using a RET as the 
last instru ction in the routine! 

It is ho ped that the reader is rapidly begin-
ning to understand how qu ickly small, general 
purpose subrou tines. start developing tremen-
dous potential as they are team ed with other 
routines. Also, the read er should begin to see 
how t he use of memory augments th e capa-
bility of t he CPU registers. By using memory 
locations to store po inters and counters, the 
programm er opens a whole new dimension in 
the world of programming. It is hoped the 
novice programmer beco mes a little bit 
excited as these co ncepts are grasped and 
understood . These co ncepts are just the 
beginning! A little excitement stimulates the 
imagination and gives one incentive to go for-
ward , investigate, and learn more! 
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Before going furt her , ho wever , it might be 
wise to slo w things down for just a moment 
and reiterate the importance of keeping a pro-
gram organized as it is developed. In the last 
several pages, a number of subro utines were 
presented . They were then combined to form 
larger subroutines. Finally a small TEXT 
BUFFE R INP UT PROGRAM was presented. 
The program presented used memory storage 
in a variety of ways. First the program itself 
had to be stored in memory . Secondly, opera-
tional portions of the program required 
memory storage areas for pointers and count-
ers. Last, but not least, the program required 
the use of memory for manipulating DATA in 
the area called the TEXT BUFFER. Further-
more . the TEXT BUFFER INPUT 
PROGRAM really consisted of a whole group 
of small subroutines. Subroutines that could 
be stored in different areas in memory. What 
is needed, as has been discussed in the prev-
ious chapter. is a MEMORY MAP to help the 
programmer plan the allocation of memory. 
It m ight be worthwhile practice for the 
reader to develop a memory map for the pro-
gram that has just been developed . A good 
method to fo llow would be to set aside room 
fo r the main part of the program (perhaps 
leaving a good amount of space for ex panding 
the program if desired) . Then the various sub-
routines may be assigned to areas, possibly 
leaving sonle room between each one in the 
event future modifications are desired or re-
qu ired. One might use a separate memory 
map for each page of memory in which sub-



routines are stored. In areas where counters 
and pointers are stored, the maps might be 

PG LOC MACH INE CODE LABELS 
00 240 BUFPTH, 
00 241 BUFPTL, 
00 242 
00 243 
00 244 
00 245 
00 246 
00 247 
00 250 COUNT, 
00 251 
00 252 
00 253 
00 254 
00 255 
00 256 
00 257 
00 260 
00 261 
00 262 
00 263 
00 264 
00 265 
00 266 
00 267 

expanded to show the actual individual 
addresses of where the information is stored. 

MNEMONICS COMMENTS 
Pg addr of pointer 
Low addr of pointer 

Text LINE COUNTER 

EXPANDED MEMORY MAP SHOWING LOCATIONS OF POINTERS AND COUNTERS 
FOR THE TEXT BUFFER INPUT PROGRAM 

The sample maps illustrated here show 
one way the program could be assigned to 
memory locations. The pointers and counters 
are placed on PAGE 00 as originally de-
fined . The subro utines have been assigned 
to various areas in memory on PAGE 02. 
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Some space has been left between each sub-
routine in case modifications to the program 
should be desired at some later time. Note 
how the use of the memory maps gives a 
coherence to the program that was not 
readily discernable when one simp ly tried 



to maintain the mental image of the organi-
zation of the program. (PAGE 03 is assumed 
to be used so lely as the TEXT BUFFER 

PG LOC MACHINE CODE LABELS 
02 000 DATAIN, 
02 010 
02 020 
02 030 
02 040 

02 200 BUFFIN , 
02 210 
02 220 
02 230 POINTl, 
02 240 
02 250 
02 260 SWITCH, 
02 270 ADV, 
02 300 CNTDWN, 

storage area for the program and a memory 
map for the usage of that area is not illus-
trated .) 

MNEMONICS COMMENTS 
Input 10 decimal lines of 
text into buffer area - PG 
03. Main rtn uses abt 30 
octal locations - but leave 
room for expansion. 

Input 1 line of text, a CR 
ends line of input. 

Fetch pntr locs in memory 
designated by calling rtn -
dep ACC in memory , etc. 
Exch H&L with D&E 
Incr value in H&L 
Decr cntr stored in memo 

SAMPLE MEMOR Y MAP OF THE TEXT BUFFER INPUT PROGRAM ILLUSTRATING 
THE MAIN RO UTINE AND SUBROUTINES ASSIGNED TO MEMORY AREAS ON PAGE 02 

Once the memory maps have been made up 
and the starting addresses of all the subrout-
ines assigned, it is an easy matter to co nvert 
the mnemonics to machine code. An assem-
bler program may be used if availab le. For 
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practice, the reader might want to try de-
veloping the machine code for the TEXT 
BUFFER INPUT PROGRAM just pre-
sented by hand. For comparison purposes 
the object code for the program would 



appear as listed below if the subroutines 
are assigned to the addresses as shown 

02000 056 DATAIN , LHI 000 
02001 000 
02002 066 LLI240 
02003 240 
02004 076 LMI003 
02005 003 
02006 060 INL 
02007 076 LMIOOO 
02010 000 
02011 066 LLI250 
02012 250 
02013 076 LMI012 
02014 012 
02015 106 MORIN, CAL BUFFIN 
02016 200 
02017 002 
02020 056 LHI 000 
02021 000 
02022 066 LLI250 
02023 250 
02024 106 CAL CNTDWN 
02025 300 
02026 002 
02027 110 JFZ MORIN 
02030 015 
02031 002 
02032 000 HLT 

02200 056 BUFFIN, LHI 000 
02201 000 
02202 066 LLI240 
02203 240 
02204 106 INAGN, CAL INPUT 
02205 ttt 
02206 ttt 
02207 106 CAL POINT1 
02210 230 
02211 002 
02212 074 CPI 215 
02213 215 
02214 110 JFZ INAGN 
02215 204 
02216 002 
02217 007 RET 
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in the example memory map presented 
on the previous page. 

Set page where POINT1 pointer stored 

And address on the page for POINT1 

Set start of memory buffer area (page) 

Advance to next word 
Set start of mem buff area (lac on page) 

Address of a LINE COUNTER 

Set LfNE COUNTER to 10 (decimal) 

Get a line of text 

Setup storage address of LINE COUNTER 

Setu p storage address of LINE COUNTER 

Decrement LINE COUNTER value 

If not 10 (dec) lines, get another line 

End of pgm (could use RET, JMP , etc.) 

Set page where buffer pointer stored 

Set location on page of buffer pointer 

Get a character from input device 

Put the character into mem buffer area 

. 
See if char was ASCII code fo r CR 

If not, get another character 

Exit rtn when fi nd a CR character 



02230 337 POINT 1 , LDM 
02231 060 INL 
02232 347 LEM 
02233 106 CAL SWITCH 
02234 260 
02235 002 
02236 370 LMA 
02237 106 CALADV 
02240 270 
02241 002 
02242 106 CAL SWITCH 
02243 260 
02244 002 
02245 374 LME 
02246 061 DCL 
02247 373 LMD 
02250 007 RET 

02260 325 SWITCH, LCH 
02261 353 LHD 
02262 332 LDC 
02263 326 LCL 
02264 364 LLE 
02265 342 LEC 
02266 007 RET 

02270 060 ADV, INL 
02271 013 RFZ 
02272 050 INH 
02273 007 RET 

02300 327 CNTDWN, LCM 
02301 021 DCC 
02302 372 LMC 
02303 007 RET 

ORGANIZING AND MANIPULATING 
TABLES 

A very powerful feature of a digital com -
puter is its ability to store data and to process 
it as t he programmer desires. The programmer 
may desire, perhaps, to have the data arranged 
into some specific kind of order, or to obtain 
some mathematical information such as the 
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Fetch pointer page addr into register D 
Adv to pick up contents of next word 
Get location address into register E 
Put new pointer into H & L 

Put ACC into mem indicated by pntr 
Increment the new pointer 

Restore new pointer storage address 

Deposit pntr location address in mem 
Decr back to page addr storage word 
Deposit pointer page addr in memory 
Exit subroutine 

Load contents of H into C temporarily 
N ow load D into H 
Move original H from C into D 
Similarly load L into C temporarily 
Put E into L 
And store original L in E 
Exit subroutine 

Increase value of register L by one 
Exit subroutine if not going to new page 
Increment H by one if on new page 
Exit subroutine 

Fetch COUNTER 
Decrement value 
Return COUNTER to storage 
Exit subroutine 

average of a group of data values. Or, one 
might desire to have the computer condense 
raw data into some sort of compact form by 
directing it t o scan the data for relevant 
information. The digital computer is well 
suited for rapidly extracting information 
of particular interest from a memory 
storage area by performing such functions 
as matching similar types of data. Or, it 
may be used as a converting machine whereby 



data in one type of form (code) can be quick-
ly changed to a different representation . In 
such applications as these , it is frequently 
necessary to develop programs that organize 
data into TABLES or to create programs 
that can process information stored in tab le-
like fo rmat . 

There are a variety of ways to organize 
tab les fo r computer processing. The reader 
has already , whether it has been realized or 
not, been introduced to several types of 
TABLES in this manual. In the first chapter 
mention was made of using a LOOK-UP 
TABLE to convert between ASCII and 
BA UDOT cod es used in various kind s of 
electric typing machines. In this chapter , th e 
discussion and programming consideratio ns 
for a text buffer were actually concerned with 
a FREE-FORM type of table. 

F or the purposes of the following discus-
sio n , two basic types of table organizations 
will be discussed. One will be referred to as 
FIXED-FORMAT, t he other as FREE-FOR-
MAT. The fixed-format type o f table refers 
to tables that are fixed by programming co n-
siderat ions into strict, unchanging patterns 
of organization . The free-format kind use 
different programming techniques to allow 
the storage of data in rand om length sections 
of memory. There are advantages and dis-
advantages to each format. The choice of 
which one to use is generally a function of t he 
type o f task that is to be performed. Free-
format organization is generally more suitab le 
to text handling tasks. Fixed-format organi-
zation is generally the choice for conversion 
tables . There are also cases where the choice 
is a relatively minor one, and it becomes a 
matter of the programmer 's p reference . 

To begin delving into the subject , a table 
with many practical applications will be dis-
cussed. Programming consideratio ns for d e-
veloping it in both types of formats will be 
presented. In many situat ions, it is desirable 
for a computer program to have a CONTROL 
TABLE . That is, a table that will interpret 
commands from an input device , and, de-
pending on what is received, perform a 
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specific type of fu nction. For the purposes 
of this illustratio n , it will be assumed that an 
operator will type in commands from a key-
board . The commands will be in the form of 
words that may vary in length from '2' to '6' 
characters. Wh enever a word has been in-
putted to the computer, the computer will 
check to see if the co ntrol table co ntains a 
matching word. If so, the computer will ob-
tain the address of a routine that it is to per-
fo rm , and execute the fu nction. When it is 
through performing the routine , or if a match 
for t.he command was not found, the program 
will return to the COMMAND MODE. It will 
then wait for a new keyboard entry (after 
sending a respo nse on a output device to 
notify the operator it is ready for a new 
entry) . For this example, the output device 
will be assu med to be an electric typewriter. 

For a hypothetical example , it will be pro-
posed that the co nt rol words consist of the 
fo llowing: GO, LIST, MEDIAN, AVG, 
COUNT , and ERASE. These control words 
might be associated with a program that is 
to be used by a scientist co nducting some 
type of experiment . Suppose the control 
command GO indicated the computer was to 
start a 10 seco nd timing loop . At the start of 
the 10 second time period, the program 
would send a reset pulse to some sort of ex -
ternal counting device. The device might be 
co unt ing the events that occurred in some 
kind of experiment . When the 10 seco nd 
period was over, the computer would im-
mediately obtain the value registered by the 
external counter . It would t hen store the 
number obtained in a data buffer. The LIST 
command might direct the computer to print 
ou t all the data values stored in the data 
buffer. (Perhaps the scientist could look for 
patterns or just have a copy of the raw ex-
perimental data .) The MEDIAN command 
could direct the computer to determine the 
median, or Itliddle value ou t of all the values 
stored in the data buffer , and print ou t t hat 
number. Similarly, the AVG directive could 
signify that the program was to execute a rou-
tine to calculate the average value of the data. 
The COUNT command might be used to have 
the computer indicate how many 10 seco nd 



experiments had been conducted. And, the 
ERASE command cou ld signify that the data 
buffer was to be cleaned out for a new set of 
experiments. 

would direct the computer to the proper rou-
tine to be executed. The control table could 
be constructed by sett ing aside an area in 
memory _ That area could contain the proper 
code for the letters in each contro l word, 
followed by two memory words contain ing 
the page and low address of where the appro-
priate routine resided. If the contro l table was 
constructed in FIXED-FORMAT, it might 
appear as follows. 

The contro l tab le needs to be constructed 
so that the program can search for a word 
that is the same as that entered on the key-
board. If a match is found, then the table 
would contain information (an address) that 

FIXED-FORMAT CONTROL TABLE 

02000 307 Code for letter G 
02001 317 Code for letter 0 
02002 000 Not used for this command 
02003 000 Not used for this command 
02004 000 Not used for this command 
02005 000 Not used for this command 
02006 001 Page where GO routine starts 
02007 100 Lac on pg where GO starts 
02010 314 Code for letter L 
020ll 3ll Code for letter I 
02012 323 Code for letter S 
02013 324 Code for letter T 
02014 000 N at used for this command 
02015 000 Not used for this command 
02016 001 Pg where LIST routine starts 
02017 140 Lac on pg where LIST starts 
02020 315 Code for letter M 
02021 305 Code for letter E 
02022 304 Code for letter D 
02023 311 Code for letter I 
02024 301 Code for letter A 
02025 316 Code for letter N 
02026 001 Pg where MEDIAN rtn starts 
02027 200 Lac on page for MEDIAN 
02030 301 Code for letter A 
02031 326 Code for letter V 
02032 307 Code for letter G 
02033 000 Not used for this command 
02034 000 N at used fo r this command 
02035 000 Not used for this command 
02036 001 Pg where A VG routine starts 
02037 240 Lac on page where A VG starts 
02040 303 Code for letter C 
02041 317 Code for letter 0 
02042 325 Code for letter U 
02043 316 Code for letter N 

4 - 15 



02044 324 Code for letter T 
02045 000 Not used for this command 
02046 001 Pg where COUNT rtn starts 
02047 300 Loc on pg where COUNT starts 
02050 305 Code for letter E 
02051 322 Code for letter R 
02052 301 Code for letter A 
02053 323 Code for letter S 
02054 305 Code for letter E 
02055 000 Not used for this command 
02056 001 Pg where ERASE starts 
02057 340 Loc on pg where ERASE starts 
02060 000 **End of table marker* * 

It may be noted that the fixed-format table 
occupies memory from location 000 to 060 
(including an end of table marker which will 
be discussed later). Observation of the table 
shows that there is a lot of wasted space 
where memory locations are filled with zeros 

when the command word did not require six 
characters. More characteristics of the above 
format will be presented shortly. First , two 
similar free-format versions of the same 
control table will be illustrated. 

FREE-FORMAT CONTROL TABLE - VERSION NO.1 

02000 307 Code for letter G 
02001 317 Code for letter 0 
02002 000 *End of command word marker* 
02003 001 Page where GO routine starts 
02004 100 Loc on pg where GO starts 
02005 314 Code for letter L 
02006 311 Code for letter I 
02007 323 Code for letter S 
02010 324 Code for letter T 
02011 000 *End of command word marker* 
02012 001 Pg where LIST routine starts 
02013 140 Loc on pg where LIST starts 
02014 315 Code for letter M 
02015 305 Code for letter E 
02016 304 Code for letter D 
02017 311 Code for letter I 
02020 301 Code for letter A 
02021 316 Code for letter N 
02022 000 *End of command word marker* 
02023 001 Pg where MEDIAN rtf> starts 
02024 200 Loc on pg for MEDIAN 
02025 301 Code for letter A 
02026 326 Code for letter V 
02027 307 Code for letter G 
02030 000 *End of command word marker* 
02031 001 Pg where A VG routine starts 
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02032 240 Lac on page where A VG starts 
02033 303 Code for letter C 
02034 317 Code for letter 0 
02035 325 Code for letter U 
02036 316 Code for letter N 
02037 324 Code for letter T 
02040 000 'End of command word marker' 
02041 001 Pg where COUNT rtn starts 
02042 300 Lac on pg where COUNT starts 
02043 305 Code for letter E 
02044 322 Code for letter R 
02045 301 Code for letter A 
02046 323 Code for letter S 
02047 305 Code for letter E 
02050 000 'End of command word marker' 
02051 001 Pg where ERASE starts 
02052 340 Lac on page where ERASE starts 
02053 000 "End of table marker" 

FREE-FORMAT CONTROL TABLE - VERSION NO.2 

02000 307 Code for letter G 
02001 317 Code for letter 0 
02002 001 Page where GO routine starts 
02003 100 Lac on pg where GO starts 
02004 314 Code for letter L 
02005 311 Code for letter I 
02006 323 Code for letter S 
02007 324 Code for letter T 
02010 001 Pg where LIST routine starts 
02011 140 Lac on pg where LIST starts 
02012 315 Code for letter M 
02013 305 Code for letter E 
02014 304 Codr for letter D 
02015 311 Code for letter I 
02016 301 Code for letter A 
02017 316 Code for letter N 
02020 001 Pg where MEDIAN rtn starts 
02021 200 Lac on pg for MEDIAN 
02022 301 Code for letter A 
02023 326 Code for letter V 
02024 307 Code for letter G 
02025 001 Pg where A VG routine starts 
02026 240 Lac o n page where A VG starts 
02027 303 Code for letter C 
02030 317 Cod e for letter 0 
02031 325 Code for letter U 
02032 316 Code for letter N 
02033 324 Code for letter T 
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02034 001 Pg where COUNT rtn starts 
02035 300 Lac on page where COUNT starts 
02036 305 Code for letter E 
02037 322 Code for letter R 
02040 301 Code for letter A 
02041 323 Code for letter S 
02042 305 Code for letter E 
02043 001 Pg w here ERASE starts 
02044 340 Lac on page where ERASE starts 
02045 000 **End of table marker** 

The read er may immediately notice that 
both o f the free-format organizations tak e 
less memory storage for the table itself than 
the fixed-format arrangement. This is 
generally the case when there are large 
variations in the length of the data strings 
(number of m emory words to a FIELD, such 
as the control words in the tables) that are 
held in the table. For fixed-format tables, 
each BLOCK (in the example being discussed 
a BLOCK would be 8 memory words) must 
be long enough to contain the largest possible 
field that could be encountered in the applica-
tion. (In the present illustration, the fields in 
a block would be the control word field, and 
the address field. The largest control word 
field requires 6 memory words. All the 
address fields require 2 words. Thus each 
block must have 8 memory locations avail-
able.) Note that a fixed-format table may not 
require more room than a free-format table of 
the type shown in version no. 1 if there is not 
a large variation in the length of data within 
fields . For instance, had all of the control 
words been selected to be 5 and 6 letters in 
length, then version no. 1 would have actually 
required more memory space for the table 
than the fixed-format configuration. 

However , the amount of memory space oc-
cupied by the table itself is not t he only pro-
gramming point to be considered when 
cho osing the table format to be used in a 

ADDRESS LOCATION 

WORD NO.1 
WORD NO.2 
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particu lar program. One must also look at 
some other parameters that will have an effect 
on the total size of the program. One subtle 
parameter , for instance, is how will the in-
putted character string for a control word be 
delimited. Suppose, for example , that a 
control word character string is inputted via 
an ASCll keyboard su broutine and stored in 
a small buffer area in memory. One may 
assume that the actual input string was de-
limited (ended) by a special character such as 
a carriage return. The carriage return would 
inform the input routine to cease accepting 
characters and return to the calling program. 
However, since the character string that was 
received mu st also be used by some other 
routine (when searching the control table for 
a match), and since the character string may 
vary in length , then so me means must be 
provided for telling the table search routine 
just how many characters are in the parti-
cular string of characters stored in the buffer' 

This can be done in several different ways. 
One way would be to have the carriage return 
code received by the ASCII input routine be 
stored as the last character in the character 
string buffer. The table search routine cou ld 
use the CR sy mbol as a delimiter to signify 
the end of the character string. The character 
string buffer would then co ntain information 
stored as shown here: 

CONTENTS 

Code for character No.1 
Code for character No.2 



WORn NO.3 

WORn NO. N 
WORn NO. N + 1 

Note , t he n , that the character bu ffer would 
have to be a block of locations in memory 
long enough to hold (N + 1) characters where 
N is the max imum number of characters 
allowed in a control wo rd. 

A second way to delimit the character 
string in the buffer would be to set up a 
counter t hat increased in value each time a 
character was accepted into the buffer. The 
value in the counter could t hen be used by 
the table search routine to indicate how long 
the character string was. 

Still another technique would be to utilize 
a buffer address pointer that would point to 
the actual address of the last character in the 
buffer. 

The seco nd and third schemes allow the 
character buffer to be just N characters in 
length (instead of N + 1). However, the 
savings in buffer space is hardly enough to be 
concerned with, particularly since some other 
location(s) would have to be set aside for 
storing the value of the counter or buffer 
address pointer. 

The different methods are mentioned , how-
ever, to demonstrate the important fact that 
there is more than one way to approach the 

MNEMONIC 

Code for character No.3 

Code for character No. N 
Code for carriage-return 

problem. The programmer must develop the 
practice of examining alternative ways. While 
the differences are often subtle, certain 
cho ices may be of particular value in certain 
applications. 

An idea that should be mentioned at this 
point co ncerns the practice of trying to de-
velop programs that are goof-proof, or 
human-engineered. The importance of this 
factor should not be overlooked. For those 
that do will often find themselves spending 
many hours reworking programs that have 
sudden ly gone beserk while in operation. The 
ability to plan programs that take this impor-
tant parameter into consideration generally 
distinguishes the novice from the experienced 
programmer. What is meant by human-
engineering can be demonstrated by the 
following discussion. 

Suppose, for t he example being developed 
here, that the programmer elected to develop 
the character string input routine using 
scheme no. 1 presented above by setting aside 
a character buffer N + 1 words in length. 
(Which would be 7 in this case, as the 
maximum size of a control word in the 
example is 6 characters .) Now, a novice, or 
unwary beginner might proceed to develop 
the routine along the following lines. 

CO MMENTS 

INCTRL, LHI XXX 
LLIYYY 

INCHAR, CAL INPUT 
LMA 

Set page add r of start of char buffer 
Set loc on page of start of char buffer 
Get a character from input subroutine 
Store in character string buffer 

CPI 215 
RTZ 
CAL AnV 
JMP INCHAR 

See if character was a CR 
Exit subroutine if CR 
Advance buffer pointer 
Loop to get next character 
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An experienced programmer would more likely have the subroutine appear like: 

MNEMONIC COMMENTS 

INCTRL, LHI XXX 
LLI YYY 
LBI006 

Set page addr of start char buffer 
Set lac on page of start of char buffer 
Set SAFETY counter 

INCHAR, CAL INPUT 
CPI215 

Get a character from input subroutine 
See if character was a CR 

JFZ CHECK 
LMA 

If no t CR go to safety check routine 
If CR then store in buffer 

RET And exit su broutine 
CHECK, INB 

DCB 
Exercise register B to set flags 
For its original contents 

JTZ INCHAR 
DCB 
LMA 

If B was 000, ignore present character 
Otherwise, decrement value of B 
Store character in buffer 

CAL ADV 
JMP INCHAR 

Advance buffer pointer 
And loop to get next character 

What does the second subroutine do that 
the first did not? It guarantees that if some-
body types in a character string more than six 
characters long, that the buffer will not 
expand beyond its intended length, possibly 
resu lting in characters being loaded into por-
tions of memory that contain program 
instructions or other data, the altering of 
which might eventually result in a program 
blow-up! 

Still another way to delimit an input char-
acter buffer, and a method particularly suited 
to dealing with a fixed format tab le, is to 
clear out the buffer prior to the start of 
entering a character string by inserting all zero 
words into the buffer. When using this 
method, it is not desirable to insert a CR at 
th e end a f the string, bu t rather to sim p ly 
allow the presence of a zero word denote the 
end a f the character string. 

MNEMONIC 

Once the input character buffer has 
received a character string and a method of 
delimiting the string been selected, one may 
proceed to develop methods to search the 
control table for a contro l word that matches 
the character string in the buffer. The search 
routine will reflect the method used to or-
ganize the table, as well as the delimiting 
format used in the character string buffer. 
The various ramifications of what is meant by 
this can perhaps best be clarified by con-
sidering a few programming examples. 

Examine the following portion of a search 
routine designed to look for a match between 
the characters in a buffer (terminated by a 
zero word) and the characters contained in 
the control word fields of the blocks making 
up the table. 

COMMENTS 

SEARCH, LDI 002 
LEI 000 

INITBF, LHI XXX 
LLI YYY 

Set pointers to starting addr of table 
Set pointers to starting addr of table 
Set pointers to start of char buffer 
Set pointers to start of char buffer 
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CMATCH, 

** 

NXWORD, 

SETNXW, 

*** 

LBI006 
LAM 
CAL ADV 
CAL SWITCH 
CPM 
JFZ NXWORD 
DCC 
JT Z FOUNDW 
CAL ADV 
CAL SWITCH ,. 
JMP CMATCH 
DCB 
JT Z SETNXW 
CAL ADV 
JMP NXWORD 
CAL ADV 
CAL ADV 
CAL ADV 
CAL SWITCH 
JMP INITBF 

Set contro l word field size counter 
Get char fm buffer (form char match loop) 
Subroutine to advance buffer pointer 
Exchange buffer pntr for table pointer 
See if have a match condition 
If no match, go to next block in table 
If match, decr field size counter 
All chars in field matched if cntr = a 
Char match but not finished, adv pntr 
Exchange table pntr for buffer pointer 
Loop to see if next character matches 
Decr field size cntr to find end of 
Current control word field, JMP when find 
Otherwise advance table pointer 
And loop to look for end of CW field 
At end of control word field need to 
Advance pntr over the address field 
To the start of next co ntrol word field 
And then exchange table for buffer pntr 
And form loop to check next block in table 

Remember, the above routine assumes that 
the input character buffer is cleared before a 
new input character str ing is accepted . Thus, 
the input buffer would contain zeros in the 
locations from N + 1 to the end of the buffer 
(where N is the last character of the input 
string). If, for example, the input buffer con-
tained the following: 

WORD NO. 

1 
2 
3 
4 
5 
6 

CONTENTS 

Code for A 
Code for V 
Code for G 

000 
000 
000 

WORD NO. CONTENTS 

1 Code for G 
2 Code for 0 
3 000 
4 000 
5 000 
6 000 

then the routine just presented would find a 
match in the fir st block of the fixed format 
table described several pages earlier. When the 
match with the control word in the table was 
found , the routine would jump to the as yet 
undefined FOUNDW routine to extract the 
address of the GO routine from the table. 
However , had the input character contained: 
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then the routine would fail to find a match 
in the first control word field. When the 
match failed it would jump to the NXWORD 
portion of the program to advance the table 
pointer to the start of the next control word 
field in the table. Then jump back to the 
INITBF portion to initialize t he character 
buffer pointer and proceed to look for a 
match in the next block of the table . This 
loop would continue until the matching con-
t ro l word A VG was found about halfway 
down the table. 

Had some smart-aleck operator keyed in 
the following to the input character buffer: 

WORD NO. CONTENTS 

1 Code for S 



2 
3 
4 
5 
6 

Code for I 
Code for L 
Code for L 
Code for Y 

000 

routine denotes a point where an end of table 
test might be inserted in the above routine. 

then the program would eventually bomb! 
Reason? (Here comes human engineering 
again!) Simp ly that the above routin e has no 
way of determining where the end of the 
table exists in memory. The handling of that 
problem will be discussed shortly after some 
more examples related to the current topic 
have been presented. The reader should note 
here that the ** * mark near the end of the 

It is desirable at . this point to illustrate 
several other search routines to demonstrate 
how they are affected by the table organi-
zation and the method used to delimit the 
input character buffer . Suppose one is still 
using the fixed-format table, but instead of 
clearing out the input buffer before accepting 
a new character string (so that it is delimited 
by locations containing zeros), one uses an 
input routine that delimits the buffer by using 
a CR symbol. The routine to look for a match 
between the contents of the buffer and a co n-
trol word in the table might appear as follows. 

SEARCH, LDI 002 
LEI 000 

INITBF, LHI XXX 
LLI YYY 
LBI006 

CMATCH, LAM 
CPI215 
JTZ LCHAR 
CALADV 
CAL SWITCH 
CPM 
JFZ NXWORD 
CAL ADV 
CAL SWITCH 
DCB 
JMP CMATCH 

LCHAR, XRA 
CAL SWITCH 
CPM 

** JTZ FOUNDW 
INB 
DCB 

** JT Z FOUNDW 
NXWORD, DCB 

JTZ SETNXW 
CAL ADV 
JMP NXWORD 

SETNXW, CAL ADV 
CALADV 
CAL ADV 
CAL SWITCH 
JMP INITBF 

Set pointer to starting addr of table 
Set pointer to starting addr of table 
Set pointers to start of char buffer 
Set pointers to start of char buffer 
Set control word field size counter 
Get char fm buffer (form char match loop) 
See if symbol for CR 
If so, go to last character routine 
Otherwise, advance buffer pointer 
Exchange buffer pntr for tab le pointer 
See if have match condx in table 
If no match, go to next block in table 
If match, advance table pointer 
Exchange table pointer for buffer pntr 
Decrement counter value (for nxword rtn) 
Loop to see if next character matches 
If CR in buffer, clear accumulator 
Exchange buffer pointer for table pntr 
And see if have 000 code in table 
If so,.all chars in field matched 
If not, see if counter is at 000 
Indicating max control word field 
Encountered so have control word match 
If not, decr field size counter 
If cntr = 0, at end of contro l word fld 
If not, advance table pointer 
And loop to look for end of field 
At end of control word field need to 
Advance pntr over the address field 
To the start of next control word field 
And then exchange table for buffer pntr 
And form loop to check next block in tbl 
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The above routine is a bit more compli-
cated than the previous one . This is because 
one must still keep track of the number of 
characters that have been examined within a 
control word field in the table section (for use 
by the NXWORD routine) , and also make an 
addit ional test for the end of the charader 
string in the input buffer which is signified by 
the code for a carriage-return. It" is assumed in 
the above routine that the routine , that 
accepts a character string into the input 
buffer limits the string to a maximum of six 
characters. Note that one must also make 
special provisions for the case when the char-
acter string is six charaders in length by 

testing the counter in the LCHAR portion 
of the above routine. 

The combination of using a CR terminated 
buffer and a free-format table (such as the 
free-format version No.1 illustrated earlier) 
is less complicated to search because one can 
drop the maintenance of the table control 
word field counter. Instead, one may test for 
the end of buffer marker (CR) and use the 
end of field marker (000) in the table when a 
match fails and it is necessary to advance to 
the next control word in the table . This 
search routine is illustrated next . 

SEARCH, LDI 002 Se t pointer to starting addr of table 
LEI 000 Set pointer to starting addr of table 

INITBF, LHIXXX Set pointer to start of char buffer 
LLI YYY Set pointer to start of char buffer 

CMATCH, LAM Get char fm buffer (form char match loo p) 
CPI215 See if symbol for CR 
JTZ LCHAR [f so, go to last character routine 
CAL ADV Advance buffer pointer 
CAL SWITCH Exchange buffer pntr for table pointer 
CPM See if have match condition in table 
JFZ NXWORD If not, go to next block in table 
CAL ADV If yes, advance table pointer 
CAL SWITCH Exchange table pntr for buffer pointer 
JMP CMATCH Loop to test next character 

LCHAR , XRA Clear accumulator if have CR in buffer 
CAL SWITCH Exchange buffer pointer for table pntr 
CPM See if also have end of field marker 

** JTZ FOUNDW [f so , have found matching control word 
NXWORD , LAM If not, see if have end of field marker 

NDA ***Trick to set nags after a load op*** 
JTZ SETNXW Found marker, go to next block 
CAL ADV Marker not found, advance table pointer 
JMP NXWORD And continue looking for marker 

SETNXW, CAL ADV After marker found, advance table pntr 
CAL ADV Over the address field to the start 
CAL ADV Of the next control word field 

*** CAL SWITCH Exchange table pntr for buffer pointer 
JMP [NITBF And form loop to check next block in tbl 

At first glance , developing a search routine 
for the fixed-format table version No . 2 , 
would appear rather difficult because there is 
no apparent end of control word field 

marker' However, that table was organized to 
take advantage of a particular fact that the 
developer was aware of that would enable the 
first part of the address field to be used as an 
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end of control word field marker. This fact is 
that all of the character codes that might be 
used in the co ntrol word field (which consists 
of ASCII formatted symbols) have a 'I ' bit 
in one or both of the two most significant 
bits within a memory word that contains the 
character. Additionally , it is known that the 
maximum page address that can be utilized in 
a typical 8008 system is 077 (octal) which 
means that a memory word containing a 
memory page address cannot have a 'I' con-

dition in either one of the two most signifi-
cant bits of the memory word that holds the 
page address! Thus, by making a simple test, 
using a masking operation described earlier 
in this section, a routine can be developed 
that will safely utilize the page address part of 
the address field to serve as an end of a con-
trol word field! Thus, to search version No.2 
of the free-format table , one could replace the 
routines LCHAR and NXWORD used above 
with the following substitute: 

LCHAR, CAL SWITCH 
LAM 

Exchange buffer pointer for table pntr 
Test for end of control field 

NDI 300 By seeing if two MSB's are both 0 
JTZ FOUNDW 

NXWORD, LAM 
If so, have found matching control word 
Test for end of control field 

NDI 300 
JTZ SETNXW 
CAL ADV 
JMPNXWORD 

By seeing if two MSB 's are both 0 
If so, have marker, go to next block 
Otherwise advance table pointer 
And continue looking 

As mentioned earlier, some means of de-
termining when the entire table has been 
searched in the event a non-existent term is 
placed in the input buffer must be incor-
porated in the search routine . Again, this task 
can be accomplished in several different ways. 
One way would be to set a counter at the 
start of the search routine that contained the 
total number of blocks in the table and decre-
ment it each time a block was checked. The 
counter could be tested for a zero condition 
to signify that the table had been searched. 
Another way to accomplish the objective 
would be to test the value of the table pointer 
to see if it had reached a specific value which 
would denote the end of the table . These two 
methods have several drawbacks. One is that 
the counter method would require storage 
space. A CPU register could be used , but more 
than likely one would have to resort to main-
taining a counter in a memory location in 
order to conserve CPU registers. This would 
require a somewhat more lengthy routine to 
handle the updating and testing of the 
counter. Testing to see if the table pointer ad-
dress had reached a certain value could be 
done with an immediate type comparison 
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thus avoiding the maintenance of a storage 
location. But, the method (along with the 
counter method) is more cumbersome if the 
programmer decides to expand the size of the 
table at some future time_ This is because the 
program would have to be modified at two 
different points, the table itself, and the por-
tion of the routine that signifies the end of 
the table, either the counter value, or the 
address pointer value. 

A method that is generally more con-
venient is to place a zero word at the end of 
the "table as was shown for the example tables. 
Then, at the start of each new block , the 
search routine can conduct a simple test to 
see if a zero word is present ind icating the end 
of the table. (Naturally, in special cases 
where, for instance, a data block might con-
tain a zero word at the first location in a 
block , the n:tethod would not be appropriate 
and one could resort to one of the above 
techniques.) The method of using a zero 
word also makes it easy to expand the size of 
the table without having to modify any part 
of the search routine. More blocks can simply 
be added (replacing the former zero word) 



and a new zero word added after the addition-
al blocks. The search routine, using the al-
gorithm presented below, would then auto-
matically be able to find the new ending 

point of the table. The following instructions 
could simply be inserted at the point in-
dicated by the three asterisks in the search 
routines presented earlier. 

LAM 
NDA 
JTZ NOSUCH 

Fetch first character in new block 
***Trick to set flags after load op*** 
If zero, end of table, no match found 

The routine NOSUCH referred to by the 
end of table test might be a small routine to 
display a message to the operator ind icating 
that there was no such command in the table. 
Or, the JTZ instruction might be replaced by 
an RT Z instruction that would return the pro-
gram to the calling routine. The calling rou-
tine could simply direct the program back to 
the routine which fetches a new string of 
characters into the input buffer. 

One other portion of the search routine 
that has not been touched upon is what the 
program would do once a match was found 
between the characters in the input buffer, 
and a co ntrol word field in the table . This 
portion of the routine was referred to as 
FOUNDW in the previous examples. 
FOUNDW would simply be a routine that 
would advance the table pointer to the end 

of the current control word field (where the 
match occurred. Then extract the address 
from the address field to enable the program 
to jump to the locat ion given by the address 
and proceed to perform a specific function. 
The routine FOUNDW as given in the 
example that follow s, contains an intrigueing 
portion that illustrates one of the powerful 
aspects about a computer. That is, a program 
may be designed to alter the execution of 
the program itself! This is done in the ex-
ecution of the FOUNDW routine. When the 
program extracts t he address from the table, 
it inserts it in a portion of the program for 
the address portion of a jump instruction 
which the program then proceeds to execute! 
Care must be taken when developing such a 
program to ensure that exactly the right 
locations are modified by the program. This 
will be apparent after examination of the 
following routine. 

FOUNDW, 

FNDEND, 

INB 
DCB 
JTZ SETJMP 
CAL ADV 
DCB 

Check to see if the field counter is 000 
Ind icating end of the control word field 
If 0, set up the jump address 

SETJMP, 

NNN 
MMM 

JMP FNDEND 
CAL ADV 
LDM 
CAL ADV 
LEM 
LHI MMM 
LLI NNN 
LME 
INL 
LMD 
JMP NNNMMM 
AAA 
BBB 

Otherwise advance table pointer 
Decrement field counter 
And keep looking for end of field 
Advance pointer to 1st part (page) of address 
And extract page address & store temp 
Now advance pointer to location on page address 
And store it temporarily 
Now set memory pointer (H & L) to point to the 
2nd byte of the jump instr. coming up 
Put the LOW order address in byte 2 
Advance the memory po inter 
And the PAGE address in byte 3 of the JUMP 
Now jump to the addr just loaded into 
These two (LOW address) 
Bytes (PAGE address) 
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The above FO UNDW routine was for the 
case where the table was in the fixed-format 
organization and a counter was used to find 
the end of the control word field. Had the 
free-format table been used, then the be-
ginning portion of FOUNDW would be ap-
propriately modified to find the end of the 
co ntrol field. This could be do ne using the 
techniques illustrated in the NXWO RD por-
tion of the previously illustrated routines 
for that type of table. 

variety of routines have been presented 
showing various parts of the process. It might 
be beneficial to the reader to present a nicely 
packaged summary by presenting two table 
search rou t ines. One using the fixed-format 
table coupled with an input character string 
buffer (that is cleared prior to accepting a 
new character string), the other u sing a free-
format table (version No.2) coupled with an 
input buffer that is delimited by a carriage 
return. (The actual routine that accepts 
characters from an 1/0 device will simply be 
noted as a subroutine call in the following 
examples. That routine would be a function 
of t he 1/0 device used.) 

The discussion of handling tables has ex-
tended over quite a few pages of text. A 

NEXCMD, CALCLEARB 
CALINCTRL 
CAL SEARCH 
JMP NEXCMD 

CLEARB, LHI 003 
LLI 372 
LBI006 
XRA 

CLEARN, LMA 
INL 
DCB 
JFZ CLEARN 
RET 

INCTRL, LHI 003 
LLI372 
LBI006 

INCHAR, CAL INPUT 
CPI215 
RTZ 

CHECK , INB 
DCB 
JTZ INC HAR 
DCB 
LMA 
CALADV 
JMP IN CHAR 

Main program calling seq uence 
Clear the input character string buffer 
Fetch the command string from input device 
Search tab le & perform command inputted 
Repeat loop for next command by o perator 

Clear input buffer subroutine 
Set page pointer to start of buffer 
Assumed to be at location 372 of page 003 
Set clearing counter 
Clear the accumulator 
Put 000 into buffer position 
Advance buffer pointer 
Decrement counter 
If not through, put 000 in next locatio n 
When through return to calling routine 

F etch input command string 
Set page address of start of character buffer 
Set location on page of start of character buffer 
Set counter for maximum size of buffer 
Call subroutine to input character from 1/0 
See if character was a CR 
If 00, make no entry 
Exercise register B (Counter) to set flags 
According to original contents 
Ignore new character if counter wa s 000 
Otherw ise decrement value of counter 
And store character in buffer 
Advance buffer po inter 
And loop to fetch next character from 1/0 
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SEARCH, 

INITBF , 

CMATCH, 

NXWORD, 

SETNXW , 

FO UNDW , 

NNN 
MMM 

LDI 002 
LEI 000 
LHI 003 
LLI 372 
LBI006 
LAM 
CAL ADV 
CA L SWITCH 
CPM 
JF Z NXWO RD 
DCB 
JT Z FOUNDW 
CAL ADV 
CAL SWITCH 
JMP CM ATCH 
DCB 
JT Z SETNXW 
CA L ADV 
JMP NXWORD 
CA L ADV 
CAL ADV 
CAL ADV 
LAM 
NDA 
RTZ 
CAL SWITCH 
JMP INITBF 
CAL ADV 
LDM 
CA L ADV 
LEM 
L HI MMM 
LLI NNN 
LME 
INL 
LMD 
JMP NNNMMM 
AAA 
BBB 

Table search routine - compares character 
String in input buffer against entries in 
The control word fields of fixed -format 
Table (six locations in the fi eld ) 

Set pointers to starting address of table 
Set pointers to starting address of table 
Set pointers to start of character buffer 
Set pointers to start of character buffer 

" Set control word field size counter 
Get character from buffer (form char match loop) 
Subrou tine to advance buffer pointer 
Exchange buffer pointer for table pointer 
See if have a character match condition 
If no match, go to next block in table 
If match, decrement field size counter 
If counter = 0, all characters in field matched 
Character match but not fini shed , advance pointer 
Exchange table poi nter for buffer pointer 
Loop to see if next character matches 
Decrement field size counter to find end of 
Current control word field , jump when fi nd 
Otherwise advance table po inter 
And loop to look fo r end of con trol word field 
At end of control word field need to 
Advance pointer over the address field 
To the start of next control word fi eld 
And then fetc h 1st character in new block 
Set t he flags after the load operatio n 
Return if end o f tab le (no match found) 
Otherwise exchange table pointer for buffer 
And form loop to check next block in table 
Advance pointer to 1st part (page) of address 
And extract page address to store tern p 
Advance pointer to location on page address 
And store it temporarily 
Now set memory pointer (H & L) to point to the 
2nd byte of the jump instruction coming up 
Put the low order address in byte 2 
Advance the memory pointer 
And the PAGE address in byte 3 of the J UM P 
Now jump to the address just loaded into 
These two (LOW address) 
Bytes (PAGE address) 

At the conclusion of the routine that 
The search rou tine jumps to when a 
Match is found, a RET instruction 
Should be executed to re turn the program 
To t he main calling routine 
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The subroutines SWITCH and ADV have 
been detailed earlier in this chapter, and are 
not repeated in the previous example. 

The next example is for the case where 
the input buffer is delimited by a CR and a 
free-format table (version No.2) is used . 

NEXCMD , CALINCTRL 
CAL SEARCH 
JMP NEXCMD 

INCTRL, LHI 003 
LLI371 
LBI006 

INC HAR , CAL INPUT 
CPI 215 
JFZ CHECK 
LMA 
RET 

CHECK, INB 
DCB 
JT Z INCHAR 
DCB 
LMA 
CAL ADV 
JMP INCHAR 

SEARCH, LDI 002 
LEI 000 

INITBF, LHI003 
LLI371 

CMATCH, LAM 
CPI215 
JTZ LCHAR 
CAL ADV 
CAL SWITCH 
CPM 
JFZ NXWORD 
CAL ADV 
CAL SWITCH 
JMP CMATCH 

LCHAR , CAL SWITCH 
LAM 
NDI 300 
JTZ FOUNDW 

NXWO RD , LAM 
NDI 300 
JT Z SETNXW 
CAL ADV 
JMP NXWORD 

Main program calling sequence 
Fetch the command string from input device 
Search table & perform command inputted 
Repeat loop for next command by operator 

Set page address of start of character buffer 
Set location on page of start of buffer (N + 1) 
Set counter for maximum number usable characters 
Call subroutine to input character from I/O 
See if character was a CR 
If not, check for buffer overflow 
If yes, store CR as last character in buffer 
And return to calling routine 
Exercise register B (counter) to set flags 
According to original conten ts 
Ignore new character if counter was 000 
Otherwise decrement value of counter 
And store character in buffer 
Advance buffer pointer 
And loop to fetch next character from I/O 

Table search routine 
Set pointers to starting address of table 
Set pointers to starting address of table 
Set pointers to start of character buffer 
Set pointers to start of character buffer 
Get character from buffer (form char match loop) 
See if sym bol for CR 
If so, go to last character routine 
Otherwise, advance buffer pointer 
Exchange buffer pointer for table pointer 
See if have match condition in table 
If not , go to next block in table 
If yes, advance table pointer 
Exchange table pointer for buffer pointer 
Loop to test next character 
Exchange buffer pointer for table pointer 
Test for end of control field 
By seeing if two MSB 's are both a 
If so, have found matching control word 
Test for end of control field 
By seeing if two MSB's are both a 
If so, have marker, go to next block 
Otherwise, advance table pointer 
And cont inue looking 
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SETNXW, CAL ADV 
CAL ADV 
LAM 

A t end of control word field need to 
Advance po inter over the address field 

NDA 
And then fetch 1st character in new block 
Set the flags after the load operation 

FOUNDW , 

RT Z 
CAL SWITCH 
JMP INITBF 
LDM 
CAL ADV 
LEM 

Return if end of table (no match found) 
Otherwise, exchange table pointer for buffer 
And form loop to check next block in table 
Extract page address and sto re temp 
Advance table pointer 
Store location on page temporarily 

LHI MMM 
LLI NNN. 
LME 

Now set memory pointer (H & L) to point to the 
2nd byte of the JUMP instruction coming up 
Pu t the low order address in byte 2 

INL Advance the memory pointer 

NNN 
MMM 

LMD 
JMP NNNMMM 
AAA 

And the page address in byte 3 of the JUMP 
Now JUMP to the address just loaded into 
These two (LOW address) 

BBB Bytes (PAGE address) 

After processing command, return to main routine 

SORTING OPERATIONS 

Another particularly powerful capability of 
a mini -computer is its ability to rapidly mani-
pulate and organize info rmation . A typical 
operation is to sort data into some d esired 
form, such as to arrange a list of names into 
alphabetical order. Or, possibly , to arrange a 
list of addresses by zip code zo ne numbers. 

The key ingredient in developing a program 
to perform sorting operations is to plan the 
organization of the storage of the data in 
memory so that the operating portion of t he 
program is rel atively simple. A simple tech-
nique involves justifying the data into fields 
so that simple comparing algorithms may be 
utilized. 

As an example of a sorting program, 
assume one had a list of names that one 
wished to have the computer place in alpha-
betical order. A hypothet ical list might con-
sist of the following names: 
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JONES, R . M. 
SMITH, C. 
WILLIAMS , P. K. 
DAVIS, Z. T . 
THOMPSON, A. R. 
THOMAS, F. 
ALLISON, A. B. 
SMITH , T . P. 

It may be supposed that the names will be 
inputted and stored in the computer in the 
order shown above . The first objective of the 
program would be to have t he inco ming 
names stored in a manner that would be easy 
for the sort routine to operate on . A good 
technique to use would be to set up fields for 
the information being stored . In this case, 
one would want to set up three fields . One for 
the last name, one for the first initial, and one 
for the middle initial. The size of each field 
would need to be determined. Fo r the 
example list shown above, the lo ngest last 
name encountered has eight letters . Thus, the 
field for the last names must have space for 



at least eight characters since one computer 
word in memory will store the code for one 
letter in the name . However , in order to make 
the program flexible, one could select a longer 
field length to allow longer names to be 
stored. For illustrative purposes, a last name 
f ield of 14 (decimal) units will be planned . 
(Note that this a purely arbitrary selection.) 
The field length for each initial would only 
have to be 1 memory word. Thus, the total 
length of the three fields making up a block 
would be 16 (dec imal) or 20 (octal) memory 
words. Note that in selecting the field lengths 
for this example, space was not included for 
the comma (,) sign after the last name , or 
the periods (.) after each initial. This is 
because since these signs are repititious) one 
can save valuable memory space by deleting 

these marks duril).g the input operation. Then 
simply add them back in at the appropriate 
point when the data is displayed by the out-
put device. 

The input routine would need to always 
start inserting characters at the beginning of 
a field. Then insert spaces or some special 
code (such as a 000 word) in all of the unused 
memory words in a field so that the names 
could be co nsidered as being left justified in 
each field. The reason for this will be made 
clear shortly. 

The following routine might be used to 
accept information from a keyboard device 
and store the names in memory in the desired 
format. 

ACCEPT , LHI 004 
LLIOOO 

NOTFND, LAM 
NDA 
JTZ FNDEND 
LAI020 
ADL 
LLA 

CKPAGE, CTZINCRH 
LAI010 
CPH 

* JTZ TOMUCH 
JMP NOTFND 

FNDEND, LBI016 
CAL INPUT 
CPI252 
JFZ NOTDON 
XRA 
LMA 
RET 

NOTDON, CPI215 
JTZ FNDEND 
CPI256 
JTZ FNDEND 
CPI254 
JTZ FNDEND 
LMA 
DCB 
INL 

** NEXTIN, CAL INPUT 
CPI 215 

Initialize names storage area pointer 
To start of storage area 
Now fetch 1st location in a block 
Set flags after load operation 
And test for end of storage area 
If not end, then advance pointer 
To next block by adding 20 octal 
To memory pointer address & restore pointer 
Advance page address of pointer if required 
Now text to see if still 
In storage area (pages 04 - 07 octal) 
Optional display message if storage filled 
Keep looking for end of storage area 
Setup last names field counter 
And fetch a character from input routine 
Check for * code (finished indicator) 
Proceed if not * code 
If * code , then place a 000 word at 
Start of block as an ending marker 
And exit subroutine 
Test for carriage-return code 
And ignore if 1st character in field 
Test for period (.) code 
And ignore if 1st character in field 
Test for comma (,) code 
And ignore if 1st character in field 
If none of above, put character in field 
Decrement the field size counter 
Advance the storage pointer 
And fetch the next character in last name 
Test for carriage-return 
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JTZ HAVECR Finished block if have CR here 
CPI254 Test for comma 
JTZ HAVECM Finished last name field if have comma 
LMA Otherwise place character in last name field 
INL Advance the storage pain ter 
DCB Decrement last names field size counter 
JTZ FULFLD And see if field is filled 
JMP NEXTIN If not, get next character in last name 

HAVECR, XRA If have CR put a 000 in memory words 
LMA For rest of current block 
LAL Fetch memory pointer to accumulator 
NDI 017 Mask off 4 most significant bits 
CPI017 Test for end of block 
JTZ NEXBLK Prepare for next block if done 
INL Otherwise advance pointer 
JMP HAVECR And continue putting 000 words in block 

HAVECM, XRA If have comma, put 000 words in rest 
LMA Of last name field 
lNL Advance field pointer 
DCB Decrement last names field counter 
JTZ FULFLD Go process initials when done 
JMP HAVECM Else continue to clear rest of field 

NEXBLK, INL Advance memory pointer to start of next block 
JMP CKPAGE And prepare for next name entry 

** FULFLD, CAL INPUT Get character for 1st initial of name 
CPI254 Test for comma 
JTZ FULFLD Ignore comma at this point 
CPI215 Test for CR 
JFZ SAVINI If not CR, store character 
XRA But, if CR, put in 000 word 
LMA For both initial fields 
INL By above instruction, then advance pointer 
JMP SAVIN2 And then following this jump command 

SAVINI, LMA Store 1st initial in 1st initial field 
INL Then advance storage pointer 

** INITF2, CAL INPUT Look for 2nd initial 
CPI256 Check for period 
JTZ INITF2 Ignore a period 
CPI 215 Test for CR 
JFZ SAVIN2 If not CR then store 2nd initial 
XRA But if was CR, place 000 word in memory 

SAVIN2, LMA Store the character or 000 substitute 
INL Advance pointer to new block 
CTZ INCRH Advance page address of pointer if required 
LAI010 Now test to see if still in 
CPH Storage area (Pages 04 - 07) 
JTZTOMUCH Optional display message if storage filled 
JMP FNDEND Go process next input 

INCRH, INH Subroutine to increment register H 
RET And then return to calling routine 
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The above routine has a number of special 
factors included in it to illustrate considera-
tions that programmers must learn to take 
into account when developing such programs. 
Some of these factors are poin ted out in the 
following discussion of the above routine. 

The first function the above routine per-
forms is to look for the end of the name 
storage area. Th is is done by testing the first 
character in each block to see if it contains 
a 000 word . As shown later in the routine, 
a 000 word will be entered at that location 
whenever the operator has fin ished entering 
a series of names that will be sorted . It should 
be noted that whenever it is desired to 
initialize the name storage area so that it 
appears to the program that the storage area is 
empty, a subroutine that will place a 000 
word at page 04, location 000 should be exe-
cuted. (That simple subroutine is not shown 
above.) The above routine also makes a test 
each time the memory pointer is advanced to 
a new block, to determine whether the 
pointer is still in the alloted names storage 
area. For this example the storage area was 
planned to reside in locations from page 04 
location 000 to page 07 location 377. Should 
the routine go beyond the designated storage 
area before an end of table marker is found, 
the routine would jump to a routine termed 
TOMUCH. TOMUCH migh t print out a 
message to the operator indicating that the 
storage area was already filled with names. 
(That routine is not included in the examp le 
above.) The reference to the routine 
TOMUCH is noted by an asterisk in the above 
program source listing. 

When the routine has found the end of the 
names storage area, indicating where addi-
tional incoming names can be stored (pro-
vided the storage area has not been ex-
hausted), the routine then proceeds to accept 
data from an input su broutine . The first char-
acter accepted at the start of a new name 
(block) is tested to see if it is a special code 
(an asterisk in this case) that. the operator 
could use to signify to the program that all 
the desired names had been entered. If this 
code was received, then a 000 code would be 
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placed in the first memory word for the block 
as the end of table marker mentioned above. 
The routine would then exit the above 
routine . 

[f the first character in a new block is not 
th e special end code , a check is made to see if 
it is a carriage-return, comma, or period sign. 
Anyone of those codes would be ignored as 
the first character in a block for the following 
reasons. The receipt of a carriage-return or 
comma would obviously be invalid at this 
point because no letters for a name have been 
entered. The acceptance of either of those 
operators would cause the last name to be 
completely filled with 000 words, incl uding 
the first location . This action would result in 
an effective end of storage area marker being 
placed at the location of the current block. 
The receipt of a period sign would most likely 
be the period sign from the last initial field 
entered (which is to be ignored) and certainly 
would not be a valid letter for the beginning 
of a last name. The incorporation of these 
checks act as safeguards for human operator 
errors, and are another example of human 
engineering factors in the development of a 
program . 

If the first character is not one of the 
above , it is stored in the first location in the 
last name field . After t he first character has 
been stored, each character received from the 
input routine is tested to see if it is a carriage 
return or comma. If it is a comma, signifying 
the end of the last name field , any unfilled 
locations in the field are filled with zeros. The 
program then proceeds to the initial fields. 
However, if a carriage return is noted, the pro-
gram fills the entire remainder of the current 
block. including the initial fields, with zero 
words . This is because a carriage return sig-
nifies the completion of a name entry . An 
additional safeguard is built into the routine 
in this section to prevent too many characters 
from being entered into the last nam e field. 
When the field has been filled, the pointer is 
not advanced until a carriage return or comma 
is received. 

Once the last name field has been pro-



cessed , the routine will accept characters as 
initials. However, it ignores the period signs 
after the init ial s. When an entire name has 
been processed, the program loops to accept 
another name block after checking to make 
sure the storage area is not filled. It then re-
peats the process described. 

The above routine could be modified to in-
clude an operator convenience-the ability to 

erase a current entry if the operator made a 
mistake while typing in a name. This could be 
done by executing a routine immediately 
after the points designated in the program by 
a double asterisk (**). The routine could be 
used to check for a special erase code. If this 
code was detected, the program could reset 
the pointers to the start of the current name 
block, and allow re-entry of the name. Such a 
routine might be as shown here: 

ERRORT, CPI377 
JF Z AWAY 
LAL 

Check for a rubout code 
Exit routine if not a rubout 

NDI 360 
LLA 
JMP FNDEND 

AWAY , * ** 

If have a rubout then fetch pointer 
Remove 4 least significant bits 
And restore pointer to start of block 
Jump to re-enter name 
* **Next instruction in current sequence 

While the previous routine seems a bit long 
at first glance, one must remember that it is 
doing quite a few functions, and is quite 
general purpose in over-all design. The pro-
gram enables one to build up a list of names 
in a designated area of memory, place the 
data in formatted fields, check for selected 
operator errors, and bound or limit the 
storage area. The program, using the basic 
concepts presented, can be modified to serve 
as a basic structure for inputting a variety of 

types of data into justified fields. To provide 
a clear mental picture of how the list of 
names given several pages earlier would appear 
when inputted to memory using the program 
illustrated, a diagram showing memory lo-
cations and their contents is provided below. 
The diagram shows addresses (on page 04) 
with the contents of the memory location 
shown beneath it, followed by the alpha-
betical representation for the code where 
applicable. 

ADDR: 
CONT: 
LETR: 

ADDR: 
CONT: 
LETR: 

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 
312 317 316 305 323 000 000 000 000 000 000 000 000 000 322 315 
JONES RM 

020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037 
323 315 311 324 310 000 000 000 000 000 000 000 000 000 303 000 
S MIT H C 

ADDR: 040 
CONT : 327 
LETR: W 

041 042 043 044 045 046 047 050 051 052 053 054 055 056 057 
311 314 314 311 301 315 323 000 000 000 000 000 000 320 313 
ILLIAMS PK 

ADDR : 
CONT : 
LETR: 

060 061 
304 301 
D A 

062 063 
326 311 

V I 

064 065 066 067 070 071 072 073 074 075 076 077 
323 000 000 000 000 000 000 000 000 000 332 324 

S Z T 
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ADDR: 100 101 102 103 104 105 106 107 110 III 112 113 114 115 116 117 
CONT: 324 310 317 315 320 323 317 316 000 000 000 000 000 000 301 322 
LETR: T H 0 M P S 0 N A R 

ADDR: 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 
CONT: 324 310 317 315 301 323 000 000 000 000 000 000 000 000 306 000 
LETR: T H 0 M A S F 

ADDR: 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157 
CONT: 301 314 314 311 323 317 316 000 000 000 000 000 000 000 301 302 
LETR: A L L I S 0 N A B 

ADDR: 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177 
CONT: 323 315 311 324 310 000 000 000 000 000 000 000 000 000 324 320 
LETR: S M I T H T P 

ADDR : 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217 
CONT : 000 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
LETR: ... . DON'T CARE ABOUT MEMORY CONTENTS BEYOND HERE .... 

Once the data has been organized in a suit-
able manner in memory, one can proceed to 
develop a relatively simple sort routine to 
arrange the names in alphabetical order. The 
technique to be illustrated consists of com-
paring the letter, starting with the left-most 
position in a block (as seen in the memory 
diagram above) against the letter in the same 
position in the next block in memory. By 
letter what is actually meant is the ASCII 
code (in this example) for a letter. It so 
happens that the ASCII code is arranged such 
that the alphabet goes in ascending numerical 
order. The letter A is represented as 301, the 
letter B as 302, C as 303, and so forth on up 
to the letter Z which has an octal represen-
tation of 332. How convenient' This means 
that if the value in a memory word (represent-
ing a letter in ASCII format) is compared 
against another memory word contain ing an 
ASCII coded letter, that the lower valued 
entry contains a lower order letter in the 
alphabet. 

With this information one may quickly dis-
cern that one can quite easily develop an al-
gorithm to arrange names alphabetically . If 
the value of a memory location in the first 
position of say the first block (the Nth block) 
is compared against the value of the first 
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position in the next block (N+1 block) and 
found to be greater in value, then the first 
(Nth) block has a name that is higher alpha-
betically than the name in the second (N+1) 
block. Thus one can immediately proceed to 
exchange the contents of the two blocks to 
arrange the names in ascending alphabetical 
order. If, however, the code in the first 
block is less in value than the second block, 
then the present order is correct , and the 
program can proceed to check the second 
block against the third one. If the letters in 
the first position checked are equal in value, 
then one cannot yet make a decision about 
the alphabetical order, but rather must go on 
to compare the values of the second letter 
within the two blocks! 

To further complete the algorithm, one 
must also consider the possibility that when 
one exchanges the contents of blocks Nand 
N + 1 that the new contents of N will now be 
of lesser order than that contained in block 
N - 1. Th"s, whenever one performs an ex-
change of two blocks, one must have the pro-
gram go back and do a comparison between 
the Nand N-1 blocks. One can envision the 
algorithm as proceeding in a see-saw manner. 
comparing the Nth block against the N+1 
block until an exchange is necessary. Then 



switching to compare between the Nth and 
N-1 block until an exchange is not necessary. 
At that point the process reverts back to com-
paring the Nth and N+1 blocks until another 
exchange is required . Looked at another way, 
the data blocks could be viewed as rippling 
upwards or downwards in memory as the 
process proceeds. Higher ordered names 
getting shoved to higher addressed blocks, 
lower ordered names being pushed to lower 
addressed blocks. 

the same job, some of which are faster when 
large data bases are involved (but more co m-
plicated programming-wise) . Such algorithms 
generally have considerable value on larger 
machines. However, the above algorithm is 
quite suitable for typical sorting jobs that a 
microcomputer might be called upon to per-
form. For those who might want to investi-
gate other algorithms, they might consider the 
co ncept of having a program that immediately 
classifies a name into , say , the first, second , or 
third section of the alphabet. 

This type of algorithm is not the only way 
one co uld proceed to sort the data. There are 
other types of algorithms that can perform 

A program for the ripple sorting algorithm 
discussed above is presented below. 

SORT, LHI004 
LLI 000 

INITBK, LBI 020 
LCM 
LAL 
AD! 020 
LLA 
CPI020 
CTCINCRH 
LAM 
NDA 
RTZ 
CPC 
.rrC XCHANG 
.rrZ CKNEXT 
JMPFNDEND 

CKNEXT, DCB 
JFZ NOTFIN 

BACKER, LAL 
ND! 360 
LLA 
JMP INITBK 

NOTFIN, LAL 
NDA 
SUI017 
LLA 
CTC DECRH 
LCM 
LAL 
AD! 020 
LLA 
CPI020 
CTC INCRH 
LAM 

Initialize pointer to start 
Of names block storage area 
Set block length counter 
Get 1st character from block N into C register 
Fetch N block pointer 
Advance pointer to block N + 1 
Restore pointer 
Check to see if going to new page 
Advance page pointer if required 
Get 1st character from block N+1 into accumulator 
Set flags after loading operation 
End of storage - sort operations completed 
Compare N + 1 letter to N letter 
N greater than N+ 1 so exchange block contents 
N = N+l so check next letter in block 
N less than N+l so order O.K., do next block 
Decrement block length counter 
Continue if not finished block 
Fetch N+1 pointer to ACC 
Reset pointer to N bloc k 
Restore pain ter 
Go to compare next block 
Fetch N+1 block pointer 
Clear the carry flag with this no-op 
Decrease pointer to N block 
Restore pointer 
If underflow then decrement page pointer 
Fetch character from N block to register C 
Fetch N block pointer 
Increase pointer to N+1 block 
Restore pain ter 
Check to see if going to new page 
Advance page pointer if required 
Get character ·from N+l block 
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CPC 
JTC XCHANG 
JTZ CKNEXT 

FINEND, DCB 
JT Z BACKER 
INL 
JMP FINEND 

XCHANG, LAL 
ND! 360 
LLA 
LEI 020 

NOTYET, LCM . 
LAL 
NDA 
SUI 020 
LLA 
CTC DECRH 
LDM 
LMC 
LAL 
AD! 020 
LLA 
CPI020 
CTCINCRH 
LMD 
INL 
DCB 
JFZ NOTYET 
LAL 
NDA 
SUI 060 
LLA 
CTC DECRH 
LAH 
CPI003 
JFZ INITBK 
JMPSORT 

Compare N + 1 letter to N letter 
N greater than N+l so exchange block contents 
N = N+l so check next lett.er in block 
N less than N+l so order O.K., do next block 
At end of block N+l reset pointer for N 
Advance pointer 
And loop to look for end of block 
Fetch N+l pointer 
Mask off LSB '5 to restore pointer 
To start of N + 1 block 
Set block length counter 
Fetch N+l into register C 
Fetch N+l pointer to accumulator 
Clear the carry flag 
Decrease pointer to N block 
Restore pointer 
Decrement page pointer if req uired 
Fetch N into register D 
Place former N + 1 into N 
Fetch N pointer to accumulator 
Increase pointer to N+l block 
Restore poin ter 
Check to see if going to new page 
Increment page pointer if required 
Place former N into N+l 
Advance N+l pointer 
Decrement block length counter 
Continue if not finished exchanging 
If finished exchanging, fetch N+l pointer 
CI ear carry flag 
Back pointer from N+l to N-1 block 
Restore pointer 
Decrement page pointer if required 
Fetch current page 
Make sure still in storage area 
Yes - do an effective N -1 to N test 
Went back too far - go to starting block! 

The INCRH referred to by the sort routine 
was presented earlier as part of the routine 
that accepted names into the storage area . 
The DECRH routine not shown should be a 
snap for anyone who has reached this point 
in the manual. (If it is not, for Heavens sake, 
go back and review!) 

originally stored in memory, o ne should be 
able to clearly discern the operation of the 
sort program. For example, for the first 
three names the program encounters in the 
original example setup, the program will only 
have to test the first letter in each block . 
When the name in the 4th block is exam ined, 
an exchange will have to be made with the 
name in the third block. Then the program 
will find when checking the N-1 block (which 
was the original second block) that the name 

If one mentally proceeds through the sort 
routine while referring to the diagram given 
several pages earlier showing the names as 
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Davis, Z. T. has to be exchan ged again. This 
will happen again until the name Davis, Z. T . 
arrives at the fi rst bloc k in the storage area. 
A t this po in t t he program goes back to 
checking against the N+1 block . The names 
would then appear in memory in the 
fo llowing order. 

Block No. 1: 
Block No.2: 
Block No.3: 
Block No.4: 
Block No.5: 
Block No.6: 
Bloc k No.7: 
Block No.8: 

Davis, Z. T. 
Jpnes , R. M. 
Smith, C. ' 
Williams, P. K. 
Thompson, A. R. 
Thomas, F. 
Allison, A. B. 
Smith, T. P. 

Now the program would get down to block 
five before it found it necessary to exchange 
block five with block four. The next N-1 test 
would fail , however, and the program would 
proceed back up to block six. There it would 
find the nam e Tho m as, F. and have to ex -
change it again with Thompson, A. R. At 
that po in t , the names storage area would 
appear as: 

Block No. 1 : 
Block No.2: 
Block No.3: 
Bloc k No .4: 
Block No.5 : 
Block No.6: 
Block No. 7 : 
Block NO . 8: 

Davis , Z. T. 
Jones, R . M. 
Smith , C. 
Thomas, F. 
Thompson, A. R . 
Williams, P. K. 
Allison, A. B. 
Smith, T. P. 

At that point the program would get up 
to block num ber seve n where it would find 
Allison , A. B. It would then have to exchange 
names all the way back down the line to get 
it into block number one. Finally , the pro-
gram would find t hat Smith , T. P. had to be 

4 - 37 

moved back ending up in block number five. 
All of th e above would have happened in a 
mere fraction of a second as the CPU 
executed the instructions at m icro -second 
speeds , reSUlting in the names organized in the 
fo ll owing desired manner. 

Bloc k No.1: 
Block No.2: 
Bloc k No.3: 
Block No. 4: 
Block No.5: 
Bloc k No.6: 
Block NO. 7: 
Block No.8: 

Allison , A. B. 
Davis, Z. T. 
Jones, R. M. 
Smith, C. 
Smith, T. P. 
Thomas , F . 
Thompson, A. R . 
Williams, P. K. 

Similar types of sorting or arranging op-
erations can also be done with numbers in 
BCD or binary form, or with other types of 
data. 

One could com bine a control tab le, such as 
one of the types discu ssed earlier in this 
chapter, with the necessary input, formatting, 
and sort subroutines just discussed. Thus, one 
could make up a powerful, yet easy to use, 
operating package suited to the user's specific 
requirements. 

By utilizing the concepts (as well as som e 
of the specific routines) presented in this sec-
tion, the reader should be able to see the way 
towards developing some sophisticated pro-
grams capab le of perfo rming functions 
tailored to the individual's o wn requirem ents . 

For t hose interested in uti lizing the mathe-
matical capabilities of the digital computer 
(perhaps combining such operations with 
som e of those already discussed) simply pro-
ceed on to study the next chapter. 



MATHEMATICAL OPERATIONS 

The ability of a digital computer to handle 
mathematical operations combined with its 
ability to manipulate text gives the machine a 
unique combination of power that partially 
acco un ts fo r its growing popularity. 
Programming a computer using machine 
language to perform mathematical functions 
is perhaps a bit more co mplicated than having 
it perform routine text manipulations. But, it 
is not as difficult as so me people tend to 
think before being introduced to the subject . 
Like most other programming tasks, the key 
to success is organization of the program into 
small routines that can be built upo n to form 
more powerful functions. 

The instruction set of the ' SOOS' and simi-
lar CPU's contain a number of primary mathe-
matical instructions that are the basis for de-
veloping mathematical programs. The groups 
used most often include the ADDITION, 
SUBTRACTION and ROTATE instructions. 
(Do you recall that rotating a binary number 
to the left effectively doubles, or multiplies 
the original value by two , and rotating it to 
the right essentially divides the original value 
in half?) 

Dealing with numbers of small magnitude 
using a microprocessor is simplicity itself. For 
instance , if one wanted to add t he numbers 
'2 ' and '7 ,' one could load one number into 
register B in the CPU and load the other into 
the accumulator. The simple directive: 

ADB 

wo uld result in the value 'all ' (octal) being 
left in the accumulator. Subtraction is just as 
easy. If one placed '7' in the accumulator and 
'2' in register B and executed a: 

SUB 

instruction the value' 5 ' would be left in the 
accumulator. 
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Multiplication of small numbers may be 
readily accomplished using a simple algo-
rithm. That is to add the multiplicand to it-
self the number of times dictated by the 
multiplier. Suppose one desired to have the 
computer multip ly ' 2' times '3.' Placing the 
value '2 ' in register Band '3' in register C and 
executing the following instruction sequence: 

START, 
MULTIP , 

STOP, 

XRA 
ADB 
DCC 
JFZ MULTIP 
HLT 

would result in the value '6' ending up in 
the accumulator. As shall be discussed further 
on, the above algorithm is not very efficien t 
when the numbers become large. More effi-
cient multiplication algorithms are based on 
rotate operations which effectively multiply 
a number by a power of two . For instance, 
multiplying a number by '32' (decimal) would 
require 32 loops through the above routine. 
It would only require five rotate operations ! 
However , the above routine illustrates how a 
number can be multiplied even though the 
computer does not have a specific "multi· 
ply" instruction . 

One may also divide small valued numbers 
that have integer results using a similarly 
simple algorit hm that subtracts instead of 
adds. For instance, a reverse of the previous 
example would be to d ivide the number '6' by 
the value '2 .' The subtraction algorithm could 
appear as: 

START, 
DIVIDE, 

STOP, 

LCIOOO 
NDA 
JTZ STOP 
SUB 
INC 
JMP DIVIDE 
HLT 



In the algorithm just presented, the routine 
starts with the number '6' in the accumu-
lator. The divisor is in register B. Register C 
is used as a counter to count how many times 
the value in B can be subtracted before the 
contents of the accumulator reaches zero. 
As pointed out previously, the algorithm 
only works properly if the result is an in-
teger value. Division is perhaps the most 
difficult basic mathematical function to 
perform on a digital computer because of 
mathematical peculiarities (involving the 
manipulation of fractional values). However, 
as will be illustrated later , there are ways 
around the above limitation . The above 
illustration is merely to give the novice 
enco uragement. It illustrates that suc h opera-
tio ns are possible even though a specific 
divide command is not part of a typical 
microprocesso r's instruction set! 

The discussion so far has been limited to 
numbers of relatively small magnitude. 
Specifically, numbers small enough to be 
contained in a single eight bit binary register 
or memory location in a microprocessor. 
Many user's who want to use the digital 
computer to perform mathematical opera-
tions seem to get stumped when first coming 
across a requirement to manipulate numbers 
that are too large in magnitude to fit in one 
memory word or CPU register. With an '8008' 
based machine, and indeed most micro-
computers available at present, such a require-
ment typically arrives shortly after one has 
started operating their machine! The reason is 
simply that the largest valued number that 
can be placed in an 'N-bit' register is the value 
(2**N)-1. Since most microprocessors use but 
eight bits in a word, the largest number that 
can be represented in a single word if all the 
bits are used is a mere 255 (decimal). If one 
desires to maintain the "sign" (whether the 
value is greater or less than zero) and uses one 
bit in a register for that purpose, then the 
largest number that can be represented in a 
single word is a paltry 127 (decimal). That is 
hardly enough to bother using a computer to 
manipulate! 

But, the secret to rapidly increasing the 
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magnitudes of the numbers that can be 
handled by a digital computer is held in that 
formula just presented; (2**N)-1. That 
formula states that the size of the number 
that can be stored in a binary register doubles 
for every bit added to the register. Thus, if 
one were to store a number using the avail-
able bits in two registers or memory words in 
an 8-bit-per-word system, one would be able 
to represen t numbers as large as (2**16)-1 or 
65,535 (decimal). If one of those 16 bits was 
reserved for a sign indicator, the magnitude 
wou ld be limited to (2**15)-1 which is 
32,767 (decimal). That is certainly a lo t more 
than the value of 127 that can be held in just 
o ne word I But, why stop at holding a number 
in two words? There is no need to, one may 
keep adding words to build up as many bits 
as desired. Three words of eight bits, leaving 
one bit out for a sign indicator, would leave 
23 bits . That number of bits cou ld represent 
numbers as large as (2**23)-1 which is about 
8 ,388,607 (decimal). Four words would allow 
representing a signed number up to (2**31)-1 
which is roughly 1 ,107,483,647! One could 
add still more words if required .. Generally, 
however, one selects the number of signifi-
cant digits that wi ll be important in the cal-
culations that are to be performed and uses 
enough words to ensure that the "precision" 
or number of significant digits required for 
the operations, can be represented in the total 
number of bits available within the grouped 
words. The use of more than one computer 
word or normal sized register to store and 
manipulate numbers as though they were in 
one large continuous register is commonly 
referred to as "multiple-precision" arith-
metic . One often hears computer technolo-
gists speaking of "double-prec ision" or 
"triple-precision " arithmetic. This simply 
means that the machine is using techniques 
(generally programming techniques) that 
enab le it to handle numbers stored in two 
or three registers as though they were one 
number in a very large register. 

The '8008' CPU is capable of multiple-
precision ari th metic. In fact it does it quite 
nicely because the designers of the CPU took 
particular care to include some special in-



structions for just such operations. (Such as 
the ADD and SUBTRACT wi th CARRY in-
structions .) Mul t iple-precision arithme tic is 
not difficult. [t takes a little extra consid -
eratio n when organizing a program to handle 
and store numbers that are contained in mul-
tiple words in memory. But, with the use of 
effective subroutines (and "chaining") 
the task can be handled with relative ease. 

[n order to effectively deal with multip le-
prec ision arithme tic one must establish a 
convention fo r storing the sections of one 
large number in several locations. For the 
purposes of the current disc ussion , it will be 
assumed that triple-prec ision arithmetic is to 
be performed . Numbers will be stored in three 
consecutive memory locations according to 
the following arrangement. 

Location N = Least significant 8 bits 
Location N+ l = Next significant 8 bits 
Location N+2 = Most significant 7 + sign bit 

Thus, the three words in memory could be 
mentally viewed as being one continuous 
large registe r containing 23 binary bits plus a 
sign bit as illustrated in the diagram below . 

LaC N+2 
sx xxx xxx 

MSB's 

LaC N+l LaC N 
xx xxx xxx xx xxx xxx 

NS B's LSB's 

a f course, one could reverse the above 
seq uence, and store the least sign ifican t bits 
in memory location 'N,' the next group in 
'N+ l ' and the most significant bits plus sign 
bit in me mory location ' N+2 .' It makes little 
difference as lo ng as one remains consistent 
within a program. However, the convention 

illustrated will be the one used for the dis-
cussion in this section . 

Also , as has been po inted out, it is not 
necessary to limit the storage to just three 
words. Additional words may be used if 
additional precision is req uired. For most of 
the discussion in this chapter , th ree words 
will be used for storing numbers . Using three 
words in the above fashio n will allow numbers 
up to a value of 8 ,388 ,64 7 to be stored. This 
means that six to seven significant digits 
(decimal) can be maintained in calculations. 

The first mul t iple-precision routine to be 
illustrated will be an addition routine that will 
add together two mult iple-precision numbers 
and leave the result in the location formerly 
occupied by o ne of the numbers. The routine 
to be presented has been develo ped as a 
general purpose routine in that, by prop-
erly setting up memory address pointers 
and loading a CPU register with a precision 
value prior to calling the routine , the same 
routine may be used to handle multiple-
precision addition of numbers varying in 
length from 'I' to 'N ' registers. (As long 
as the registers containing a number are in 
consecutive order in memory , and with the 
restriction that al l the registers containing 
a number are on one page . That limits 'N' to 
255 (decimal) words, which is a limitation 
few programmers will find cumbersome!) 

The key element in the addition routine 
to be illustrated is the use of the ACM add 
with carry instruction. The essential differ-
ence between an add with carry (ACM) in-
struction and an ADM (add without carry) 
command is as follows . 

An ADM instruction sim ply adds the contents of the accumulator and the contents 
of the memory location pointed to by the Hand L registers. During the addition 
process, the status of the carry flag is ignored. However, if at the end of the process , 
an overflow has occured, the carry flag will be set to a logic one condition. For 
example, adding the following binary numbers would yield : . 

10101010 
01010101 

CARR Y = 0: 1 1 1 1 1 1 1 1 
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An example illustrating a carry occuring is shown next. 

11111111 
00 000 001 

CARR Y = 1 : a a a a a a a a 
Remember in the above examples that the CARRY FLAG is only affected by an 
overflow condition after the operation has occured. The original condition of the 
carry flag will have no effect on the final results of the calculation. 

An ACM command, on the other hand, examines the contents of the CARRY FLAG 
prior to the addition operation and considers it as an operator on the least signifi-
cant bit position. At the end of the addition process, the carry flag is again set or 
cleared depending on whether or not an overflow occured. (As in the case for the 
ADM instruction discussed above .) For example, adding the following binary num-
bers yields results that differ depending on the INITIAL status of the carry flag. 

CASE 1A: a : 'C' FLAG initiall y cleared 
10101010 
01010 101 

CARRY = 0: 11 111 111 

CASE 1B: 

CARRY = 1: 

CASE 2A: 

CARRY = 1: 

CASE 2B: 

1 : 'C' FLAG initially set 
10 101 010 
01 010 101 
-------- ---------- ------
00 000 000 

a : 'C' FLAG initially cleared 
11 11 1 111 
00 000 001 
------------------------
00 000 000 

1 : 'C' FLAG initially set 
11111111 
00 000 001 

CARR Y = 1: a a a a a a a 1 

In summary, one can see that an ACM type of instruction makes multiple-precision 
addition extremely easy. This is because the carry bit acts as a link between any 
carry from the most significant bit of one addition operation into the least signifi-
cant bit of the next addition operation. This allows one to proceed just as though 
the addition operation was being performed in one long register instead of several 
short registers. To discern this clearly, examine the example provided next which 
first illustrates an addition operation being performed in a hypothetical 16 (decimal ) 
bit register , then shows the same result when two ACM operations are performed on 
two eight bit registers "linked" by the special capabilities of the ACM instruction. 
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ADDITION IN HYPOTHETICAL 16 BIT REGISTER 

11111111 10101010 
00000000 11010101 

CARRY = 1: 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

SAME OPERATION USING ACM INSTRUCTION & TWO 8 BIT REGISTERS 

FIRST ACM OPERATION: 
o : 'C' FLAG assum ed cleared 

10 101010 
11010101 

CARR Y = 1: 01 1 1 1 1 1 1 : LSB 's in memory location N 

SECOND ACM OPERATION : 
1 : 'C' FLAG set by above add 

11111111 
00000000 

CARRY = 1 : 00 000 000 : MSB's in location N+ 1 

Placing the results of the two eight bit registers side-by-side after using the ACM 
type of instruction yields the same result as though the operation had been 
performed in a sixteen bit register . The concept can be applied to as many eight bit 
registers as desired . 

Armed with the knowledge of how the powerful ACM type of instruction operates, 
one may proceed to develop a N'th precision addition subro utine . Examine the 
following routine. 

ADDER, 
ADDMOR, 

NDA 
LAM 
CAL SWITCH 
ACM 
LMA 
DCB 
RTZ 
INL 
CAL SWITCH 
INL 
JMP ADDMOR 

Always clear carry flag at routine entry 
Get first number into accumulator 
Change po in ters to second number 
Perform ADDITION with CARR Y 
Place result back into memory 
Decrement the "precision" counter 
Exit routine when counter reaches '0' 
Advance second num ber pointer 
Change pointer back to first number 
Advance first number pointer 
Repeat process for next precision 

Note that the above ADDER subroutine 
requi res that a number of the CPU registers 
be setup prior to calling the routine. The H 
and L registers must con tain the address o f 
the least significant bits register (memory 
location) for the first multi-word number. 
Registers D and E similarly must be setup to 
contain the address of the least significant 
part of the second multi-word number that is 

to be added to the first. Finally, register B 
must be initialized to the "precision," Of 
number of memory words used to hold a 
multi-word number. Suppose, for example, 
that a number in triple-precision format is 
stored in three words starting at location 100 
on page 00 and that a second number in simi-
lar fo rmat is stored at location 200 on page 
01. The following instructions would be used 
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to setup the CPU registers prior to calling the ADDER subroutine just described. 

INIT, LHI 000 
LLI 100 
LDI 001 
LEI 200 
LBI003 

Set page for LSW of first number 
Set location on page for LSW of 1 's t number 
Set page for LSW of second number 

CAL ADDER 

Set location on page for LSW of 2 'nd number 
Set "precision" value (three words this case) 
Call the N'th precision addition routine 

Note too, that the ADDER subroutine is 
destructive to the original value of the second 
number because the answer is left in those 
locations. If, for some reason, the user wanted 
to save the original value of the second 
number , then it would have to be saved else-
where in memory prior to performing the 
multi-precision addition operation . 

Just as there are two classes of instruc-
tions for performing addition with an '8008' 
CPU, one of which (ACM category) is suited 
for multiple-precision arithmetic, there are 
two classes of subtract commands. The SUM 
(SUBTRACT WITHOUT CARRY) and the 
SBM (SUBTRACT WITH CARRY, or more 
appropriately, SUBTRACT WITH BORROW). 
The SBM type works similarly to the ACM 
type previously discussed. The CPU first 
checks the status of the carry flag before 
performing the subtraction operation. It is 
thus an easy matter to perform multiple-
precision subtraction operations. In fact, one 
can set up aan almost identical routine to that 

just described for addition. As in the addi-
tion example, one would first setup CPU 
registers as pointers to the least significant 
portions of the multiple-precision numbers 
and load register B with the number of mem-
ory words (N) occupied by a N'th precision 
number. 

The routines presented here only utilize the 
ACM or SBM instructions because the algo-
rithms have been developed as general pur-
pose routines to handle strings of numbers in 
memory. The reader is reminded that there 
are a whole group of instructions that have 
similar functions for working with data 
while it is in the various CPU registers 
(such as the ACB, ACC, ACD .... instruc-
tions). In addition, there is also the ACI 
instruction for performing an addition 
operation with an IMMEDIATE data word. 
The reader may review the appropriate 
section in Chapter 1 for a summary of 
the variations possible when using an 
'8008' CPU. 

EXAMPLE OF AN N'th PRECISION SUBTRACTION SUBROUTINE 

SUBBER, 
SUBTRA, 

NDA 
LAM 
CAL SWITCH 
SBM 
LMA 
DCB 
RTZ 
INL 
CAL SWITCH 
INL 
JMPSUBTRA 

Always clear carry flag at start of routine 
Get first number into accumulator 
Change pointers to second number 
Subtract second from first with borrow 
Place result back into memory 
Decrement the "precision" counter 
Exit subroutine when counter is '0' 
Advance second number pointer 
Change pointer back to first number 
Advance first number pointer 
Repeat process for next part of num ber 

One thing a person dealing with mathematical functions on a computer will soon 
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have to be concerned with is what happens 
when a larger number is subtracted from a 
smaller number. The answer is naturally a 
minus or negative number. As was initially 
discussed in the chapter on fundamental 
programming skills , most mIcroprocessors 
handle negative numbers utilizing the "two's 
complement" convention. The reader may 
wan t to review t he first few pages of that 
section at this time. 

If, for instance, (using single-precision 
arithmetic) the number '8' (decimal) was 
subtracted from '6,' the result would appear 
in the accumulator as shown here: 

6 decimal = 00 000 110 binary 
8 decimal = 00 001 000 binary 
subtracted - - ---- -- - ---------------

is 11 111 110 binary 

Note that the most significant bit in the 
register containing the minus answer is a '1.' 
By establishing a "two's complement" con-
vention and always ensuring that the mag-
nitude of any number handled does not 
interfere with the most significant bit, one 
may quickly determine whether a number in 
a register (or series of registers in the case of 
multiple-precision formatting) is positive or 
negative . This may be accomplished by 
testing to see if the most significant bit is 
a ' 1' (for a negative number) or '0' (for a 
positive) value. This is done in an '8008' or 
similar microprocessor by testing the SIGN 
FLAG with a JFS, CTS, or similar type 
CONDITIONAL instruction. 

Remember too, that a number may be 
subtracted from another number by forming 
the two's complement of the number to be 
subtracted, then performing an addition 
operation. Thus: 

+8 decimal o 0 0 0 1 0 0 0 binary 

2's camp 1 1 1 1 1 0 0 0 binary 

consequently 

6 decimal 0 0 0 0 0 1 1 0 binary 
2's comp of 8 1 1 1 1 1 0 0 0 binary 
when added ------------------------

is 1 1 1 1 1 1 1 0 binary 

It is often desirable to perform a straight 
two's complement operation on a number in 
order to change it from a positive to a nega-
tive number (or the reverse) . One easy way to 
accomplish this is to simply subtract the num-
ber from a value of zero. For multiple-pre-
cision work one could simply load one string 
of memory locations (the first number) with 
zeroes and place the number to be "negated" 
in the second string of memory locations. 
Then simply call th e previously illustrated 
SUBBER subro utine. However, there may be 
cases where one does not want to disturb 
values in memory locations or perform the 
transfer operations necessary to setup the 
numbers for the SUBBER subroutine . What 
is needed is a two's complement routine that 
will operate on a value in the location(s) in 
which it resides. The following subroutine 
will accomplish that objective. 

COMPLM, LAM 
XRI377 
AD! 001 

MORCOM, LMA 
RAR 
LDA 
DCB 
RTZ 
INL 
LAM 
XRI377 
LEA 

Get least significant bits in first word 
Exclusive OR yields pure complement 
Now add ' 1 ' to form two 's complemen t 
Return 2's complement value to memory 
Get the carry bit status 
And save the carry bit status 
Now decrement the precision counter 
Finished subroutine when counter is zero 
If not done, advance memory pointer 
And fetch the next group of bits 
Produce a pure complement 
Save pure complement temporarily 
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LAD 
RAL 

Get previous carry back into accumulator 
And shift it back out to the carry flag 

LAIOOO 
ACE 
JMPMORCOM 

Do a load so does not disturb carry flag 
Add complemented value with any carry 
Go on to do next word in string 

Notice that in the above COMPLM sub-
ro utine it was necessary to save th e status of 
the CARRY FLAG (carry bit) in a CPU 
register. This was because an XRI or any 
other BOOLEAN LOGIC instruction in an 
'8008' CPU automatically clears the carry 
flag to the zero state and would cause it to 
"lose" any previous logic one condition . 

As in the ADDER and SUBBER subrout-
ines it is also necessary to do some prelim-
inary setting up before calling the COMPLM 
subroutine . The H :md L registers must be 
set to the first word (least significant bits) 
of the multi-precision number. Register B 
must indicate how many words are used to 
hold the multi-word number. 

It will also be pointed out here, that as 
the programmer gets into developing more 
and more complicated routines that utilize 
a lot of subroutines, the programmer must 
maintain strict control over which CPU 
registers are affected. The programmer must 
make sure that the use of selected CPU 
registers by one routine (especially when it 
CALLS another subroutine) do not inter-
fere with the over-all operation of a program. 
The best rule of thumb is to try and leave a 
subroutine with all the CPU registers, except 
those transferring information to the next 
routine , in a FREE or "don't care" state. 
This is not always possible . When it is not, 
the programmer must keep track of which 
registers are being used for a specific pur-
pose and not allow them to be unintention -
ally altered. For instance, the above COMPLM 
routine requires that three of the CPU regis-
ters be setup prior to entry. The H, Land B 
registers. When it leaves the subroutine those 
registers are essentially free for use by the 
next portion of the program. It also uses the 
A, 0 and E registers for operations that it 
performs . It does not care about the status 
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of those registers when it starts operations 
because it loads them itself. It also leaves 
those registers essentially free when the 
routine is exited. (All the critical operations 
in the COMPLM subroutine are done with 
locations in memory .) However, the fact 
that the routine uses certain CPU registers, 
such as registers D and E, would be very 
important to remember if one was using 
other routines that maintained , say, memory 
pointers in registers D and E. The novice 
programmer (and a lot of times the not-so-
novice ones) will often find some very strange 
operations occuring in a newly created pro-
gram because of problems related to just 
this aspect! 

The ADDER and SUBBER subroutines 
previously presented could be used by them-
selves to handle the addition and subtraction 
of large numbers. However, a restriction on 
the types of numbers they could handle 
would be that the numbers have to be whole 
numbers . Also , as the magnitudes of the num-
bers to be handled increased, the number of 
words used to store a value in multi-precision 
format would have to be increased. As was 
pointed out earlier, when one starts dealing 
with numbers of large magnitude, one is 
primarily concerned with a certain number of 
SIGNIFICANT DIGITS in a calculation . For 
instance, one could represent the value ONE 
MILLION as '1,000,000.' To store this num-
ber in multi-precision format requires the use 
of three memory words in an eigh t bit micro-
processor. However, the number '1,000,000' 
only contains one significant digit. The num-
ber sould just as easily be represented as 
'1' raised to the sixth power of ten. Or, 
1 E+6 in what is often termed FLOATING 
POINT FORMAT. Note that if the number 
was stored in such format, one would only 
need to use one memory register in which to 
hold the single significant digit, plus a sepa-



rate register in which to hold the power to 
which the significant digit was to be raised. 
Floating point fo rmat also makes it easy to 
handle the task of processing fractional num-
bers . Up to th is point, no d iscussio n on re-
presenting non -integer numbers has been pre-
sented. This will be done shortly. As an in tro-
duction, note that the decimal number '0 .1 ' 
co uld be represented in floating point format 
as '} ' raised to the 'minus one' power of t.en, 
o r 1 E-l. 

The reader has now been introduced to 
multi-precision arithmetic. Hopefully the 
reader now has an understand ing of how 
large numbers can be stored in several small 
registers. The term large numbers may be 
interpreted as meaning numbers containin g 
more than a co uple of significant digits. 
The reader should understand that increasing 
the number of significant digits requires an 
increase in the number of binary bits required 
to store a number_ It thus increases the num-
ber of memory words required when the 
number is stored in multiple-precision format. 
Also, when the format described up to now 
is used, increasing the magnitude of a num-
ber (by adding zeros to the right of the 
signif icant digits) rapidly increases the num-
ber of words o f memory required to hold a 
number. Finally, just storing a number in a 
register, without regard to a decimal point 
location , makes it impossible to properly 
manipUlate fractional numbers. 

However , the idea that numbers can be 
represented as a series of significant digits 
raised to a power presents a so lution to the 
limi tations mentioned. Handling numbers in 
such a fashion is generally termed "f1oating-
poin t" arithmetic . The remainder of this 
chapter will be devoted to developing rout-
ines fo r a FLOATING POINT mathematical 
program for general purpose app lications. 

Before proceeding in to the development of 
floating-point routines, it will be necessary to 
discuss a matter that has been left aside up to 
this point. That is how to represent fractional 
numbers utilizing the language of the digital 
computer, binary arithmetic. 
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In the decimal numbering system which 
virtually everyone has been edu cated in , 
fractions of a number are represented by 
digits placed to the right of a decimal point. 
Each position to the right of such a point 
represents uni ts of decreasing powers of 10. 
Thus the number: 

o . 1 2 5 

actually represents : 

1 Tenth (10 E-1) 
Plus : 2 Hundredths (10 E-2) 
Plus: 5 Thousandths (10 E-3) 

The concept is exactly the same for binary 
arithmetic except that now each positio n to 
the right of the decimal point represents units 
of decreasing po wers of two! Thus the num-
ber: 

o . 1 1 1 

represen ts: 

1 Half (2**-1) 
Plus : 1 Quarter (2**-2) 
Plus: 1 Eighth (2**-3) 

Th us the above binary number ' 0 .111 ' 
represents a fractional number which when 
converted to decimal is equal to: 

1/ 2 + 1 /4 + 1 /8 = 7/8 or 0.875 (decimal) 

The manner in which fractional binary 
numbers are represented brings o ut an in -
teresting point which many readers may have 
heard of, but not truly understood. That is 
the introduction of errors into calculations 
done on a digital computer due to the mani-
pulation of fractions that can not be final-
ized. As an analogy, there are similar cases 
in decimal arithmetic. One such case occurs 
when the number '1' is divided by '3.' The 
answer is : 

0 .333333333333333 .. .......... . 

which is a non-ending series of '3's after the 



decimal point. The accuracy or precision with 
which a calculation involving such a number 
can be carried out is determined by how 
many significant digits are used in further 
calculations involving the fraction. For 
instance, theoretically, if the n urn ber one is 
divided by three and then multiplied by 
three, one would get back one as a result. 
However , if the result of the division is ac· 
tually multiplied by three, the answer is 
not actually one, but approaches that value 
as the number of significant lJits used in the 
calculation is increased. Observe. 

0.3 (one significant digi t used) 
X 3 

.9 (answer is off by 10%) 

0.33 (two significant digits used) 
X 3 

.99 (answer is off by 1%) 

0.333 (three significan t digi ts used) 
X 3 

.999 (answer is off by 0 .1%) 

A similar situation exists with binary 
arithmetic except there are now many more 
cases where the non..,nding fraction situa-
tion can occur. For instance, the value '0.1' 
is truly represented in the decimal system. 
But, in the binary system, the decimal value 
'0.1 ' can only be approximated. As for the 
decimal case discussed above, the more 
binary digits used, the closer the value 
approaches the true value of ' 0.1. ' Observe. 

0.0001 (binary) = 1/ 16 =.0625 (decimal) 
Which is off by 37.5%! 

0.0001l001l = 1/16 + 1 /32 + 1 /256 
+ 1/512 = .0996 
Off by just 0.4%! 

Note too, that the binary representation is a 
non·ending series: 
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0.1 decimal = 0 .0001l001l001l001l00 .... 
............... binary 

and can not reach the theoretical true value 
of '0.1' as in the decimal system . Thus, if 
'0 .1' as represented in the binary system is 
multiplied by, say, '10 : (which can be truly 
represented in the binary system) the theo-
retical value of '1.0' can only be approached. 
The more bits used to hold the binary equiv-
alent, the closer one will approach the true 
answer. Thus, one may see another reason for 
using multiple-precision arithmetic in a digi-
tal computer, even if one does not want to 
handle large numbers. This is because, the 
more bits available to store a fractional num-
ber, the more precision one can maintain in 
performing calculations. One should now also 
realize, that the more complex a series of 
mathematical operations, in other words , the 
more times a number that can not be truly 
represented is multiplied or divided , the 
wider will become the margin of error in the 
final answer ! 

Now that one has a grasp of how binary 
digits can represent fractional numbers 
when placed to the right of a decimal 
point, one may proceed to investigate 
floating point arithmetic using a digital 
computer . 

FLOATING POINT ARITHMETIC 

Just as one can represent decimal numbers 
in floating point format, that is, by a string of 
significant digits raised to a power of ten, one 
may treat binary numbers in a similar manner 
as a string of binary digits raised to a power 
of two . 

When handling numbers in floating point 
format the number is represented in two 
parts. The significant digits portion is re-
ferred to as the MANTISSA. The power 
to which the significant digits are raised 
is referred to as the EXPONENT. In decimal 
floating point format the number '5' could 
be expressed as: 



5.0 E+O = 5 X 1 = 5 

OR 50.0 E-1 50 X 1 /10 = 5 

OR 0.5 E+1 0.5 X 10 = 5 

While in binary floating point format the 
number co uld be expressed as: 

101.0 E+O = 5 X 1 = 5 

OR 101000.0 E-3 = 40 X 1/8 5 

OR 0.101 E+3 = 5/8 X 8 = 5 

It shouid be remembered that in the 
decimal example above the ·EXPONENT 
represents a power of TEN . In the binary 
example it represents a power of TWO . 

Note that the mechanics of the corres-
pondence between the exponent and the 
location of the decimal point in the mantissa 
is the same for both numbering systems. 
If the significa.,t digiis in the mantissa are 
moved to the right of the decimal point 
then the exponent is increased one unit 
for each position the mantissa is shifted. 
If the digits in the mantissa are shifted to 
the left, then t he exponent is decreased . 
The only difference between the two sys-
tems is that the exponent in the decimal 
system is specified for powers of ten, while 
in the binary system it is for powers of two. 

The reader may now see that it can be 
quite a simple matter to handle binary num-
bers using floating pain t format if one regis-
ter (or several registers) is used to hold the 
mantissa portion, and another register is 

used to maintain the exponent. Further-
more, a very simple relationship can be 
maintained between the mantissa and the 
exponent to facilitate keeping track of a 
decimal point. Once one has selected a given 
position as a reference in the mantissa por-
t ion, one has only to observe the following 
procedures for manipulating the number and 
keeping track of the decimal point: 

Each time the MANTISSA is shifted RIGHT 

INCREMENT the EXPONENT' 

Each time the MANTISSA is sh ifted LEFT 

DECREMENT the EXPONENT' 

For the remainder of this chapter, a con-
vention for storing numbers in floating point 
format will be established and maintained. 
Numbers will be stored in four consecutive 
words in memory. The first word in a group 
will be used to store the EXPONENT with 
the most significant bit in the word used to 
represent the SIGN of the EXPONENT. A 
'1 ' in the most significant bit position means 
the number is NEGATIVE. The next three 
words will hold the MANTISSA portion in 
triple-precision format. The first bit in the 
first (most significant word) of the mantissa 
will be used as the mantissa sign bit. The re-
maining bits in that word will be the most 
significant bits of the mantissa. The remaining 
two words in the mantissa group will hold the 
less significant bits of the mantissa . Further-
more, there will be an IMPLIED DECIMAL 
POINT immediately to the right of the sign 
bit in the mantissa. The format is illustrated 
here : 

... EXPONENT ... .......... MSW ... .. ....... ........ .. MANTISSA ... ..... ..... ..... .. .. .. LSW ......... . 

SEEEEEEE S.M M M M M M M MMMMMMMM MMMMMMMM 

MEM LOC N+3 MEM LOC N+2 MEM LOC N+1 MEM LOC N 
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Note the order of the memory addresses 
assigned to the storage of a number. The 
order of storage is an arbitrary assignment . 
How ever , once it has been assigned it must 
be adhered to within a program. The order 
shown is the one that will be used in the dis-
cussion and program examples for the re-
mainder of t his section . 

Note too , that a convention has been 
establi shed that will co nsider a decimal 
point (actuall y, perhaps it should be termed 
a binary poin t) to be located to the righ t o f 
the designated sign bit for the mantissa. This 
means that all numbers stored in fl oating 
poin t fo rmat will be represented as a 
fractional n um ber I Also , t he reader may 
observe that with one bit out of the three 
words used to hold the sign of the mantissa, 
that 23 (decimal) bits are left to hold the 
actual magnitude of the mantissa . Similarly , 
the exponent has seven bits in which to re -
present the magnitude of its value . The eighth 
bit being used to represent the sign of the 
exponent. Furt hermore , an exponent must 
be an integer value as there is no implied 
decimal point in the exponent register. 

F LOATING POINT NO RMALI ZATION 

NO RMALI ZATIO N may be considered 
as a standardizing process that will place a 
n umber into a fixed position as a reference 
poin t from which to commence operations. 
For the purposes of this discussion, the 
term NO RMALI ZATION will mean to place 
a number into its storage registers so that the 
mantissa will have a value that is greater than 
or equal to ONE HALF (l /2) but less than 
ONE (1). Put another way , this means that 
any number to be manipulated by a fl oating 
po in t routine will first be shifted so that the 
most significant binary digit is next to the 
IMPLIED BINA RY POINT in the most 
significant word o f the MANTISSA storage 
registers. For instance, if a binary number 
such as: 

10l.0 E+O (5 decimal) 
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was received by an input routine to a float-
ing point program, the number would be 
NO RMALI ZED when it was placed in the 
form: 

0.101 E+3 (5 /8 X 5 = 5 decimal) 

Similarly , if after , say , a binary division 
operation in which the num ber '1 ' had been 
divided by 10 (decimal) and one had the 
answer: 

0.000110011001100 ... E+O (0.1 dec imal ) 

the number would be considered normalized 
when it was placed in the format: 

0.110011001100110 ... E-3 (0.1 decimal) 

Note that norm alizing a number is a 
pretty easy matter. In the first example 
the number was normalized by shift ing the · 
original number to the right until the most 
significant bit was just to the right of the 
decimal poin t. During t his procedure , t he 
value of the exponent was incremented for 
each shifting operatio n in the mantissa. In the 
second example, the number is normalized by 
shifting the original value of the mantissa to 
the left while decrementing t he exponent for 
each shifting operatio n in the mantissa. 

There are several reasons fo r wanting to 
NO RMALI ZE a number when working with a 
fl oating point program . The first has to do 
with the fact t hat generall y numbers will 
o riginate from a human who will be using the 
computer to manipulate numbers in decimal 
format. Therefore, the computer will have to 
convert numbers from say, decimal floating 
point form at, to the binary floating po in t 
format used by t he computer. There will 
be more discussion on this matter later in this 
chapter after a number of binary fl oating 
point operations have been presented. The 
second reason fo r normali zi ng numbers, and 
a very important one. is because the process 
will allow more significant digits to be re-
tained in a fixed length register. This may 
be seen by observing in the above example 
(the case where '0 .1' decimal is normalized ) 



that shifting the binary number to the left 
three places would allow several more LSB's 
to be placed in a fixed length register fo r the 
non-ending binary series 0.110011001100 ..... 
and th us allow more accuracy in the binary 
calculations that might follow I 

FLOATING POINT ACCUMULATOR and a 
FLOATING POINT OPERAND. The floating 
point accumulator and operand will be sepa-
rate groups of registers consisting of fo ur 
consecutive memory words on PAGE 00 used 
to store the active numbers that are manipu-
lated by the floating point routines . They 
will, of co urse, be arranged in the format de-
scribed earlier. That is , a single-word EXPO-
NENT and then a triple-word MANTISSA. 
The FLOATING POINT ACCUMULATOR 
will be the focal point for any floating point 
routine as all t he results of floating point 
calculations will be placed there . The FLOAT-
ING POINT OPERAND will be used primarily 
for holding and manipulating the number that 
the floating point accumulator operates on. 
For abbreviation in further discussions , the 
floating point accumulator will be shortened 
to FP ACC and the operand to FPOP. 

A routine for normalizing binary numbers 
will be presented next. In the routine for nor-
malizing numbers, and various other mathe-
matical routines in this chapter. various loca-
tions on PAGE 00 will be used for sto rin g 
numbers that are to be manipulated by the 
routines as well as for holding COUNTERS 
and POINTERS used in the routines. A list of 
the locations reserved for such use on PAGE 
00 will be provided later. Also, before getting 
into the actual binary floating point routines, 
the reader should be informed that in the fol-
lowing routines, references will be made to a 

FPNORM , LAB 
NDA 
JTZ NOEXCO 
LLI127 
LMB 

NOEXCO, LLI126 
LAM 
LLI 100 
NDA 
JTS ACCMIN 
XRA 
LMA 
JMP ACZERT 

ACCMIN, LMA 
LBI004 
LLI 123 
CAL COMPLM 

ACZERT , LLI126 
LBI004 

LOOKO , LAM 
NDA 
JFZ ACNONZ 
DCL 
DCB 
JF Z LOOKO 
LLI127 
XRA 
LMA 
RET 

Check register B for special case 
Set flags after load operation 
If B was '0' then do standard normalization 
Otherwise set EXPONENT of FPACC 
To value found in B at start of routine 
Set pointer to MSW of FPACC MANTISSA 
And get MSW of FP ACC MANTISSA into ACC 
Change pointer to SIGN storage address 
Set flags after previous LAM operation 
If MSB in MSW equals '1' then have minus number 
If MSB '0' then have positive value mantissa 
So set SIGN storage to 000 value 
Proceed to see if FP ACC zero 
Original FPACC negative number, set SIGN 
Set precision counter to four (using extra word) 
And pointer to FPACC LSW-1 (using extra word) 
Two's complement FPACC (using extra word) 
Check to see if FPACC contains zero 
Set a counter 
Get a part of FPACC 
Set flags after load operation 
If find anything then FP ACC is not zero 
Otherwise move pointer to next part 
Decrement the loop counter 
And if not finished check next part 
If reach here FPACC was zero 
So make sure EXPONENT of FPACC is zero 
By placing zero in it 
Can then exit NORMALIZATION routine 
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ACNONZ, LLl123 
LBI004 
CAL ROTATL 
LAM 

If FPACC has value, set up pointer and 
Precision value ('4' to handle special cases) 
Then rotate FP ACC to the LEFT 

NDA 
Now get MSB of MSW from MANTISSA 
Set flags after load operation 

JTS ACCSET 
INL 

If MSB = '1' then have found MSB in FPACC 

CAL CNTDWN 
JMP ACNONZ 

ACCSET, LLI126 
LBI 003 
CAL ROTATR 
LLl100 

If not, advance pointer to FPACC EXPONENT 
And decrement the value o f the EXPONENT 
Then continue in the rotating left loop 
Compensate for last rotate left when MSB 
Found to leave room for SIGN in MSB of the 
FPACC MANTISSA by doing one rotate RIGHT 
Set pointer to original SIGN storage 

LAM Get original SIGN indicator value 
NDA Set flags after load operation 
RFS 
LLI124 
LBI003 
CALCOMPLM 
RET 

Finished if value in FP ACC is POSITIVE 
Original SIGN is negative , so set pointer to 
LSW of FPACC and also set precision counter 
Now two's complement the NORMALIZED FPACC 
That is all for t he FP NORMALIZATION ROUTINE 

There are several items in the above routine 
that might confuse the reader if not explain-
ed. First of all, the routine checks CPU regis-
ter B when it is entered. If B contains '0 ' 
then the routine will proceed directly on to a 
new section in the program. If B contains 
some value , then the value it contains will be 
placed in the EXPONENT portion of the 
FPACC. This is done so that the FPNORM 
subroutine can process numbers that are not 
initially in floating point form. For instance, 
when a number is first received from an 
INPUT device it will generally be in a form 
such as shown in the example below depict-
ing the binary equivalent of 5 decimal: 

00 000 000 00 000 000 00 000 101 

As it would appear in standard triple-preci-
sion format. Now, the above standard for-
mat co uld be converted to floating point 
format by assuming that a BINARY POINT 
existed to the right of the least significant 
bit, and shifting the entire number to th e 
right while incrementing the binary expo-
nent register. However, the technique would 
cause a slight problem. How could one tell 
where the most significant bit of the binary 
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number resided? A way around that problem 
is to simply shift th e registers to the LEFT 
until the first '1 ' (MSB) is in the desired posi-
tion. If this is don e, one must first set the 
EXPONENT portion of the floating point 
number to the highest possible value that 
could be contained in the registers. Then, 
that value is decremented each time the 
magnitude portion of the number is shifted 
to the LEFT. In the example presentation , 
there are 23 decimal bits available for storing 
the mantissa when triple-precision format-
ting is being used (24 bits less one which is 
used to represent the sign of the number). 
Thus, one would simply load register B with 
the octal equivalent of 23 decimal which is 
27 before calling the FPNO RM subroutine 
whenever one wanted to convert a number in 
standard form to floating point format' The 
following illustrations should help clarify 
the presentation: 

ORIGINAL BINARY NUMBER WHEN IT 
IS IN STANDARD FORMAT 

00 000 000 00 000 000 00 000 101 



DESIRED FLOATING POINT FORMAT 

SE EEE EEE 
(exponent followed by mantissa): 
S . I III III II III III II III III 

NOW ORIGINAL NUMBE R PLACED IN 
FPACC and EXPONENT SET TO 27-

(OCTAL) 

00010 III 
(exponent followed by mantissa): 

0.0 000000 00000000 00000101 

ORIGINAL NUMBER IS THEN 
NO RMALI ZED BY ROTATING LEFT 

00000011 
(exponent followed by mantissa): 

0.1 010000 00000000 00000000 

Since the exponent was decremented each 
time the number was rotated left the final 
exponent value is the same as if the number 
had been rotated to the right to accomplish 
the normalization while incrementing the 
exponent from a value of zero! 

The reader should also note that the 
FPNORM subroutine checks to see if the 
number to be normalized is negative. If it 
is, the routine keeps track of that fact and 
makes the number positive in order to accom-
plish the normalization procedure. If it did 
not, the normali zatio n routine would not 
work as may be seen when one recalls what a 
number such as minus five appears like in its 
two 's complement form: 

11 III III 11 111 111 11 111 011 

After the number has been normalized in its 
positive form, it is converted back to the 
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negative form so that the number minus five 
would appear when normalized as: 

00000011 
(exponent followed by mantissa): 

l.0 llO 000 00 000 000 00 000 000 

The reader should work through the 
proced ure using pencil and paper to make 
sure the process is understood when pro-
cessing negative numbers as it may be 
co nfusing at first glance. Note t hat the 
normalized minus value has the most sig-
nificant bit position in the mantissa set to 
a 'I' to indicate a negative value! 

Another po int of interest in the FPNORM 
subroutine is that the routine tests to see if 
the FPACC contains zero. Note that if this 
test was not made and appropriate action 
taken to exit the subroutine on such a con-
dition, that the program cou ld become 
trapped in the rotate left loop as it would 
fail to ever see a '1' appear in the most sig-
nificant bit position! When a zero condition 
is found in the mantissa, the routine sets the 
exponent part of the FPACC to zero as an 
additional safety measure. 

Finally, the reader may note that the 
first part of the normalization routine 
assumes the mantissa uses four memory 
words. This was done so that the subroutine 
could handle some special cases that can 
occur after operations such as multipli-
cation where it may be necessary to have 
some additional precision. In cases where the 
feature is not needed, the extra memory word 
should be set to zero before using the 
FPNORM subroutine . 

The ROTATL and ROTATR subroutines 
called by FPNO RM are short routines that 
have been set up for N'th-precision o peration 
as with other algorithms discussed in this 
chapter. Before entering the routines the 
calling program sets the starting address of the 
string of memory words to be processed in 
the Hand L CPU registers. It should also set 
the number of words in the string in register 
B. The two subroutines are shown next. 



ROTATL, 
ROTL, 

NDA 
LAM 
RAL 
LMA 
DCB 
RTZ 
IN L 

Clear carry nag at this entry point 
Fetch word fro m memory 
Rotate LEFT (with carry) 
Restore rotated word to memory 
Decrement precision counter 

JMP ROTL 

Return to calling routine when done 
Otherwise advance pointer to next word 
And rotate across the memory wo rd string 

ROTATR, 
ROTR, 

NDA 
LAM 
RAR 
LMA 
DCB 
RTZ 
DCL 

Clear carry flag at this entry point 
Fetch word from memory 
Ro tate RIGHT (with carry) 
Restore rotated word to memory 
Decreme nt precision counter 
Return to calling routine when do ne 

JMP ROTR 
Going other way so decrement memory pointer 
And rotate across the memory word string 

FLOATING POINT ADDITION 

Floating point addition is quite straight 
forward . In fact , one may use the ADDER 
subroutine already developed earlier in this 
chapter for the mantissa portion o f a set of 
floating point numbers . However , there are 
a few other parameters that must be con-
sidered in developing the overall routine . 

When two numbers are to be added it will 
be assumed that they have been positioned in 
the FPACC and the FPOP memo ry storage 
areas . A few items that should be considered 
in developing the basic floating point addition 
routine include the following. 

Suppose either the FPOP or FPACC con-
tain zero? Or, they both contain zero? In the 
latter case the ro utine could be immediately 
exited as the answer is sitt ing in the FPACC. 
If the FPACC is zero, but the FPOP is no t, 
then one has merely to place the contents of 
the FPOP into t he FPACC (as the co nvention 
was established earlier that the result of an 
operation would always be left in the 
FPACC). For the case where the FPACC 
contains a value, but the FPOP is zero, one 
may immediately exit the routine. 

But, as will more likely be the case when 
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the floating point ADD routine is called, both 
the FPACC and the FPOP will contain so me 
non-zero value. Thus one co uld immediately 
proceed to perform t he addition operation , 
right? WRO NG ! Since float ing point opera-
tions allow the manipulation of numbers with 
large magnitudes , because of t he exponent 
method of maintaining magnitudes, it is quite 
possible that an operator might ask for an 
addi t ion of a very small number to a very 
large number. (This also might occur in t he 
middle of a complex calculation where an 
operator was not monitoring the intermediate 
results .) Readers know t hat if the difference 
between the two numbers to be added is so 
great that there can be no chan ge in the 
significant digits during the calculation then 
there is no need to perform the addition 
process . So, the next step in the floating point 
add itio n ro utine would be to check to see 
whether o r not the magnitudes of the 
numbers are within sign ificant range of 
o ne another. If t hey are not , then the largest 
value should be placed in the FPACC as the 
answer! 

If the magnitudes of the two numbers are 
within significant range then the two numbers 
may be added . Before this can be done, they 
must first be ALIGNED by shifting one of the 
numbers until the exponent is equal in value 
to that of the second number. The alignment 



is accomplished by finding out which expo-
nent is the smallest and shifting the man-
tissa of that number to th e right (while in -
crementing the exponent for each shift) 
until it is properly aligned. The sh ifting pro-
cedure is quite straightfOlward since it can 
be hand led by a N'th-precision register 
rotate subroutine . However, there is one 
>pecial consideration for the case of a nega-
tive number being shifted to the right. · One 
must insert a el' into the most significant 
bit position each time such a shift is made 
in order to maintain the minus value prop-
erly (to keep the sign bit in its proper state) . 
This can be accomplished easily as the reader 
may observe in the foll owing FP ADD sub-
routine by inserting a '1' into the carry bit, 
then calling the ROTR subroutine. (This is 
simply another entry point to the ROTATR 
subroutine presented earlier . The entry 

po int at ROTR avoids the NDA instruction 
which would cause the carry bit to be cleared 
to a '0 ' condition if executed. ) 

One more consideration that the reader 
may note in the foll owing FPACC subrout-
ine is that the two numbers to be added are 
sh ifted to the right once before the addition 
is performed so that any overflow fro m the 
addition will stay wi thin the FP ACC. This 
will allow normalizatio n to be handled by 
the previously presented routine instead of 
having to be concerned with the status of 
the carry flag at the end of the operation. 
Because o f this shifting operation, an add i-
tio nal memory word is used by both the 
FP ACC and FPOP and the addition is per-
form ed using quad-precision . At t he end of 
the addition process the result is normalized 
and left in the FPACC . 

FPADD , LL1126 
LBI003 

CKZACC , LAM 
NDA 
JF Z NONZAC 
DCB 
JTZ MOVOP 
DCL 
JMP CKZACC 

MOVOP, CAL SWITCH 
LHD 
LLl134 
LBI004 
CAL MOVEIT 
RET 

NONZAC, LLI 136 
LBI003 

CKZOP, LAM 
NDA 
JF Z CKEQEX 
DCB 
RT Z 
DCL 
JMP CKZOP 

CKEQEX, LLl127 
LAM 
LLI 137 
CPM 
JTZ SHACOP 

Set pointer to MSW of FP ACC 
Set loop counter 
Fetch part of FPACC 
Set flags after loading operation 
Finding anything means FPACC not zero 
If that part equals zero, decrement loop counter 
If FPACC equals zero , move FPOP into FPACC 
Not finished checking, decrement pointer 
And test next part of FPACC 
Save pointer to LSW of FPACC 
Set H equal to zero for sure 
Set pointer to LSW of FPOP 
Set a loop counter 
Move FPOP into FPACC as answer 
Exit FP ADD subroutine 
Set pointer to MSW of FPOP 
Set loop counter 
Get MSW of FPOP 
Set flags after load operation 
If not zero then have a number 
If zero, decrement loop counter 
Exit subroutine if FPOP equals zero 
Else decrement pointer to next part of FPOP 
And continue testing for zero FPOP 
Check for equal expo nents 
Get FPACC exponent 
Change pointer to FPOP exponent 
Compare exponents 
If same can setup for ADD operation 
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SKPNEG, 

LINEUP, 

MORACC, 

SHIFTO, 
MOROP, 

SHACOP, 

SHLOOP, 

FSHIFT, 

XRI377 
AD! 001 
ADM 
JFS SKPNEG 
XRI377 
AD! 001 
CPI030 
JTS LINEUP 
LAM 
LLI 127 
SUM 
RTS 
LLI124 
JMP MOVOP 
LAM 
LLI 127 
SUM 
JTS SHIFTO 
LCA 
LLI127 
CALSHLOOP 
DCC 
JFZ MORACC 
JMP SHACOP 
LCA 
LLI 137 
CAL SHLOOP 
INC 
JFZ MOROP 
LLI123 
LMIOOO 
LLI 127 
CALSHLOOP 
LLI 137 
CALSHLOOP 
LDH 
LEI 123 
LBI004 
CAL ADDER 
LBIOOO 
CAL FPNORM 
RET 
LBM 
INB 
LMB 
DCL 
LBI004 
LAM 
NDA 
JTS BRING1 
CAL ROTATR 

If not same, then two 's complement 
The value of the FP ACC exponent 
And add in FPOP exponent 
If + then go directly to alignment test 
If negative perform two's complement 
On the result 
N ow see if result greater than 27 octal 
If not can perform alignment 
If not alignable, get FPOP exponent 
Set pointer to FPACC exponent 
Subtract FPACC exponent from FPOP exponent 
FPACC exponent greater so just exit routine 
FPOP was greater, set pointer to FPACC LSW 
Go put FPOP into FPACC and then exit routine 
Align FPACC and FPOP , get FPOP exponent 
Change pointer to FPACC exponent 
Subtract FPACC exponent from FPOP exponent 
FPACC greater so go to shift operand 
FPOP greater so save difference 
Pointer to FP ACC exponent 
Call shift loop subroutine 
Decrement difference counter 
Continue aligning if not done 
Setup for ADD operation 
Shift FPOP routine, save difference count (negative) 
Set pointer to FPOP exponent 
Call shift loop subroutine 
Increment difference counter 
Shift again if not done 
First clear out extra room, setup pointer 
to FP A CC LSW + 1 and set it to zero 
N ow prepare to shift FP ACC right once 
Set pointer and then call shift loop routine 
Shift FPOP right once, first set pointer 
Call shift loop subroutine 
Setup pointers, set T) equal to zero for sure 
Pointer to LSW of FPACC 
Set precision counter 
Add FPACC to FPOP using quad-precision 
Set B for standard normalization procedure 
Normalize the result of the addition 
Exit FP ADD subroutine with result in FP ACe 
Sh ifting loop for alignment 
Fetch exponent into B and increment 
Return increment value to memory 
Decrement the pointer 
Set a counter 
Get MSW of floating point number 
Set flags after loading operation 
If number is minus, need to shift in a ' 1 ' 
Otherwise perform N'th-precision rotate 
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RET 
BRING1 , RAL 

Exit FSHIFT subroutine 
Save '1 ' in carry bit 

CAL ROTR 
RET 

Do ROT ATE RIGHT without clearing carry bit 
Exit FSHIFT SUbroutine 

MOVEIT, LAM 
INL 

Fetch a word from memory string' A' 
Advance 'A' string pointer 

CAL SWITCH 
LMA 

Switch pointer to string 'B' 

INL 
Put word from string 'A' into 'B' 
Advance B string pointer 

CAL SWITCH. 
DCB 

Switch pointer back to string 'A' 
Decrement co unter 

RTZ 
JMP MOVEIT 

Return to calling routine when counter is zero 
Otherwise continue moving operation 

FLOATING POINT SUBTRACTION 

Now that one has a floatin'g point addi-

tion routine , floating point subtraction is a 
snap. All one really has to do is negate the 
number in the FP ACC and jump to the 
floating point addition routine! 

FSUB, LLI 124 
LBI003 

Set pointer to LSW of FPACC 
Set precision counter 

CAL COMPLM 
JMP FPADD 

Perform two's complement on FPACC 
Subtraction accomplished now by adding! 

FLOATING POINT MULTIPLICATION 

Floating point multiplication can be 
accomplished by utilizing a shifting and 
adding algorithm for the mantissa portion 
of the numbers. As pointed out earlier, 
shifting a binary number to the LEFT serves 
to essentially DOUBLE its value. An algo-
rithm that takes advantage of that fact can 
be described as follows . 

Consider the two numbers as a MULTI-
PLIER and a MULTIPLICAND. Examine the 
least significant bit of the MULTIPLIER. If 
it is a o ne , add the current value of the 
MULTIPLICAND to a third register (which 
initially starts with a value of zero). Now, 
shift the MULTIPLICAND one position to 
the LEFT. Examine the next bit to the LEFT 
of the least sign ificant bit in the MULTI-
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PLIER . If it is a one, add the current value 
of the MULTIPLICAND to the third regis-
ter (wbich could be called the PARTIAL-
PRODUCT register). Shift the MULTIPLI-
CAND to the LEFT again. Continue the 
process by examining all the bits in the 
MULTIPLIER for a one condition. When-
ever the MULTIPLIER contains a ONE add 
the current value of the MULTIPLICAND 
to the PARTIAL-PRODUCT register. After 
each examination of a bit in the multiplier 
(and addition of the multiplier to the par-
tial-product register if a ' 1' was observed) 
shift the multiplicand LEFT. Continue 
until all bits in the multiplier have been 
examined. The result of the multiplication 
will be in the partial-product register at the 
completion of the above process . The algo-
rithm can perhaps be seen a little more 
clearly by studying the flow chart presented 
next. 



NO 

CHECK NEXT BIT 
OF MULTIPLIER 

IS IT A 1 ? 
YES 

ADD MULTIPLICAND 
TO PARTIAL-PRODUCT 

SHIFT MULTIPLICAND 
TO THE LEFT 

The reader may verify the algorithm b y 
following the example below for two small 

numbers , t he number '3 ' as the multiplicand 
and the number '5' as the multiplier. 

00000011 

00000101 

00000000 

00000011 

00000101 

00000011 

(Multiplicand at start of operations.) 

(Multiplier.) 

(Partial-product before operations start .) 

(Multiplicand when first bit of mu ltiplier 
is examined .) 

(Least significant bit of multiplier '1 ') 

(Multiplicand is added to partial-product. ) 
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00 000 110 

00 000 101 

(Multiplicand is shifted to the LEFT before 
second bit of multiplier is examined.) 

(Second bit of mult iplier is zero.) 

00 000 all (So nothing is added to partial-product.) 

00 001 100 

00 000 101 

(Multiplicand is shifted to the LEFT again 
before next bit of multiplier is exam ined .) 

(Third bit of multiplier is a one.) 

00 001111 (So multiplicand's current value is added 
into the partial-product register. Since 
all the remaining bits in t he multip lier 
are '0' noth ing more will be added to the 
partial-product register. It thus holds the 
final answer I) 

While the algorithm just. presented was 
designed for multiplying numbers that are in 
standard fo rmat, with just a little variation , 
the basic procedure can by applied toward s 
multiplying the mantissa portion of numbers 
sto red in floating point format . A fl ow chart 
of the mantissa mUltiplying algorithm used in 
the FPMULT subroutine to be presented 
shortly is illustrated on the next page . Note 
that it is easy to test each bit of the MULTI-
PLIER by simply rotating it right and testing 
the status of the carry flag after a rotate 
operation. 

Handling the exponent portion when 
multiplying two numbers stored in binary 
floating point format is acco mplished the 
same way one would handle exponents 
in decimal floating point format. The ex-
ponents are simply added together. 

There are several other parameters to 
consider when multiplying numbers. First, 
the algori t hm presen ted may only be used 
when the numbers are positive in value. 
Thus, any negative numbers must first be 
negated before using the algorithm . Furt her-
more, the reader knows that if two numbers 
of the same sign are multiplied together the 
answer will be a positive value, but , if the 
signs are differen t, tbe answer will be a nega-
tive number. Therefore, one must take 

5 - 21 

acco unt of the initial signs of the numbers 
being mult iplied . If appropriate, the final 
value must be negated after using the algo-
rithm. As the reader may observe in the 
FPMULT subroutine, handling this task is 
quite easy. 

Secondly, the alert reader may have ob-
served that since the multiplicand is shifted 
in the above algorithm (the partial-product 
register is shifted in the floating po int algo-
rithm to accomplish the same purpose) one 
position for each bit in the mult iplier, t hen 
it is necessary to maintain working registers 
that are twice as long as the original numbers 
that are being multiplied . Thus, the final 
aqswer may contain more hits of precision 
than the overall program is designed to 
handle. In tbe FPMULT subroutine, tbe 
multiplication of the mantissas is accom-
pliohed using six memo ry words per register. 
At the conclusion of the routine, the twenty-
third binary bit is rounded off (depending 
on the status of the twenty-fourth least 
significant bit) and the answer is norma-
lized back to a 23 bit binary number which 
is the largest number of bits the package 
being discussed is designed to normally 
manipulate . The method allows maximum 
precision to be maintained during the multi-
plication process without over-burdening 
the rest of the floating po int routines. 



FPMULT, 
ADDEXP, 

SHIFT MULTIPLIER 
RIGHT (INTO CARRY) 

NO 

NO 

CAL CKSIGN 
LLI 137 
LAM 
LLI127 
ADM 
AD! 001 
LMA 

CARRY = I? 

CHECKED 
ALL BITS IN 

MULTIPLIER? 

YES 

ADD MULTIPLICAND 
TO PARTIAL-PRODUCT 

YES 

ANSWER IS STORED IN 
THE PARTIAL-PRODUCT 

REGISTER 

Setup routine and chec\< sign of numbers 
Set po inter to FPOP exponent 
Fetch FPOP exponent into accumulator 
Set pointer to FPACC exponent 
Add FPACC exponent to FPOP exponent 
Add one for algorithm compensation 
Store result in FP ACC exponent 
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SETMCT, LLI102 
LMI027 

MULTIP , LLI 126 
LBI003 
CAL ROTATR 
CTC ADOPPP 
LLI 146 
LBI006 
CAL ROTATR 
LLI102 
CAL CNTDWN 
JFZ MULTIP 
LLI146 
LBI006 
CAL ROTATR 
LLI143 
LAM 
RAL 
LAA 
NDA 
CTS MROUND 
LLI123 
CAL SWITCH 
LHD 
LLI143 
LBI004 

EXMLDV, CAL MOVEIT 
LBIOOO 
CAL FPNORM 
LLI101 
LAM 
NDA 
RFZ 
LLI124 
LBI003 
CAL COMPLM 
RET 

CKSIGN, CAL CLRWRK 
LLI 101 
LMI001 
LLI126 
LAM 
NDA 
JTS NEGFPA 

OPSGNT, LLI136 
LAM 
NDA 
RFS 
LLI 101 
CAL CNTDWN 
LLI134 

Set bit counter storage pointer 
Set bit counter to 23 decimal (27 octal) 
Basic multiply algorithm, set pntr to MSW of FPACC 
Set precision counter 
Rotate multiplier RIGHT into carry flag 
If carry equals one, add multiplicand to partial-product 
Set pointer to partial-product MSW 
Set precision counter 
Shift partial-product RIGHT 
Set pointer to bit counter 
Decrement value in bit counter 
If bit counter not zero, repeat algorithm 
Set pointer to partial-product MSW 
Set precision co unter, now rotate partial-product 
Once more to make room for possible rounding 
Set pointer to access 24'th bit in partial-product 
Fetch 24 'th bit 
Position it to MSB position 
NOP in8erted to correct algorithm 
Set flags after rotate operation 
If 24 'th bit is a '1' then do rounding process 
Now set pointer to FPACC 
Save FPACC pointer 
Ensure that H is '000' 
Set pointer to partial-product 
Set precision counter 
Move answer from partial-product into FP ACC 
Set B for standard normalization 
Normalize the answer 
Set pointer to SIGN indicator 
Fetch SIGN indicator 
Set flags after load operation 
If SIGN has value, result is positive, exit subroutine 
But if SIGN is zero, set FPACC LSW pointer 
And set precision counter 
And negate the answer 
Before exiting the FPMULT subroutine 
Clear working locations for multiplication 
Set pointer to SIGN storage 
Place the initial value of '1' into SIGN storage 
Set pointer to MSW of FPACC 
Fetch MSW of FPACC 
Set nags after load operation 
If number is minus, need to do two 's complement 
Set pointer to MSW of FPOP 
Fetch MSW of FPOP 
Set flags after load operation 
If number is positive , return to calling routine 
If number is minus, set pointer to SIGN storage 
Decrement value of SIGN indicator 
Set pointer to LSW of FPOP 

5 - 23 



NEGFPA, 

CLRWRK , 

CLRNEX, 

CLROPL, 

CLRNX1, 

ADOPPP, 

MROUND , 

CROUND, 

LBI003 
CAL COMPLM 
RET 
LLI 101 
CAL CNTDWN 
LLI124 
LBI003 
CAL COMPLM 
JMP OPSGNT 
LLI140 
LBI010 
XRA 
LMA 
DCB 
JTZ CLROPL 
INL 
JMP CLRNEX 
LBI004 
LLI 130 
LMA 
DCB 
RTZ 
INL 
JMP CLRNX1 
LEI 141 
LDH 
LLI 131 
LBI006 
CAL ADDER 
RET 
LBI003 
LAI100 
ADM 
LMA 
INL 
LAIOOO 
ACM 
DCB 
JFZ CROUND 
LMA 
RET 

FLOATING POINT DIVISION 

Set precision counter 
Perform two's complement of number in FPOP 
Go back to calling routine 
Set pointer to SIG N storage 
Decrement value of SIGN indicator 
Set pointer to LSW of FPACC 
Set precision counter 
Negate the value in the FPACC 
Go c heck sign of FPOP 

Clear partial-products work area (140 - 147) 
Set pointer and counter 
Set accumulator to zero 
Deposit accumulator contents into memory 
Decrement counter 
When done go to next area 
Else continue clearing partial-product working area 
By stuffing zeroes in next memory location 
Clear additional room for multiplicand 
At 130 to 133, first set counter and pointer 
Put '000 ' in memory 
Decrement counter 
Return to calling program when done 
Else advance pointer 
And continue clearing operation 
Pointer to LSW of partial-product 
On PAGE 00 in D & E pointer 
Pointer to LSW of multiplicand 
Set precision counter 
Perform addition 
Exit subroutine 
Set precision counter 
Add '1 ' to 23'rd bit of partial-product 
Here 
Restore to memory 
Advance pointer 
Clear ACC without disturbing CARR Y FLAG 
And propogate rounding 
In partial-prod uct 
Finished when counter equals zero 
Restore last word of partial-product 
Exit subroutine 

In a manner that is sort of the reverse of 
multiplication (which uses ADDITION and 
ROTATE operations) one can perform 
division using an algorithm that utilizes 

SUBTRACTION and ROTATE operations. 
An algorithm will be presented directly in 
the form used in floating point operations 
because in this case it is simpler than de-
scribing it for numbers that are not in floating 
point form . The alert reader should have 
little difficulty observing that the algorithm 
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NO 

NO 

SUBTRACT DIVISOR 
FROM THE DIVIDEND 

IS 
RESULT 

'0' OR '+'? 

YES 

PLACE '1 ' IN LSB 
OF QUOTIENT 

PLACE '0' IN LSB 
OF QUOTIENT 

PLACE REMAINDER AS 
NEW DIVIDEND 

ROTATE CURRENT 
DIVIDEND LEFT 

ROTATE QUOTIENT 
TO THE LEFT 

FINISHED? 

5 - 25 

YES 

ANSWER IN 
QUOTIENT 



could be used for numbers that are not in 
floating point format. To do so, one would 
have to align the most significant bits of the 
divisor and dividend , and take appropriate 
action to handle the location of a binary 
point in cases where the result was not a 
pure in teger. 

In rambling English, the algorithm could 
be stated as follows. Subtract the value of 
the divisor from the value of the original 
dividend. Test the result of the subtraction. 
If the result is negative, meaning the entire 
divisor could not be subtracted, place a '0' 
in the least significant bit of a register desig-
nated as the QUOTIENT. Leave the current 
dividend alone. If the result of the subtrac-
tion is positive, or zero, indicating the divi-
dend was larger than or equal to the divisor, 
place a ' 1 ' in the least significant bit of the 
QUOTIENT register, then set the dividend 
equal to the value of the REMAINDER (or 
result) of the subtraction operation . Next , 
once appropriate action has been taken as a 

result of the subtraction operation , rotate the 
contents of the dividend (whether its original 
value or the new REMAINDER) one posi-
tion to the LEFT. Similarly, rotate the 
QUOTIENT once to the LEFT to allow 
room for the next least significant bit. Now 
repeat the entire procedure until one has 
performed the above operations as many 
times as there are bit positions in the register 
used to hold the original dividend! (That 
would be 23 decimal times for the floating 
point package being discussed.) 

The algorithm may be visualized a little 
more clearly by studying the flow chart 
presented on the previous page. Addition-
ally, a step-by-step illustration of the algo-
rithm being used to divide the binary equiva-
lent of 15 (decimal) by 5 is presented next. 
(The length of the registers have been reduced 
to shorten the illustration .) Remember, the 
algorithm shown is for the MANTISSA por-
tion of numbers once they have been stored 
in NORMALIZED floating point format! 

0.1111 Original DIVIDEND at start of routine. 

0.1010 

0.0101 

DIVISOR (Note floating point format.) 

This is the REMAINDER from the sub-
traction operation. Since the result was 
POSITIVE a '1' is placed in the LSB of 
the QUOTIENT register. 

a . a a a 1 QUOTIENT after l'st loop. 

NOW BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT 

a 1 a 1 a 
a 1 a 1 a 
0.0000 

New DIVIDEND (which is the previous RE-
MAINDER rotated once to the LEFT). 
DIVISOR (Does not change during routine). 

RESULT of this subtraction is zero and thus 
qualifies to become a NEW DIVIDEND. Also , 
QUOTIENT LSB gets a '1 ' for this case' 

o . a a 1 1 QUOTIENT after 2'nd loop. 
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AGAIN BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT 

a a 0 a 0 

o 1 a 1 0 

New DIVIDEND (which is the last 
remainder rotated once to the left). 
DIVISOR (still same old number) . 

1.0110 RESULT of this subtractio n is a m inus 
number (note that the SIG N bit ch ang-

. ed) . Thus, o ld DIVIDEND stays in place 
and QUOTIENT gets a '0' in LSB! 

o . 0 1 1 0 QUOTIENT after 3 'rd loop. 

NOW BOTH QUOTIENT, AND IN THIS CASE , THE OLD DIVIDEND, ARE ROT ATED LEFT 

o 0 0 0 0 Old DIVIDEND rotated once to the left. 

o 1 0 1 0 Same old DIVISOR. 

1 0 1 1 0 RESULT of this subtraction is again a 
minus. Old DIVIDEND stays in place. 
QUOTIENT gets another '0 ' in LSB . 

o . 1 1 0 0 QUOTIENT after 4'th loop . 

Since there were just four bits in the 
multiplicand register, the algorithm would 
be com pleted at the end of the fo urth loop 
in the illustration above. The answer would 
be that shown in the quotient. Remember, 
that since floating point fo rmat is being 
used , there would be binary exponents 
involved. Similar to the way one would 
handle expo nents in decimal floating po in t 
no tation, o ne subtracts the exponents for 
t he two numbers (DIVISOR exponent from 
the DIVIDEND exponent) to o btain the 
exponent value fo r a division operation. 
In the above example, t he multiplicand 
would have had the binary ex ponent '4' 
(decimal ) to represent the nonnalized sto ring 
of 15 and t he divisor would have had a binary 
exponent of ' 3.' The above algorithm requires 
a compensation factor of +1 after subtracting 
the expo nents (can the reader think of ways 
in which this co uld be avoided?) in order to 
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have the correct floating point result . In the 
example being d iscussed here, (4 - 3) + 1 = 2, 
and indeed if the answer shown was moved 
two places to the left (of the implied binary 
point) o ne could quickly verify that the result 
was the binary equivalent of 3 decimal' The 
reader might want to try using other small 
valued numbers to test the validity of the 
algorithm and to develop a thorough und er-
standing of the process. A good case to 
examine is one where the result is non-ending 
such as when the number '1' is divided by '3.' 

Just as in the multiplication routine , there 
are several other parameters that must be con-
sidered when developing the division routine. 
For instance, there is again the matter of t he 
signs of the numbers. The algorithm requires 
that the numbers be in positive format. Again 
one must keep track of the signs of the origi-
nal numbers and convert any negative o nes to 



positive values for the routine. If the signs of 
the two numbers involved are identical, the 
result must be a positive value. If they are dif-
ferent then the program must negate the ans-
wer obtained from the actual division process. 
And, because some calculations could result 
in a non-ending series for an answer, some 
rounding capability must be included in the 

routine. Then, there is a special case in divi· 
sian that one must check for and take approp-
riate action upon finding. That is the case of 
an attempted divide by zero ! In such a situa-
tion, the program should branch off to notify 
the operator of an error condition. The float-
ing point routine shown next considers these 
matters as the read er may observe. 

FPDIV , CAL CKSIGN 
LLI126 
LAIOOO 
CPM 
JFZ SUBEXP 
DCL 
CPM 
JFZ SUBEXP 
DCL 
CPM 
JTZ DERROR 

SUBEXP, LLI137 
LAM 
LLI127 
SUM 
ADI 001 
LMA 

SETDCT, LLI102 
LMI027 

DIVIDE, CAL SETSUB 
JTS NOGO 
LEI 134 
LLI131 
LBI003 
CAL MOVEIT 
LAI001 
RAR 
JMP QUOROT 

NOGO, LA! 000 
RAR 

QUOROT, LLI144 
LBI003 
CAL ROTL 
LLI134 
LBI003 
CAL ROTATL 
LLI102 
CALCNTDWN 
JFZ DIVIDE 
CAL SETSUB 

Setup registers and check sign of numbers 
Set pointer to MSW of FPACC (DIVISOR) 
Clear accumulator 
See if MSW of FPACC is zero 
If find anything proceed to divide 
Decrement pointer 
See if NSW of DIVISOR is zero 
If find anything proceed to divide 
Decrement pointer 
See if LSW of DIVISOR is zero 
If DIVISOR equals zero, have error condition! 
Set pointer to DIVIDEND (FPOP) exponent 
Fetch DIVIDEND exponent 
Set pointer to DIVISOR (FPACC) exponent 
Subtract DIVISOR exp from DIVIDEND exp 
Compensate for division algorithm 
Store exponent result in FPACC exponent 
Set pointer to bit counter storage 
Set it to 27 octal (23 decimal) 
Main division subroutine, subtract DIVIS from DIVID 
If result is negative then put '0 ' in QUOTIENT 
If '+' or '0' then move REMAINDER into DIVIDEND 
Set pointers 
And precision counter 
And move REMAINDER into DIVIDEND 
Put a '1 ' into accumulator 
And move it into the CARRY BIT 
Proceed to ROTATE it into the QUOTIENT 
When RESULT is NEGATIVE, put '0' into ACC 
And move it into CARRY BIT 
Set pointer to LSW of QUOTIENT 
Set precision counter 
Move CARR Y BIT into LSB of QUOTIENT 
Set pointer to DIVIDEND LSW 
Set precision counter 
Rotate DIVIDEND left 
Set pointer to bits counter 
Decrement bits counter 
If not finished then continue algorithm 
Do one more divide for rounding operations 
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JFS DVEXlT 
LLl144 
LAM 
ADI 001 
LMA 
LAIOOO 
INL 
ACM 
LMA 
LAIOOO 
INL 
ACM 
LMA 
JFS DVEXIT 
LSI 003 
CAL ROTATR 
LLl127 
LSM 
INL 
LMB 

DVEXlT , LLl144 
LEI 124 
LSI 003 
JMP EXMLDV 

SETSUB, LLl131 
CAL SWITCH 
LHD 
LLI124 
LBI003 
CAL MOVEIT 
LEI 131 
LLI 134 
LBI003 
CAL SUBBER 
LAM 
NDA 
RET 

DERROR, CAL DERMSG 
JMP USERDF 

If 24 'th bit equal zero then no rounding 
When 24'th bit is '1' set pntr to QUOTIENT LSW 
Fetch LSW of QUOTIENT 
Add '1' to 23'rd bit 
Restore LSW 
Clear accumulator while saving CARR Y FLAG 
Advance pointer to NSW of QUOTIENT 
Add with carry 
Restore NSW 
Clear accumulator while saving CARR Y FLAG 
Advance pointer to MSW of QUOTIENT 
Ad d wi th carry 
Restore MSW 
If MSB of MSW is zero prepare to exit 
Otherwise set precision counter 
Move QUOTIENT to the RIGHT to clear SIGN BIT 
Set pointer to FPACC exponent 
Fetch exponent 
Increment it for ROTATE RIGHT operatio n above 
Restore exponent 
Set pointers to transfer 
QUOTIENT to FPACC 
Set precision counter 
Exit through FPMULT routine at EXMLDV 
Set pointer to LSW of working register 
Save pointer 
Set H = '0' for sure 
Set pointer to LSW of FP ACC 
Set precision counter 
Move FPACC value to working register 
Reset pointer to working register LSW (DIVISOR) 
Set pointer to LSW of FPOP (DIVIDEND) 
Set precision counter 
Subtract DIVISOR from DIVIDEND 
Get MSW of RESULT from subtraction operations 
And set flags after load operation 
Before returning to calling routine 

**User defined ERROR routine for handling 
Attempted divide by zero, exit as directed** 

The five fundamental floating point sub-
routines, FPNORM , FPADD, FPSUB , 
FPMULT and FPDIV when assembled into 
object code will fit within three pages of 
memory in an '8008' system_ Additionally, 
the routines as presented in this chapter 
use some space on PAGE 00 for storing 

data and counters_ Needless to say, the pro-
grams as developed for discussion could be 
modified to use other memory locations 
with little difficulty_For reference pur-
poses, the locations used on PAGE 00 by the 
fundamental floating point routines just 
presented are listed on the next page_ 
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100 
101 
102 

SIGN indicator 
SIGNS indicator (multiply & divide) 
Bits counter 

12 3 
124 
125 
126 
127 

FP ACC extension 
FPACC least significant word (LSW) 
FPACC next significant word (NSW) 
FPACC most significant word (MSW) 
FPACC exponent 

130 - 133 Working area 

134 
135 
136 
137 

FPOP least significant word 
FPOP next significant word 
FPOP most significan t word 
FPOP exponent 

140 - 147 Working area 

The fundamental floating point routines 
which have been presented and discussed 
are extreme ly powerful routines which should 
be of considerable value to anyone desiring 
to manipulate mathematical data in an '8008' 
or similar system. The routines in the form 
presented for illustrative purposes are cap-
able of handling binary numbers that are 
the decimal equivalent of six to seven digits 
raised to approximately the plus or minus 
38 'th power of ten! The routines may be used 
to so lve a wide variety of mathematical 
formulas by simply calling the appropriate 
subroutines after loading the FPOP and 
FPACC registers with the values that are to 
be manipulated (when they are in norma-
lized floating point format). Furthermore, 
the basic routines illustrated can become the 
fundamental routines in more sophisticated 
programs. Such programs might be developed 
to calculate functions such as SINES and 
COSINES using numerical techniques such as 
expansion series formulas . 

The interested programmer should have 
little difficulty in modifying the routines 
illustrated to upgrade their capability to 
provide more significant digits (by increasing 
the length of the mantissa). Or , to extend the 
exponents capability by providing double or 
even t riple-precis ion registers for the expo-
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nent. For many applications, however , t he 
user will be well satisfied with the capability 
provided by the routines as they have been 
presented for educational purposes. 

The floating point routines which have 
been presented are used to manipulate num-
bers once they are in binary format. In so me 
applications, such as when formulas are being 
solved by a computer to control the opera-
tion of a machine, or applications where there 
is little or no need to communicate with 
humans, the above routines co upled with 
I /O routines and whatever operating programs 
are dictated by th e application, would be 
sufficient for handling th e mathematical 
o peratio ns. However , in probably the major-
ity of applications, at some time o r other it 
will be desirable for humans to communicate 
with the computer. Or , for the computer to 
at least present information to humans. It 
seems that the vast majority of people prefer 
to manipulate mathematical data using decL 
mal notation. Most people would not want 
to change tbeir ways by working in floating 
point' binary notatio n' So , most programmers 
would find it beneficial to have som e conver-
sion routines that would convert numbers 
from decimal floating point notation to 
binary floating point notation as well as the 
reverse. The next · section of this chapter is 



devoted to discussing and developing routines 
that accomplish such a worth wile objective. 

CONVERTING FLOATING POINT 
DECIMAL TO FLOATING POINT BINARY 

Most people using a digital computer for 
handling mathematical functions would like 
to input data in the form: 

1234.567 

OR 

1.234 E+3 

Using an input device such as a keyboard or 
electronic typing machine. In order to accept 
data in such format one needs to develop a 
program that will first convert the informa-
tion from the decimal mantissa and exponent 
form to the binary equivalent. The process is 
fairly straightforward conceptually. 

First, one needs to develop a method for 
breaking down the mantissa portion into a 
DEClMAL NORMALIZED format . This may 
be done quite readily because: 

1234.567 = 1234567 .0 E-3 

AND 

1 .234 E+3 = 1234.0 E+O 

Thus, to effectively normalize a decimal 

number one has to simply keep track of 
where the decimal poin t is placed by the 
operator in the mantissa. Then one needs to 
compensate for that factor by removing the 
decimal point (making the mantissa an 
integer value) and changing the exponent 
value to compensate for the removal of the 
decimal point! 

Next, one needs to convert the mantissa 
portion of the number from decimal to 
binary. That conversion process can ac-
tually be accomplished as each decimal 
number is inputted by the operator using 
the algorithm described below. 

DECIMAL TO BINAR Y CONVE RSION 

Each time a digit is received in 
decimal form, immediately con-
vert it to its binary equivalent . 
In many cases this consists of 
simply MASKING 0 FF extra bits 
to leave a value in BCD format. 
Next, In order to compensate 
for the powers of ten denoted by 
the posi tional weigh t of decimal 
numbers , multiply any previous 
number(s) that are already stored 
in binary form by multiplying 
them by ten (decimal). Then add 
in the binary equivalent of the 
number that has just been 
received . 

The algorithm can be illustrated by con-
sidering the following example. An operator 
enters the decimal number 63 by first enter-
ing the number '6' and then '3' from an input 
device such as an ASCII encoded keyboard: 

00000000 Input register initially cleared. 

Operator initially types in the character for a ' 6.' This 
is immeidately co nverted to 1 1 0 as its binary equiv-
alent. Since it is the first character received it is not 
necessary to multiply the present value of the storage 
register by ten. The binary value 1 1 0 can simply be 
placed in the INPUT register giving: 
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00000110 Input register after 1 'st number. 

The operator then enters the character for a '3.' Once 
again this is immediately converted to 0 lIas its 
binary equivalent . But, before this new digit is added 
to the binary storage register, the contents of the 
register must be multiplied by ten to account for the 
positional value of the previous digit. A simple way 
to multiply a binary register by ten is to perform the 
following steps: 

00000 110 Input register initially contains ' 6' 

00001 100 Rotate left = multiply by 2 

00011 000 Rotate left = multiply by 4 

00011 110 Add In o riginal value = times 5 

00111 100 Rotate left = multipl y by 10 

With the previous value of '6 ' now multiplied by ten to 
represent 60 (decimal) in the binary register, the new 
value of '3' can now be added in to yield : 

00111111 Binary equivalent of 63 (decimal) 

The above algorithm is repeated each time 
an additional decimal character is received to 
maintain the binary equivalent. The algorithm 
is valid for multiple-precision storage of 
numbers. 

Finally, it is necessary to convert the 
decimal exponent value (which again is 
immediately converted to a binary number 
as it is received from the input device) to 
represent a binary number raised to an equiva-
lent value . Conversion at this point may be 
accomplished by first converting the binary 
representation of the mantissa to its norma-
lized format (using t he special capability of 
the FPNORM routine). Then multiplying the 
normalized floating point binary number by 
10 (decimal) for each unit of a positive 
decimal exponent. This can be accomplished 
by using the FPMULT routine previously 
described! 
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The decimal to binary input program to be 
presented next handles the above considera-
tions plus several other functions. The routine 
will allow an operator to specify the sign of 
the decimal mantissa and exponent and takes 
appropriate action to negate numbers desig-
nated as being minus in value. It also allows 
for erasure of the current input string by 
typing a special character. The routine 
assumes that characters are received from an 
input device that uses ASCII code and that an 
output device using ASCII code is used to 
ECHO (repeat back) information as it is re-
ceived from the input . Neither the actual 
input or output subroutines are shown in the 
sample program that follows . (Information 
on typical I/O routines will be presented in 
another chapter.) The program also assumes 
that certain locations on PAGE 00 will be 
used for storage of numbers received and for 
maintaining counters and indicators. A listing 



of the locations used will be provided later. 
The program calls on other routines previous-

ly detailed in this chapter such as FPNORM 
and FPMULT . 

DINPUT, 

CLRNX2, 

CLRNX3, 

SECHO, 
NINPUT, 

NOTPLM, 

PERIOD, 

LHI 000 
LLI150 
XRA 
LBI 010 
LMA 
INL 
DCB 
JFZ CLRNX2 
LLI 103 
LBl 004 
LMA 
INL 
DCB 
JFZ CLRNX3 
CAL INPUT 
CPI253 
JTZ SECHO 
CPI 255 
JFZ NOTPLM 
LLI 103 
LMA 
CAL ECHO 
CAL INPUT 
CPI377 
JTZ ERASE 
CPI256 
JTZ PERIOD 
CPI305 
JTZ FNDEXP 
CPI260 
JTS ENDINP 
CPI272 
JFS ENDINP 
LLI 156 
LBA 
LAI370 
NDM 
JFZ NINPUT 
LAB 
CAL ECHO 
LLI 105 
LCM 
INC 
LMC 
CAL DECBlN 
JMP NINPUT 
LBA 

Set pointer to INPUT 
Storage registers 
Clear accumulator 
Set a counter 
And clear memory locations 150 - 157 
By depositing zeroes and advancing pointer 
And decrementing loop counter 
Until finished 
Set pointers to counter/indicator storage 
Set a counter 
And clear memory locations 103 - 106 
In a similar fashion by depositing zeroes 
And decrementing loop counter 
Until finished 
N ow bring in a character from I/O device 
Test to see if it is a '+' sign 
If yes, go to ECHO and continue 
[f not '+' see if '-' sign 
If not '+ ' or '-' test for valid character 
If minus, set pointer to INPUT SIGN 
And make it non-zero by depositing character 
Output character in ACC as ECHO to operator 
Fetch a new character from I/O device 
See if character is code for R UBO UT 
If yes, prepare to start over 
If not, see if character is a period ( .) 
If '.' process as decimal point 
If not, see if character is 'E' for exponent 
If 'E' process as exponent indicator 
If not, see if character is a valid number 
If none of above, terminate input string 
Still checking for valid number 
If not, terminate input string 
Have a number, set pntr to MSW of INPUT register 
Save character in register B 
Form a mask and check to see if input 
Registers can accept larger num ber 
If not, ignore present input 
If O .K., restore character to accumulator 
And ECHO number back to operator 
Set pointer to digit counter 
Fetch digit counter 
Increment its value 
And restore it to storage 
Perform decimal to binary conversion. 
Get next character for mantissa 
Subroutine to process'.' - save in B 
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ERASE, 

FNDEXP, 

EXECHO, 
EXPINP, 

NOEXPS, 

LLI 106 
LAM 
NDA 
JFZ ENDINP 
LLI 105 
LMA 
INL 
LMB 
LAB 
CAL ECHO 
JMP NINPUT 
LAI274 
CAL ECHO 
LAI240 
CAL ECHO 
CAL ECHO 
JMP DIN PUT 
CAL ECHO 
CAL INPUT 
cpr 253 
JTZ EXECHO 
CPI255 
JFZ NOEXPS 
LLI104 
LMA 
CAL ECHO 
CAL INPUT 
CPI377 
JTZ ERASE 
CPI260 
JTS ENDINP 
CPI272 
JFS ENDlNP 
NDI 017 
LBA 
LLI 157 
LAI003 
CPM 
JTS EXPINP 
LCM 
LAM 
NDA 
RAL 
RAL 
ADC 
RAL 
ADB 
LMA 
LAI260 
ADB 
JMP EXECHO 

Set pointer to '.' storage indicator 
Fetch contents 
Set flags after load operation 
If '.' already present, end input string 
Otherwise set pointer to digit counter 
And reset digit counter to zero 
Advance pointer back to '.' storage 
And put a '.' there 
Restore I. ' to aCCll mu latar 
And echo it back to operator 
Get next character in number string 
Put ASCII code for < in accu mulator 
Display it 
Put ASCII code for SPACE in ACC 
And leave a couple of spaces 
Be fore go ing back to 
Start the input string over 
Subroutine to process exponent, echo 'E' 
Get next part of exponent 
Test for a '+) sign 
If yes , proceed to echo it 
If not, test for a '. ' sign 
If not, see if a valid character 
If have '.' then set pointer to EXPONENT SIGN 
Set EXPONENT SIGN minus indicator 
Echo character back to operator 
Get next character for exponent portion 
See if code for RUBOUT 
If yes, prepare to re-enter entire string 
Otherwise check for valid decimal number 
If not, end input string 
Still testing for valid number 
If not , end input string 
Have valid number , form mask and strip ASCII 
Character to pure BCD, save in register B 
Set pointer to input exponent storage location 
Set accumulator = '3' 
See if 1 'st exponent number was greater than three 
If yes, ignore input (limits exponent to less than 40) 
If O.K., save previous exponent value in register C 
And also place it in accumulator 
Clear the carry bit 
Multiply times ten algorithm: 1 'st multiply by two 
Multiply by two again 
Add in original value 
Multiply by two once more 
Add in new number to complete the decimal to 
Binary conversion for exponent and restore to memory 
Restore ASCII code by adding 260 
To BCD value of the number 
And echo number, then look for next input 
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END!NP, LLI 103 
LAM 
NDA 
JTZ FININP 
LLI154 
LBI003 
CAL COMPLM 

FININP, LLI153 
XRA 
LDA 
LMA 
LEI 123-
LBI004 
CAL MOVEIT 
LBI027 
CAL FPNORM 
LLI 104 
LAM 
NDA 
LLI 157 
JTZ POSEXP 
LAM 
XRI377 
AD! 001 
LMA 

POSEXP , LLI106 
LAM 
NDA 
JTZ EXPOK 
LLI 105 
XRA 
SUM 

EXPOK, LLI 157 
ADM 
LMA 
JTS MINEXP 
RTZ 

EXPFIX, CAL FPX10 
JFZ EXPFIX 
RET 

FPX10, LEI 134 
LDH 
LLI 124 
LBI004 
CAL MOVEIT 
LLI 127 
LMI004 
DCL 
LMI120 
DCL 
XRA 

Set pointer to mantissa SIGN indicator 
Fetch SIGN indicator 
Set flags after load operation 
If nothing in indicator, number is positive 
Set pointer to LSW of input mantissa 
Set precision 
Perform two's complement to negate number 
Set pointer to input storage LSW·l 
Clear accumulator 
Clear register D 
Clear input storage location LSW·l 
Set pointer to FPACC LSW·l 
Set precision counter 
Move input + LSW·l to FPACC + LSW·l 
Set special FPNORM mode by setting bit count 
In register B and then call normalization routine 
Set pointer to EXPONENT SIGN indicator 
Fetch EXPONENT SIGN indicator to ACC 
Set flags after load operation 
Set pointer to decimal exponent storage 
If exponent positive, jump ahead 
If exponent negative , fetch it into accumulator 
And perfonm two's 
complement 
Then restore to storage location 
Set pointer to period indicator 
Fetch contents to accumulator 
Set flags after load operation 
If nothing, no decimal point involved 
If have decimal point, set pointer to digit 
Counter then clear accumulator 
Subtract digit counter from '0' to give negative 
Set pointer to decimal exponent storage 
Add in compensation for decimal point 
Restore compensated value to storage 
If compensated value minus , jump ahead 
If compensated value zero, finished! 
Compensated decimal exponent is positive, multiply 
FPACC by 10, loop until decimal exponent is zero 
Exit with converted value in FP ACC 
Multiply FPACC by 10 subroutine, set pointer to 
FPOP LSW, then set D = zero for sure 
Set pointer to FP ACC LSW 
Set precision counter 
Move FPACC to FPOP (including exponents) 
Set pointer to FP ACC exponent 
Place FP form of 10 (decimal) in FPACC 
Place FP form of 10 (decimal) in FPACC 
Place FP form of 10 (decimal) in FPACC 
Place FP fonm of 10 (decimal) in FP ACC 
Place FP form of 10 (decimal) in FPACC 
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LMA 
DCL 
LMA 
CAL FPMULT 
LLI157 
CALCNTDWN 
RET 

MINEXP, CAL FPD10 
JF Z MINEXP 
RET 

FPD10, LEI 134 
LDH 
LLI 124 
LBI004 
CAL MOVEIT 
LLI127 
LMI375 
DCL 
LMI146 
DCL 
LMI146 
DCL 
LMI147 
CAL FPMULT 
LLI157 
LBM 
INB 
LMB 
RET 

DECBIN, LLI 153 
LAB 
NDI 017 
LMA 
LEI 150 
LLI154 
LDH 
LBI003 
CAL MOVEIT 
LLI 154 
LBI003 
CAL ROTATL 
LLI154 
LBI003 
CAL ROTATL 
LEI 154 
LLI150 
LBI 003 
CAL ADDER 
LLI154 
LBI003 
CAL ROTATL 

Place FP form of 10 (decimal) in FPACC 
Place FP form of 10 (decimal) in FPACC 
Place FP form of 10 (decimal) in FPACC 
Now multiply original binary number (in FPOP) by ten 
Set pointer to decimal exponent storage 
Decrement decimal exponent value 
Return to calling program 
Compensated decimal exponent is minus, multiply 
FPACC by 0.1, loop until decimal exponent is zero 
Exit with converted value in FP ACC 
Multiply FPACC by 0.1 routine, pointer to FPOP LSW 
Set D = '0 ' for sure 
Set pointer to FP ACC 
Set precision counter 
Move FPACC to FPOP (including exponent) 
Set pointer to FPACC exponent 
Place FP form of 0.1 (decimal) in FPACC 
Place FP form of 0 .1 (decimal) in FPACC 
Place FP form of 0.1 (decimal) in FPACC 
Place FP form of 0 .1 (decimal) in FPACC 
Place FP form of 0.1 (decimal) in FPACC 
Place FP form of 0.1 (decimal) in FPACC 
Place FP form of 0 .1 (decimal) in FPACC 
Now multiply original binary number (in FPOP) by 0.1 
Set pointer to decimal exponent storage 
Fetch value 
Increment it 
Restore it to memory 
Return to calling program 
Decimal to binary conversion, set pntr to temp storage 
Restore to accumulator 
Mask off ASCII bits to leave pure BCD number 
Place current BCD number in temporary storage 
Set pointer to working area LSW 
Set another pointer to LSB of input registers 
Set D = '0' for sure 
Set precision counter 
Move original value to working area 
Set pointer to LSW of INPUT storage 
Set precision counter 
Rotate LEFT (X 2) (Total = X 2) 
Set pointer to LSW again 
Set precision coun ter 
Rotate LEFT (X 2) (Total = X 4) 
Set pointer to LSW of rotated value 
And another to LSW of original value 
Set precision counter 
Add original to rotated (Total now = X 5) 
Set pointer to LSW again 
Set precision counter 
Rotate LEFT (X 2) (Total now = X 10) 
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LLI 152 
XRA 
LMA 
DCL 
LMA 
LLI153 
LAM 
LLI1 50 
LMA 
LEI 154 
LBI003 
CAL ADDER 
RET 

Set pointer to clear working area 
Clear accumulator 
Deposit in MSW of working area 
Decrement pointer to MSW 
Put zero there too 
Set pointer to current digit storage 
Fetch latest BCD number 
Set pointer to LSW o f working area 
Deposit latest BCD number in LSW 
Seup pointer 
Set precision counter 
Add in latest number to complete DECBIN co nversion 
Return to calling program 

CONVERTING FLOATING POINT BINA RY 
TO FLOATING POINT DECIMAL 

scribed . First the binary floating point num-
ber is converted to a regularly formatted 
binary number. Then the number is conver-
ted to a decimal number using a multiply by 
ten algorithm. Since the reader should now be 
quite adept at following the operation of a 
program from the commented source listing, 
the floating point binary to floating point 
d ec imal conversion routine will be presented 
without further discussion. Remember that 
the routine illustrated assumes an ASCII 
encoded out put device is being utilized. In 
addition, several subroutines used by the pre-
viously illustrated DINPUT program are called 
by the routine . 

The fo llowing program will co nvert binary 
numbers stored in floating point format to 
decimal floating point format and display 
them on an o utput device such as an 
electronic printer (using ASCII code) in the 
fo llowing format: 

+0 .1234567 E-+'07 

The routine operates essentially in the 
reverse manner to the input routine just de-

FPOUT , LLI157 
LMIOOO 
LLI126 
LAM 
NDA 
JTSOUTNEG 
LAI253 
JMP AHEAD1 

OUTNEG, LLI124 
LBI003 
CAL COMPLM 
LAI255 

AHEAD1, CAL ECHO 
LA! 260 
CAL ECHO 
LAI256 
CAL ECHO 
LLI 127 
LA! 377 

Set pointer to decimal exponent storage 
Clear d ec imal exponent storage location 
Set pointer to MSW FPACC MANTISSA 
Fetch MSW FP ACC MANTISSA to accumulator 
Set flags after load operat ion 
If MSB = 1 have a negative number 
Otherwise number is positive, set ASCII code for '+ ' 
Go to display ' +' sign 
Have a negative number, set pntr to LSW FPACC 
Set precision counter 
Perform two 's complement on FPACC 
Set ASCII code for' -' sign 
Display sign of MANTISSA 
Set ASCII code for '0' 
Display '0' 
Set ASCII cod e for'.' 
Display ' .' 
Set pointer to FP ACC exponent 
Put ' -1' in accumulator 
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ADM 
LMA 

DECEXT, JFS DECEXD 
LAI004 
ADM 
JFS DECOUT 
CAL FPX10 

DECREP, LLI127 
LAM 
NDA 
JMP DECEXT 

DECEXD, CAL FPD10 
JMP DECREP 

DECOUT, LEI 164 
LDH 
LLI124 
LBI003 
CAL MOVEIT 
LLI 167 
LMIOOO 
LLI164 
LBI 003 
CAL ROTATL 
CAL OUTX10 

COMPEN, LLI127 
LBM 
INB 
LMB 
JTZ OUTDIG 
LLI167 
LBI 004 
CAL ROTATR 
JMP COMPEN 

OUTDIG, LLI 107 
LMI007 
LLI167 
LAM 
NDA 
JTZ ZERODG 

OUTDGS, LLI 167 
LAI260 
ADM 
CAL ECHO 

DECRDG, LLI107 
CALCNTDWN 
JTZ EXPOUT 
CALOUTX10 
JMPOUTDGS 

ZERODG , LLI157 
CAL CNTDWN 
LLI166 

Effectively subtract one from exponent 
Restore compensated exponent 
If compen exp is zero or positive, multip MANT by 0.1 
If compensated exponent is negative 
Add '4' (decimal) to exponent value 
If exponent now zero or positive, output MANTISSA 
Otherwise , multiply MANTISSA by 10 
Set pointer to FPACC exponent 
Get exponent after multiplication routine 
Set flags after load operation 
Repeat above test for zero or positive condition 
Multiply FPACC by 0.1 
Check status of FPACC exponent after multiplication 
Set pointer to LSW of OUTPUT registers 
Make D zero for sure 
Set pointers to LSW of FPACC 
Set precision counter 
Move FPACC to OUTPUT registers 
Set pointer to MSW+1 of OUTPUT register 
And clear that location 
Now set pointer to LSW of OUTPUT register 
Set precision counter, perform one 
Rotate operation to compensate for space of sign bit 
Multiply OUTPUT register by 10, overflow into MSW+1 
Set pointer to FPACC exponent 
Compensate for any remainder in binary 
Exponent by performing a ROTATE RIGHT on 
OUTPUT registers until binary exponent becomes zero 
Go to output digits when compensation done 
Binary eXfonent compensation rotate loop 
Set pointer to OUTPUT MSW+1 and set counter 
Perform compensating ROTATE RIGHT operation 
Repeat loop until binary exponent equals zero 
Set pointer to output digit counter 
Set digit counter to ' 7' to initialize 
Set pointer to MSD in OUTPUT register MSW+1 
Fetch BCD form of digit to be displayed 
Set flags after load operation 
See if 1 'st digit is a '0' 
If not, set pointer to MSW+1 (BCD code) 
Form ASCII number code by adding 260 (octal) 
To the BCD code 
And display the ASCII encoded decimal number 
Set pointer to output digit counter 
Decrement value of output digit counter 
When it is '0' go do exponent output routine 
Otherwise multiply OUTPUT register by 10 
And output next decimal digit 
If 1 'st digit , then set pointer to MSW 
Decrement value to compensate for skipping display 
Of first digit, then set pointer to MSW 
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OUTXIO, 

EXPOUT , 

EXOUTN, 

AHEAD2, 

SUB12, 

LAM 
NDA 
JFZ DECRDG 
DCL 
LAM 
NDA 
JFZ DECRDG 
DCL 
LAM 
NDA 
JFZ DECRDG 
LL! 157 ' 
LMA 
JMP DECRDG 
LLI167 
LMIOOO 
LLI164 
LDH 
LEI 160 
LBio04 
CA L MOVEIT 
LLI164 
LBI004 
CAL ROTATL 
LLI164 
LBI004 
CAL ROTATL 
LLI 160 
LEI 164 
LBl 004 
CAL ADDER 
LLI164 
LBI004 
CAL ROTATL 
RET 
LA! 305 
CAL ECHO 
LLI157 
LAM 
NDA 
JTS EXOUTN 
LA! 253 
JMP AHEAD2 
XRI377 
AD! 001 
LMA 
LA! 255 
CAL ECHO 
LBIOOO 
LAM 
SUI 012 

Of output registers, fetch contents 
Set flags after load operations 
Check to see if entire mantissa is '0' 
Check to see if entire mantissa is ' 0' 
Check to see if entire mantissa is '0' 
Check to see if entire mantissa is '0' 
Check to see if entire mantissa is .'O' 
Check to see if entire mantissa is '0 1 

Check to see if entire mantissa is '0' 
.. ' Check to see if entire mantissa is ' 0 ' 

Check to see if entire mantissa is '0' 
If entire mantissa is zero. set pointer to 
Decimal exponent storage and set it to '0' 
Before proceeding to finish display 
Multiply output registers by 10 to push out 
BCD code of MSD, first clear output MSW+1 
Set pointer to LSW of output registers 
Make sure D equals zero 
Set another pointer to working area 
Set precision counter 
Move original value to working area 
Set pointer to original value LSW 
Set precision counter 
Start multiply by 10 routine (Total = X 2) 
Reset pointer 
And counter 
Multiply by two again (Total = X 4) 
Set pointer to LSW of original value 
And another to LSW of rotated value 
Set precision counter 
Add original value to rotated (Total = X 5) 
Reset pointer 
And counter 
Multiply by two once more (Total = X 10) 
Finished multiplying output registers by ten 
Set ASCII code for letter E 
Display E for Exponent 
Set pointer to decimal exponent storage location 
Fetch decimal exponent to accumulator 
Set flags after load operation 
If MSB equals one , value is negative 
If value is positive, set ASCII code for '+' sign 
Go to display the sign 
For negative exponent, perform two's camp 
In standard manner 
And restore to storage location 
Set ASCII code for ' .' sign 
Display sign of the exponent 
Clear register B for use as a counter 
Fetch decimal exponent value 
Subtract 10 (decimal) 
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JTS TOMUCH 
LMA 
INB 
JMP SUB12 

TOMUCH, LAI 260 
ADB 
CAL ECHO 
LAM 
ADI 260 
CAL ECHO 
RET 

Look for negative resul t 
Restore positive result, maintain count of how 
Many times 10 (decimal) can be subtracted 
to obtain most significant digit of exponent 
Form ASCII character for MSD of exponent by 
Adding 260 to count in register B 
And display most significant digit of exponent 
Fetch remainder from decimal exponent storage 
And form ASCII character for LSD of exponent 
Display least sign ifican t digi t of exponent 
Exit FPOUT routine 

Once one has a decimal to binary INPUT 
routine, and binary to decimal OUTPUT 
routine to work with the fundamental float-
ing point routines, it is a relatively simple 
matter to tie them all together. By doing 
so, one may form an OPERATING PACK-
AGE that will allow an operator to specify 
numerical values in decimal floating point 
notation, indicate whether addition, sub-
traction, multiplication, or division was de · 

sired, and then obtain an answer from the 
computer. An illustrative operating program 
that utilizes all the demonstration routines 
presented in this section is shown below. 
The program will allow an operator to make 
entries and receive results in the format 
illustrated here: 

+33.0E+3 X -4 -0 .1320000E+6 

FPCONT, CAL CRLF2 
CALDINPUT 
CAL SPACES 
LLI124 
LDH 
LEI 170 
LBI004 
CAL MOVEIT 

NVALID, CAL INPUT 
LBIOOO 
CPI253 
JTZ OPERA1 
CPI255 
JTZ OPERA2 
CPI330 
JTZOPERA3 
CPI257 
JTZ OPERA4 
CPI377 
JFZ NVALID 
JMP FPCONT 

OPERA1, DCB 
DCB 

OPERA2, DCB 
DCB 

OPERA3, DCB 

Display a few Cr's & LF 's for I /O device 
Let operator enter a FP decimal number 
Display a few spaces after num ber 
Set pointer to LSW of FPACC 
Set D = 0 for sure 
Set pointer to temp number storage area 
Set precision counter 
Move FPACC to temporary storage area 
Fetch OPERATOR from input device 
Clear register B 
Test for '+' sign 
Go setup for '+ ' sign 
If not '+' then test for '-' sign 
Go set up for '·' sign 
If not above , test for X (multiply) sign 
Go set up for X sign 
If not above, test for / (divide) sign 
Go set up for / sign 
If none of above, test for RUBOUT 
If none of above then ignore current input 
If ROBOUT then start a new input sequence 
Setup register B based on above tests 
Setup register B based on above tests 
Setup register B based on above tests 
Setup register B based on above tests 
Setup register B based on above tests 
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DCB 
OPERA4, LCA 

LA! *** 
ADB 
LLI 110 
LMA 
LAC 
CAL ECHO 
CAL SPACES 
CAL DlNPUT 
CAL SPACES 
LAI 275 _ 
CAL ECHO 
CAL SPACES 
LLI170 
LDH 
LE!134 
LBI004 
CAL MOVEIT 
LL! 110 
LLM 
LHI XXX 
LEM 
INL 
LDM 
LL! Z+l 
LME 
INL 
LMD 
LH! 000 
LDH 
JMP RESULT 

CRLF2, LA! 215 
CAL ECHO 
LAI212 
CAL ECHO 
LA! 215 
CAL ECHO 
LAI212 
CAL ECHO 
RET 

SPACES, LA! 240 
CAL ECHO 
LA! 240 
CAL ECHO 
RET 

* Z * RESULT, CAL DUMMY 
CAL FPOUT 
JMP FPCONT 

LOOK-UP TABLE AAA 
BBB 

Setup register B based on above tests 
Save OPERATOR character in register C 
*** = Next to last location in LOOK-UP table 
Modify *** by contents of register B 
Set pointer to LOOK-UP table address storage 
Place LOO K-UP address in storage location 
Restore OPERATOR character to ACC 
Display the OPERATOR sign 
Display a few spaces after OPERATOR sign 
Let operator enter 2'nd FP decimal number 
Provide a few spaces after 2'nd number 
Place ASCII code for = in accumulator 
Display '=' sign 
Display a few spaces after the '=' sign 
Set pointer to temporary number storage area 
Set D = 000 for sure 
Set another pointer to LSW of FPOP 
Set precision counter 
Move l'st number inputted to FPOP 
Set pointer to LOOK-UP table address storage 
Bring in LOW order address of LOOK-UP table 
XXX = PAGE this routine located on! 
Bring in an address stored in LOOK-UP table 
Residing on this PAGE (XXX) at LOCATIONS 
'*** + B' and '*** + B + I ' and place it 
!n registers D and E then change pointer to address 
Part of instruction labeled RESULT below 
And transfer the LOOK-UP table contents so that it 
Becomes the address portion of the instruction 
Labeled RESULT, then restore 
registers Hand D to zero 
Now JUMP to command labeled RESULT 
Subroutine to provide CR & LF 's 
Place ASCII code for CR in ACC then display 
Place ASCII code for LF in ACC 
Then display 
Do it again, first setup code for CR in ACC 
Display it 
Setup code for LF 
Display it 
Return to calling routine 
Setup code for SPACE in accumulator 
Display a SP ACE 
Do it again, place code for SPACE in ACC 
Display a SPACE 
Return to calling routine 
CALL the subroutine indicated by current address here 
Display results of the calculation 
Go back and wait for next problem input! 
LOW address for start of FPADD subroutine 
PAGE address for start of FPADD subroutine 
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CCC 
DDD 
EEE 
FFF 
GGG 
HHH 

LOW address for start of FPSUB subroutine 
PAGE address for start of FPSUB subroutine 
LOW address for start of FPMULT subroutine 
PAGE address for start of FPMULT subroutine 
LOW address for start of FPDIV subroutine 
P AG E address for start of FPDIV subroutine 

The three subroutines, FPINP, FPOUT, 
and FPCONT as presented would require 
about three pages of memory for storage_ 
However, as will be discussed in the next 
chapter, the subroutines could be modified 
to fit into considerably less memory _ The 

LOCATIONS 

103 
104 
105 
107 
110 

150 - 153 
154 - 156 
157 
160 - 163 
164 - 167 
170 -173 

demonstration routines used certain locations 
on PAGE 00 for storage of transient data and 
these are listed below for reference. Naturally, 
the routines could be easily altered to use 
other temporary storage locations . 

USAGE 

Input MANTISSA sign storage 
Input EXPONENT sign storage 
Input DIGIT COUNTER > 
Output DIGIT COUNTER 
Temporary storage for control OPERATOR 

Input working area 
Input storage registers (for DECBIN conv) 
Input EXPONENT (decimal equivalent) 
Output working area 
Output storage registers (for BINDEC conv) 
Temporary number storage 

ASSEMBLED LISTING OF THE DESCRIBED FLOATING POINT PROGRAM 

The following is an assembled listing of the 
floating point package just described in this 
chapter as it would appear for an '8008' sys-
tem. The order in which the major routines 
appear in the following assembled version is 
different than the order in which they were 
presented for explanation. The routines were 
presented fo r explanation in a manner related 
to the increasing complexities of the various 
portions of the package. The assembled 
version is arranged more along the logical 
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lines of order of usage. As a guide to the 
assembled version which is presented next, 
a memory map shown below gives the start-
ing and ending addresses of the major rout-
ines. It rna" be noted, however, that while 
the order of the routines have been changed 
in the assem bled version , all of the actual 
instructions in the routines themselves have 
been left unchanged. (The assembled version 
has the comments portion of the listing 
deleted in order to save space.) 



FLOATING POINT PROGRAM MEMORY MAP 

ROUTINE STARTING ADDRESS ENDING ADDRESS 

SCRATCH PAD AREA PG 00 LaC 100 PG 00 LaC 177 
FPCONT PG 01 LaC 000 PG 01 LaC 243 
FPOUT PG 01 LaC 244 PG 02 LaC 263 
DlNPUT PG 02 LaC 264 PG 04 LaC 107 
FPNORM PG 04 LaC 110 PG 04 LaC 237 
FPADD PG 04 LaC 240 PG 05 LaC 114 
FSUB PG 05 LaC 115 PG 05 LaC 126 
FPMULT PG 05 LaC 127 PG 06 LaC 021 
FPDIV PG 06 LaC 022 PG 06 LaC 254 

UTILITY ROUTINES PG 06 LaC 255 PG 07 LaC 004 

The assembled version assumes that user 
defined routines for INPUT and OUTPUT to 
an I/O device, as well as user defined routines 
for displaying an attempted divide by zero 

operation as well as re-directing program 
operation after such an error, will reside at 
the locations indicated below. 

ROUTINE STARTING ADDRESS DEFINITION 

DERMSG PG 07 LaC 100 Attempted divide by zero 
error message 

USERDF PG 07 LaC 160 Direct program flow after 
above error 

INPUT PG 07 LaC 200 ASCII input routine 
ECHO PG 07 LaC 300 ASCII Output routine 

ASSEMBLED LISTING OF THE FLOATING POINT PROGRAM FOR AN '8 0 0 8' SYSTEM 

ADDRESS MACHINE CODE MNEMONICS 
----- -------------- -------- ----------- ----- -----

001 000 106 163 001 FPCONT, CAL CRLF 2 
001 003 106 264 002 CAL DINPUT 
001 006 106 210 001 CAL SPACES 
001 011 066 124 LLI 124 
001 013 335 LDH 
001 014 046 170 LEI 170 
001 016 016 004 LBI 004 
001 020 106 076 005 CAL MOVEIT 
001 023 106 200 007 NVALID , CAL INPUT 
001 026 016 000 LBIOOO 
001 030 074 253 CPI253 
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001 032 150 064 001 JTZ OPERA1 
001 035 074 255 CPI255 
001 037 150 066 001 JTZ OPERA2 
001 042 074 '330 CPI330 
001 044 150 070 001 JTZ OPERA3 
001 047 074 257 CPI257 
001 051 150072 001 JTZ OPERA4 
001 054 074 377 CPI377 
001 056 110 023 001 JFZ NVALID 
001 061 104 000 001 JMP FPCONT 
001 064 011 OPERA1, DCB 
001 065 all DCB 
001 066 011 OPERA2, DCB 
001 067 011 DCB 
001 070 011 OPERA3, DCB 
001 071 011 DCB 
001 072 320 OPERA4, LCA 
001 073 006 242 LAI242 
001 075 201 ADB 
001 076 066 110 LLI110 
001 100 370 LMA 
001 101 302 LAC 
001 102 106 300 007 CAL ECHO 
001 105 106 210 001 CAL SPACES 
001 110 106 264 002 CAL DINPUT 
001 113 106 210 001 CAL SPACES 
001 116 006 275 LAI275 
001 120 106 300 007 CAL ECHO 
001 123 106 210 001 CAL SPACES 
001 126 066 170 LLI170 
001 130 335 LDH 
001 131 046 134 LEI 134 
001 133 016 004 LBI004 
001 135 106 076 005 CAL MOVEIT 
001 140 066 110 LLI 110 
001 142 367 LLM 
001 143 056 001 LHI 001 
001 145 347 LEM 
001 146 060 INL 
001 147 337 LDM 
001 150 066 224 LLI224 
001 152 374 LME 
001 153 060 INL 
001 154 373 LMD 
001 155 056 000 LHI 000 
001 157 335 LDH 
001 160 104 223 001 JMP RESULT 
001 163 006 215 CRLF2, LAI215 
001 165 106 300 007 CAL ECHO 
001 170 006 212 LAI212 
001 172 106 300 007 CAL ECHO 
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001 175 006 215 LA! 215 
001 177 106 300 007 CAL ECHO 
001 202 006 212 LA! 212 
001 204 106 300 007 CAL ECHO 
001 207 007 RET 
001 210 006 240 SPACES, LA! 240 
001 212 106 300 007 CAL ECHO 
001 215 006 240 LA! 240 
001 217 106 300007 CAL ECHO 
001 222 007 , RET 
001 223 106 000 000 RESULT, CAL DUMMY 
001 226 106 244 001 CAL FPOUT 
001 231 104 000 001 JMP FPCONT 
001 234 240 240 
001 235 004 004 
001 236 115 115 
001 237 005 005 
001 240 127 127 
001 241 005 005 
001 242 022 022 
001 243 006 006 

001 244 066 157 FPOUT , LLI157 
001 246 076 000 LMIOOO 
001 250 066 126 LLI 126 
001 252 307 LAM 
001 253 240 NDA 
001 254 160 264 001 .ITS OUTNEG 
001 257 006 253 LAI253 
001 261 104 275 001 JMPAHEAD1 
001 264 066 124 OUTNEG , LLI 124 
001 266 016 003 LB! 003 
001 270 106 311 006 CAL COMPLM 
001 273 006 255 LA! 255 
001 275 106 300 007 AHEAD1, CAL ECHO 
001 300 006 260 LA! 260 
001 302 106 300 007 CAL ECHO 
001 305 006 256 LA! 256 
001 307 106 300 007 CAL ECHO 
001 312 066 127 LLI 127 
001 314 006 377 LA! 377 
001 316 207 ADM 
001 317 370 LMA 
001 320 120 343 001 DECEXT, JFS DECEXD 
001 323 006 004 LAI004 
001 325 207 ADM 
001 326 120 351 001 JFS DECOUT 
001 331 106 300 003 CAL FPXI0 
001 334 066 127 DECREP, LLI127 
001 336 307 LAM 
001 337 240 NDA 
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001 340 104 320 001 JMP DECEXT 
001 343 106 346 003 DECEXD, CAL FPD10 
001 346 104 334 001 JMP DECREP 
001 351 046 164 DECOUT, LEI 164 
001 353 335 LDH 
001 354 066 124 LLI 124 
001 356 016 003 LBI003 
001 360 106 076 005 CAL MOVEIT 
001 363 066 167 LLI167 
001 365 076 000 LMIOOO 
001 367 066 164 LLI 164 
001 37l 016 003 LBI003 
001 373 106 340 006 CAL ROTATL 
001 376 106 122 002 CALOUTX10 
002 001 066 127 COMPEN, LLI127 
002 003 317 LBM 
002 004 010 INB 
002 005 37l LMB 
002 006 150 023 002 JTZOUTDIG 
002 011 066 167 LLI 167 
002 013 016 004 LBI004 
002 015 106 352 006 CAL ROTATR 
002 020 104 001 002 JMP COMPEN 
002 023 066107 OUTDIG, LLI107 
002 025 076 007 LMI007 
002 027 066 167 LLI 167 
002 031 307 LAM 
002 032 240 NDA 
002 033 150 064 002 JTZ ZERODG 
002 036 066 167 OUTDGS, LLI167 
002 040 006 260 LAI260 
002 042 207 ADM 
002 043 106 300 007 CAL ECHO 
002 046 066 107 DECRDG, LLI107 
002 050 106 305 006 CALCNTDWN 
002 053 150 177 002 JTZ EXPOUT 
002 056 106 122 002 CALOUTX10 
002 061 104 036 002 JMPOUTDGS 
002 064 066 157 ZERODG, LLI 157 
002 066 106 305 006 CAL CNTDWN 
002 071 066 166 LLI 166 
002 073 307 LAM 
002 074 240 NDA 
002 075 110 046 002 JFZ DECRDG 
002 100 061 DCL 
002 101 307 LAM 
002 102 240 NDA 
002 103 110 046 002 JFZ DECRDG 
002 106 061 DCL 
002 107 307 LAM 
002 110 240 NDA 
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002 111 110 046 002 JFZ DECRDG 
002 114 066 157 LLI157 
002 116 370 LMA 
002 117 104 046 002 JMP DECRDG 

002 122 066 167 OUTX10 , LLI 167 
002 124 076 000 LMIOOO 
002 126 066 164 LLI164 
002 130 335 LDH 
002 131 046 160 LEI 160 
002 133 016 004 LBI004 
002 135 106 076 005 CAL MOVEIT 
002 140 066 164 LLI 164 
002 142 016 004 LBI004 
002 144 106 340 006 CAL ROTATL 
002 147 066 164 LLI164 
002 151 016 004 LBI004 
002 153 106 340 006 CAL ROTATL 
002 156 066 160 LLI160 
002 160 046 164 LEI 164 
002 162 016 004 LBI004 
002 164 106 255 006 CAL ADDER 
002 167 066 164 LLI164 
002 171 016 004 LBI004 
002 173 106 340 006 CAL ROTATL 
002 176 007 RET 
002 177 006 305 EXPOUT, LAI305 
002 201 106 300 007 CAL ECHO 
002 204 066 157 LLI157 
002 206 307 LAM 
002 207 240 NDA 
002 210 160 220 002 JTS EXOUTN 
002 213 006 253 LAI253 
002 215 104 227 002 JMP AHEAD2 
002 220 054 377 EXOUTN, XRI377 
002 222 004 001 AD! 001 
002 224 370 LMA 
002 225 006 255 LAI255 
002 227 106 300 007 AHEAD2, CAL ECHO 
002 232 016 000 LBIOOO 
002 234 307 LAM 
002 235 024 012 SUB12, SUI 012 
002 237 160 247 002 JTSTOMUCH 
002 242 370 LMA 
002 243 010 INB 
002 244 104 235 002 JMP SUB12 
002 247 006 260 TOMUCH, LA! 260 
002 251 201 ADB 
002 252 106 300 007 CAL ECHO 
002 255 307 LAM 
002 256 004 260 AD! 260 
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002 260 106 300 007 CAL ECHO 
002 263 007 RET 

002 264 056 000 DINPUT, LHI 000 
002 266 066 150 LLI150 
002 270 250 XRA 
002 271 016 010 LBI010 
002 273 370 CLRNX2, LMA 
002 274 060 INL 
002 275 011 DCB 
002 276 110 273 002 JFZ CLRNX2 
002 301 066 103 LLI103 
002 303 016 004 LBI004 
002 305 370 CLRNX3 , LMA 
002 306 060 INL 
002 307 011 DCB 
002 310 110 305 002 JFZ CLRNX3 
002 313 106 200 007 CAL INPUT 
002 316 074 253 CPI253 
002 320 150 333 002 JTZ SECHO 
002 323 074 255 CPI255 
002 325 110 341 002 JFZ NOTPLM 
002 330 066 103 LLI 103 
002 332 370 LMA 
002 333 106 300 007 SECHO, CAL ECHO 
002 336 106 200 007 NINPUT, CAL INPUT 
002 341 074 377 NOTPLM, CPI377 
002 343 150 046 003 JTZ ERASE 
002 346 074 256 CPI256 
002 350 150 022 003 JTZ PERIOD 
002 353 074 305 CPI305 
002 355 150 066 003 JTZ FNDEXP 
002 360 074 260 CPI260 
002 362 160 170 003 JTS ENDINP 
002 365 074 272 CPI272 
002 367 120 170 003 JFS ENDINP 
002 372 066 156 LLI156 
002 374 310 LBA 
002 375 006 370 LAI 370 
002 377 247 NDM 
003 000 110 336 002 JFZ NINPUT 
003 003 301 LAB 
003 004 106 300 007 CAL ECHO 
003 007 066 105 LLI105 
003 011 327 LCM 
003 012 020 INC 
003 013 372 LMC 
003 014 106 006 004 CAL DECBIN 
003 017 104 336 002 JMP NINPUT 
003 022 310 PERIOD , LBA 
003 023 066 106 LLI106 
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003 025 307 LAM 
003 026 240 NDA 
003 027 110 170 003 JFZ ENDlNP 
003 032 066 105 LLI105 
003 034 370 LMA 
003 035 060 !NL 
003 036 371 LMB 
003 037 301 LAB 
003 040 106 300 007 CAL ECHO 
003 043 104 336 002 JMP NINPUT 
003 046 006 274 ERASE, LA! 274 
003 050 106 300 007 CAL ECHO 
003 053 006 240 LA! 240 
003 055 106 300 007 CAL ECHO 
003 060 106 300 007 CAL ECHO 
003 063 104 264 002 JMPDlNPUT 
003 066 106 300 007 FNDEXP, CAL ECHO 
003 071 106 200 007 CAL INPUT 
003 074 074 253 CPI 253 
003 076 150 III 003 JTZ EXECHO 
003 101 074 255 CPI255 
003 103 110 117 003 JFZ NOEXPS 
003 106 066 104 LLI104 
003 110 370 LMA 
003 111 106 300 007 EXECHO, CAL ECHO 
003 114 106 200 007 EXPINP, CAL INPUT 
003 117 074 377 NOEXPS, CPI 377 
003 121 150 046 003 JTZ ERASE 
003 124 074 260 CPI260 
003 126 160 170 003 JTS ENDlNP 
003 131 074 272 CPI272 
003 133 120 170 003 JFS ENDlNP 
003 136 044 017 NDl 017 
003 140 310 LBA 
003 141 066 157 LLI157 
003 143 006 003 LA! 003 
003 145 277 CPM 
003 146 160 114 003 JTS EXPINP 
003 151 327 LCM 
003 152 307 LAM 
003 153 240 NDA 
003 154 022 RAL 
003 155 022 RAL 
003 156 202 ADC 
003 157 022 RAL 
003 160 201 ADB 
003 161 370 LMA 
003 162 006 260 LAI260 
003 164 201 ADB 
003 165 104 111 003 JMP EXECHO 
003 170 066 103 ENDlNP, LLI103 
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003 172 307 LAM 
003 173 240 NDA 
003 174 150 206 003 JTZ FININP 
003 177 066 154 LLI154 
003 201 016 003 LBI003 
003 203 106 311 006 CALCOMPLM 
003 206 066 153 FININP, LLI 153 
003 210 250 XRA 
003 211 330 LDA 
003 212 370 LMA 
003 213 046 123 LEI 123 
003 215 016 004 LBI004 
003 217 106 076 005 CAL MOVEIT 
003 222 016 027 LBI027 
003 224 106 110 004 CAL FPNORM 
003 227 066 104 LLI 104 
003 231 307 LAM 
003 232 240 NDA 
003 233 066 157 LLI157 
003 235 150 246 003 JTZ POSEXP 
003 240 307 LAM 
003 241 054 377 XRI377 
003 243 004 001 AD! 001 
003 245 370 LMA 
003 246 066 106 POSEXP, LLI106 
003 250 307 LAM 
003 251 240 NDA 
003 252 150 261 003 JTZ EXPOK 
003 255 066 105 LLI105 
003 257 250 XRA 
003 260 227 SUM 
003 261 066 157 EXPOK, LLI157 
003 263 207 ADM 
003 264 370 LMA 
003 265 160 337 003 JTS MINEXP 
003 270 053 RTZ 
003 271 106 300 003 EXPFIX , CAL FPX10 
003 274 110 271 003 JFZ EXPFIX 
003 277 007 RET 
003 300 046 134 FPX10, LEI 134 
003 302 335 LDH 
003 303 066 124 LLI124 
003 305 016 004 LBI004 
003 307 106 076 005 CAL MOVEIT 
003 312 066 127 LLI 127 
003 314 076 004 LMI004 
003 316 061 DCL 
003 317 076 120 LMI120 
003 321 061 DCL 
003 322 250 XRA 
003 323 370 LMA 
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003 324 061 DCL 
003 325 370 LMA 
003 326 106 127 005 CAL FPMULT 
003 331 066 157 LLI 157 
003 333 106 305 006 CALCNTDWN 
003 336 007 RET 
003 337 106 346 003 MINEXP, CAL FPD10 
003 342 110 337 003 JFZ MINEXP 
003 345 007 RET 
003 346 046 134 FPDlO, LEI 134 
003 350 335 LDH 
003 351 . 066 124 LLI 124 
003 353 016 004 LBI004 
003 355 106 076 005 CAL MOVEIT 
003 360 066 127 LLI 127 
003 362 076 375 LMI375 
003 364 061 DCL 
003 365 076 146 LMI146 
003 367 061 DCL 
003 370 076 146 LMI146 
003 372 061 DCL 
003 373 076 147 LMI147 
003 375 106 127 005 CAL FPMULT 
004 000 006 157 LLI 157 
004 002 317 LBM 
004 003 010 INB 
004 004 371 LMB 
004 005 007 RET 

004 006 066 153 DECBIN , LLI153 
004 010 301 LAB 
004 011 044 017 NDI017 
004 013 370 LMA 
004 014 046 150 LEI 150 
004 016 066 154 LLI154 
004 020 335 LDH 
004 021 016 003 LBI003 
004 023 106 076 005 CAL MOVEIT 
004 026 066 154 LLI154 
004 030 016 003 LBI003 
004 032 106 340 006 CAL ROTATL 
004 035 066 154 LLI154 
004 037 016 003 LBI003 
004 041 106 340 006 CAL ROTATL 
004 044 046 154 LEI 154 
004 046 066 150 LLI150 
004 050 016 003 LBI003 
004 052 106 255 006 CAL ADDER 
004 055 066 154 LLI154 
004 057 016 003 LBI003 
004 061 106 340 006 CAL ROTATL 
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004 064 066 152 LLI152 
004 066 250 XRA 
004 067 370 LMA 
004 070 061 DCL 
004 07l 370 LMA 
004 072 066 153 LLI153 
004 074 307 LAM 
004 075 066 150 LLI150 
004 077 370 LMA 
004 100 046 154 LEI 154 
004 102 016 003 LBI003 
004 104 106 255 006 CAL ADDER 
004 107 007 RET 

004 110 301 FPNORM , LAB 
004 III 240 NDA 
004 ll2 150 120 004 JTZ NOEXCO 
004 ll5 066 127 LLI127 
004 ll7 37l LMB 
004 120 066 126 NOEXCO, LLI 126 
004 122 307 LAM 
004 123 066 100 LLI100 
004 125 240 NDA 
004 126 160 136 004 JTS ACCMIN 
004 131 250 XRA 
004 132 370 LMA 
004 133 104 146 004 JMPACZERT 
004 136 370 ACCMIN, LMA 
004 137 016 004 LBI004 
004 141 066 123 LLI 123 
004 143 106 3ll 006 CAL COMPLM 
004 146 066 126 ACZERT, LLI126 
004 150 016 004 LBI004 
004 152 307 LOOKO, LAM 
004 153 240 NDA 
004 154 110 17l 004 JFZ ACNONZ 
004 157 061 DCL 
004 160 Oll DCB 
004 161 110 152 004 JFZ LOOKO 
004 164 066 127 LLI127 
004 166 250 XRA 
004 167 370 LMA 
004 170 007 RET 
004 17l 066 123 ACNONZ, LLI 123 
004 173 016 004 LBI004 
004 175 106 340 006 CAL ROTATL 
004 200 307 LAM 
004 201 240 NDA 
004 202 160 214 004 JTS ACCSET 
004 205 060 INL 
004 206 106 305 006 CALCNTDWN 
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004 211 104 171 004 JMP ACNONZ 
004 214 066 126 ACCSET, LLI126 
004 216 016 003 LBI003 
004 220 106 352 006 CAL ROTATR 
004 223 006 100 LLI100 
004 225 307 LAM 
004 226 240 NDA 
004 227 023 RFS 
004 230 066 124 LLI124 
004 232 016 003 LBI003 
004 234 106 311 006 CAL COMPLM 
004 237 007 RET 

004 240 066 126 FPADD , LLI126 
004 242 016 003 LBI003 
004 244 307 CKZACC, LAM 
004 245 240 NDA 
004 246 110 275 004 JFZ NONZAC 
004 251 011 DCB 
004 252 150 261 004 JTZ MOVOP 
004 255 061 DCL 
004 256 104 244 004 JMP CKZACC 
004 261 106 276 006 MOVOP, CAL SWITCH 
004 264 353 LHD 
004 265 066 134 LLI134 
004 267 016 004 LBI004 
004 271 106 076 005 CAL MOVEIT 
004 274 007 RET 
004 275 066 136 NONZAC , LLI 136 
004 277 016 003 LBI003 
004 301 307 CKZOP, LAM 
004 302 240 NDA 
004 303 110 314 004 JFZ CKEQEX 
004 306 011 DCB 
004 307 053 RTZ 
004 310 061 DCL 
004 311 104 301 004 JMP CKZOP 
004 314 066 127 CKEQEX, LLI 127 
004 316 307 LAM 
004 317 066 137 LLI 137 
004 321 277 CPM 
004 322 150 016 005 JTZ SHACOP 
004 325 054 377 XRI377 
004 327 004 001 AD! 001 
004 331 207 ADM 
004 332 120 341 004 JFS SKPNEG 
004 335 054 377 XRI377 
004 337 004 001 AD! 001 
004 341 074 030 SKPNEG, CPI030 
004 343 160 360 004 JTS LINEUP 
004 346 307 LAM 
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004 347 066 127 LLI127 
004 351 227 SUM 
004 352 063 RTS 
004 353 066 124 LLI124 
004 355 104 261 004 JMP MOVOP 
004 360 307 LINEUP , LAM 
004 361 066 127 LLI127 
004 363 227 SUM 
004 364 160 004 005 JTS SHIFTO 
004 367 320 LCA 
004 370 066 127 MORACC, LLI 127 
004 372 106 046 005 CALSHLOOP 
004 375 021 DCC 
004 376 110 370 004 JFZ MORACC 
005 001 104 016 005 JMP SHACOP 
005 004 320 SHIFTO, LCA 
005 005 066 137 MOROP, LLI137 
005 007 106 046 005 CAL SHLOOP 
005 012 020 INC 
005 013 110 005 005 JFZ MOROP 
005 016 066 123 SHACOP, LLI123 
005 020 076 000 LMIOOO 
005 022 066 127 LLI127 
005 024 106 052 005 CAL SHLOOP 
005 027 066 137 LLI137 
005 031 106 052 005 CAL SHLOOP 
005 034 335 LDH 
005 035 046 123 LEI 123 . 
005 037 016 004 LBI 004 
005 041 106 255 006 CAL ADDER 
005 044 016 000 LBIOOO 
005 046 106 110 004 CAL FPNORM 
005 051 007 RET 
005 052 317 SHLOOP, LBM 
005 053 010 INB 
005 054 371 LMB 
005 055 061 DCL 
005 056 016 004 LBI004 
005 060 307 FSHIFT , LAM 
005 061 240 NDA 
005 062 160 071 005 JTS BRING 1 
005 065 106 352 006 CAL ROTATR 
005 070 007 RET 
005 071 022 BRING1, RAL 
005 072 106 353 006 CAL ROTR 
005 075 007 RET 
005 076 307 MOVEIT, LAM 
005 077 060 INL 
005 100 106 276 006 CAL SWITCH 
005 103 370 LMA 
005 104 060 INL 
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005 105 106 276 006 CAL SWITCH 
005 110 011 DCB 
005 111 053 RTZ 
005 112 104 076 005 JMP MOVEIT 

005 115 066 124 FSUB , LLI 124 
005 117- 016 003 LBI003 
005 121 106 311 006 CAL COMPLM 
005 124 104 240 004 JMP FPADD 

005 127 106 .'257 005 FPMULT, CAL CKSIGN 
005 132 066 137 ADDEXP, LLI 137 
005 134 307 LAM 
005 135 066 127 LLI 127 
005 137 207 ADM 
005 140 004 001 AD! 001 
005 142 370 LMA 
005 143 066 102 SETMCT, LLI 102 
005 145 076 027 LMI027 
005 147 066 126 MULTIP, LLI126 
005 151 016 003 LBI003 
005 153 106 352 006 CAL ROTATR 
005 156 142 367 005 CTC ADOPPP 
005 161 066 146 LLI146 
005 163 016 006 LBI006 
005 165 106 352 006 CAL ROTATR 
005 170 066 102 LLI 102 
005 172 106 305 006 CALCNTDWN 
005 175 llO 147 005 JFZ MULTIP 
005 200 066 146 LLI 146 
005 202 016 006 LBI006 
005 204 106 352 006 CAL ROTATR 
005 207 066 143 LLI 143 
005 211 307 LAM 
005 212 022 RAL 
005 213 300 LAA 
005 214 240 NDA 
005 215 162 002 006 CTSMROUND 
005 220 066 123 LLI123 
005 222 106 276 006 CAL SWITCH 
005 225 353 LHD 
005 226 066 143 LLI143 
005 230 016 004 LBI004 

005 232 106 076 005 EXMLDV , CAL MOVEIT 
005 235 016 000 LBIOOO 
005 237 106 110 004 CAL FPNORM 
005 242 066 101 LLI101 
005 244 307 LAM 
005 245 240 NDA 
005 246 013 RFZ 
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005 247 066 124 LLI124 
005 251 016 003 LBI003 
005 253 106 311 006 CAL COMPLM 
005 256 007 RET 
005 257 106 336 005 CKSIGN, CALCLRWRK 
005 262 066 101 LLI 101 
005 264 076 001 LMI001 
005 266 066 126 LLI126 
005 270 307 LAM 
005 271 240 NDA 
005 272 160 317 005 JTS NEGFPA 
005 275 066 136 OPSGNT, LLI 136 
005 277 307 LAM 
005 300 240 NDA 
005 301 023 RFS 
005 302 066 101 LLI101 
005 304 106 305 006 CALCNTDWN 
005 307 066 134 LLI134 
005 311 016 003 LBI003 
005 313 106 311 006 CAL COMPLM 
006 316 007 RET 

005 317 066 101 NEGFPA, LLI101 
005 321 106 305 006 CALCNTDWN 
005 324 066 124 LLI124 
005 326 016 003 LBI003 
005 330 106 311 006 CALCOMPLM 
005 333 104 275 005 JMPOPSGNT 
005 336 066 140 CLRWRK, LLI 140 
005 340 016 010 LBI010 
005 342 250 XRA 
005 343 370 CLRNEX, LMA 
005 344 011 DCB 
005 345 150 354 005 JTZ CLROPL 
005 350 060 INL 
005 351 104 343 005 JMP CLRNEX 
005 354 016 004 CLROPL, LBI004 
005 356 066 130 LLI130 
005 360 370 CLRNX1, LMA 
005 361 011 DCB 
005 362 053 RTZ 
005 363 060 INL 
005 364 104 360 005 JMP CLRNX1 
005 367 046 141 ADOPPP, LEI 141 
005 371 335 LDH 
005 372 066 131 LLI131 
005 374 016 006 LBI006 
005 376 106 255 006 CAL ADDER 
006 001 007 RET 
006 002 016 003 MROUND, LBI 003 
006 004 006 100 LAI100 
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006 006 207 ADM 
006 007 370 CROUND, LMA 
006 010 060 INL 
006 011 006 000 LAIOOO 
006 013 217 ACM 
006 014 011 DCB 
006 015· 110 007 006 JFZ CROUND 
006 020 370 LMA 
006 021 007 RET 

006 022 106 257 005 FPDIV, CAL CKSIGN 
006 025 066 126 LLI126 
006 027 006 000 LAIOOO 
006 031 277 CPM 
006 032 110 047 006 JFZ SUBEXP 
006 035 061 DCL 
006 036 277 CPM 
006 037 110 047 006 JFZ SUBEXP 
006 042 061 DCL 
006 043 277 CPM 
006 044 150 247 006 JTZ DERROR 
006 047 066 137 SUBEXP, LLI 137 
006 051 307 LAM 
006 052 066 127 LLI 127 
006 054 227 SUM 
006 055 004 001 ADI 001 
006 057 370 LMA 
006 060 066 102 SETDCT, LLI 102 
006 062 076 027 LMI027 
006 064 106 216 006 DIVIDE, CAL SETSUB 
006 067 160 111 006 JTS NO GO 
006 072 046 134 LEI 134 
006 074 066 131 LLI131 
006 076 016 003 LBI003 
006 100 106 076 005 CAL MOVEIT 
006 103 006 001 LAI001 
006 105 032 RAR 
006 106 104 114 006 JMP QUOROT 
006 III 006 000 NOGO, LAIOOO 
006 113 032 RAR 
006 114 066 144 QUOROT, LLI 144 
006 116 016 003 LBI003 
006 120 106 341 006 CAL ROTL 
006 123 066 134 LLI134 
006 125 016 003 LBI003 
006 127 106 340 006 CAL ROTATL 
006 132 066 102 LLI 102 
006 134 106 305 006 CALCNTDWN 
006 137 110 064 006 JFZ DIVIDE 
006 142 106 216 006 CAL SET SUB 
006 145 120 205 006 JFS DVEXIT 
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006 150 066 144 LLI 144 
006 152 307 LAM 
006 153 004 001 AD! 001 
006 155 370 LMA 
006 156 006 000 LAIOOO 
006 160 060 INL 
006 161 217 ACM 
006 162 370 LMA 
006 163 006 000 LA! 000 
006 165 060 INL 
006 166 217 ACM 
006 167 370 LMA 
006 170 120 205 006 JFS DVEXIT 
006 173 016 003 LBI003 
006 175 106 352 006 CAL ROTATR 
006 200 066 127 LLI 127 
006 202 317 LBM 
006 203 060 INL 
006 204 371 LMB 
006 205 066 144 DVEXIT, LLI 144 
006 207 046 124 LEI 124 
006 211 016 003 LBI003 
006 213 104 232 005 JMP EXMLDV 
006 216 066 131 SETSUB, LLI 131 
006 220 106 276 006 CAL SWITCH 
006 223 353 LHD 
006 224 066 124 LLI 124 
006 226 016 003 LEI 003 
006 230 106 076 005 CAL MOVEIT 
007 233 046 131 LEI 131 
006 235 066 134 LLI1 34 
006 237 016 003 LBI003 
006 241 106 364 006 CAL SUBBER 
006 244 307 LAM 
006 245 240 NDA 
006 246 007 RET 
006 247 106 100 007 DERROR, CAL DERMSG 
006 252 104 160 007 JMP USERDF 

006 255 240 ADDER, NDA 
006 256 307 ADDMOR, LAM 
006 257 106 276 006 CAL SWITCH 
006 262 217 ACM 
006 263 370 LMA 
006 264 011 DCB 
006 265 053 RTZ 
006 266 060 INL 
006 267 106 276 006 CAL SWITCH 
006 272 060 INL 
006 273 104 256 006 JMPADDMOR 
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006 276 325 SWITCH, LCH 
006 277 353 LHD 
006 300 332 LDC 
006 301 326 LCL 
006 302 364 LLE 
006 303 342 LEC 
006 304 007 RET 

006 305 327 CNTDWN , LCM 
006 306 021 DCC 
006 307 372 LMC 
006 310 007 RET 

006 311 307 COMPLM, LAM 
006 312 054 377 XR ! 377 
006 314 004 001 AD ! 001 
006 316 370 MORCOM,LMA 
006 317 032 RAR 
006 320 330 LDA 
006 321 011 DCB 
006 322 053 RTZ 
006 323 060 !NL 
006 324 307 LAM 
006 325 054 377 XR! 377 
006 327 340 LEA 
006 330 303 LAD 
006 331 022 RAL 
006 332 006 000 LA! 000 
006 334 214 ACE 
006 335 104 316 006 JMP MORCOM 

006 340 240 ROTATL, NDA 
006 341 307 ROTL , GAM 
006 342 022 RAL 
006 343 370 LMA 
006 344 011 DCB 
006 345 053 RTZ 
006 346 060 INL 
006 347 104 341 006 JMP ROTL 

006 352 240 ROTATR, NDA 
006 353 307 ROTR, LAM 
006 354 032 RAR 
006 355 370 LMA 
006 356 011 DCB 
006 357 053 RTZ 
006 360 061 DCL 
006 361 104 353 006 JMP ROTR 

006 364 240 SUBBER , NDA 
006 365 307 SUBTRA, LAM 
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006 366 106 276 006 CAL SWITCH 
006 371 237 SBM 
006 372 370 LMA 
006 373 011 DCB 
006 374 053 RTZ 
006 375 060 INL 
006 376 106 276 006 CAL SWITCH 
007 001 060 INL 
007 002 104 365 006 JMP SUBTRA 

007 100 DERMSG , 

007 160 USERDF , 

007 200 INPUT, 

007 300 ECHO, 
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USING MEMORY SPACE EFFECTIVELY 

The FPINP, FPOUT, FPCONT and other 
routines presented in the floating point pro-
gram in the previous chapter might all appear 
somewhat lengthy to the read er . Indeed , they 
are all somew ha t longer than necessary be-
cause they were developed in a manner that 
would enable one to follow the logic of the 
program rather t han to save memory space 
in a computer system. As readers kn ow , 
however, it is o ften desirable to reduce pro-
gram s to forms that use a minimum amount 
of memory. But , there are trade-offs to con-
sider. Designing a program to minimize the 
amount of memory used generally req uires 
significantly more program developmen t 
time. It also tends to make the program mo re 
comp lex or difficul t fo r someone else to 
und erstand. This is because one of the funda-
mental techniques to redu ce a program's 
length is to capitalize on making as man y sub-
routines as possible out of d ifferent sections 
of the program . There is another parameter 
that may be affected by designing a program 
to use a minimum amount of memory. That is 
the speed at wh ich the program will execute. 
As a general rule of thumb, the execution 
speed will decrease because lots of extra t ime 
will be spent execut ing time co nsuming CALL 
instructions. (Note that this is contradictory 
to what one might initially presume') More 
discussion on the considerat ions of a pro-
gram's operati ng speed will be presen ted in 
another chapter. 

Perhaps the first rule to apply towards re-
ducing the amount of mem ory a program re-
qu ires is to maximize the amount of su b-
rout ining utilized, provided that the sub rout-
ining meets th e following simple mathemati-
cal re lationship (when utilizing an 
based or similar ma chi ne): 

where: 

B x N 3 x N+ B+1 

B = the number of bytes in a re-
repeated instruction seq uence. 

6 - 1 

and: N = the num ber o f times the se-
quence is used in the program 

Examining the formula above will show that 
it does no good in term s of conserving mem-
ory space to ca ll a subroutine that utilizes 
only three bytes of mem ory. This is because 
a CAL instruction itself requires three bytes 
of memory. (A BYTE is eq ual to eight binary 
hits of information and is thus equal to one 
memory wo rd in an '8008' o r similar micro-
computer system. ) However, o nce an in stru c-
t ion seq uence exceeds three bytes of memory, 
the point at which subroutining becomes pro-
fitable for conservin g memory space is a func -
tion of 'N' wh ere 'N' is the number of t imes 
the instruction seq uen ce needs to be repeated 
in a program . For example, if B = 4 , one starts 
saving memory space by subroutining when 
N = 6. The above fo rmula shows that the 
value of 'N' req uired to meet t he condition 
where memory space is saved by subroutining 
drops quite rapidly as B is increased . By the 
time one is dealing with instructional seq uen-
ces which use e ight or more bytes of memory, 
one can save memory space by forming a sub-
routine if that sam e sequ ence is used more 
than once in the program! A summary of the 
minimum values of Band N that will result 
in memory space being saved by subroutining 
based on the above formula is provided here: 

B = 4 and N=6 
B=5 and N=5 
B =6 and N=3 
B =S and N=2 

The am ount o f mem ory space that one 
saves by appropriate subroutining can be 
ascertained by rearranging t he above formula. 

B x N - (3 x N + B + 1) = Z 

and solving for 'Z' which is the number of 
bytes saved. For example, if B is Sand N is 3, 
t hen Z is eq ual to: 



8 x 3 - (3 x 3 + 8 + 1) 6 

When developing subroutines, o ne can 
often use one routine to serve several func· 
tions by al lowing for multiple entry points 
to the su broutine. An example of this method 
was used in the floating po int package dis-
cussed . There , two entry points to the rotate 
subroutines were provided. The ROTATL 
subroutine, for example, had a second entry 
point labeled ROTL which allowed one to 
enter the subrou ti ne after the NDA instruc-
tion which resid ed in t he location labeled 
ROTATL. 

Another way to often save significant 
amounts of memory is by carefu l o rgani-
zation of the program and assignment of 
data storage areas in memory. For example, 
the reader may have noted that all the numer-
ical data storage areas used in the floating 
point routines along with the coun ters and 
indicators were located o n I;'AGE 00. This 
was done to minimize the resetting of the 
page pointer (register H). Scattering data 
on different pages of memory in a large 
program can result in quite a bit of wasted 
memory because register H (or other poin-
ters) must be frequently altered. Carefu l 
organization of data sto rage can even be 
helpfu l in minimizing the amount of times 
that register L (o r similar pointers) must 
be loaded with a new address by locating 
storage areas in acco rdan ce with how they are 
accessed in a program seq uence. Then an INL 
or DCL (one byte commands) may be used 
to access a st orage location rather than a 
LLl XXX o r similar instruction. 

In line with the above is the simple rule 
of maintaining pointers, counters, and other 
frequently used indicat ors in CPU registers 
as much as possible. This considerably re-
duces the num ber of times that the memory 
pointe r registers have to be changed to po in t 
to locations that contain such infonnatio n, 
then changed back to han dle the current 
data that is being manipulated. 

Another general rule of th umb fo r re-
ducing program memory usage is to capi-
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talize on LOO PS. A fonnu la for detennining 
when one can save mem ory space by using 
a loop (assuming the loop counter is sto red 
in a CPU register ) is presented here: 

B x N B + 6 

where: B the nu mber of bytes fonn ing the 
repeated portion of the sequence 
that must be repeated . 

and: N t he number of times the sequence 
must be consecutively repeated. 

By using the formula, o ne may verify that 
if a programmer has a fo ur byte instruction 
that must be consecutively repeated the pro-
grammer can save memory by setting up a 
loop when the sequence must be repeated 
three or more times. If B is o nly two , then a 
loop conserves memory if it must be consec-
u tively perfonned five or more times. (The 
a bove fonnula is derived from the fact that 
it requires six bytes to set up a counter, in-
c rement or decrement the counter each time 
a loop is completed, and make a condit io nal 
branching test in an '8008' or similar CPU.) 

A subtle concept that can save memory 
space involves t he possibility of includ ing 
a few carefully chose n instructions in sub-
routines to increase their general useful-
ness . For example, consider the subroutine 
illustrated below: 

SAMPLE, LCH 
LHI XXX 
LAM 
LHC 
NDA 
RET 

Save value of H in C 
Set pntr to data page 
Fetch a byte of data 
Resto re orig value of H 
Set flags fo r ACC cants 

Such a subroutine might be extremely 
valuable in a large program where data was 
stored on o ne page, but counters and indi-
cato rs had to be sto red o n another. Before 
call ing the above routine, the program would 
have to set register L to the appropriate 
address on the page where data was to be 



obtained. Suppose that sometimes the main 
program needed to simply transfer data from 
one location to another, and at other times 
it made tests on the data it obtained. The 
simple inclusion of a NDA instruction in the 
above routine does no hann in cases where 
data is to be simply transferred, but it can 
save valuable memory storage if there are 
two or more times in which the data must be 
tested in the main program. For, the NDA 
sets up the flags allowing one to immediately 
execute a conditional branching instruction 
upon return from the subroutine. To push 
the point being made one step further , adding 
one more instruction to the above subroutine, 
an INL placed just before the NDA instruc· 
tion, could make the routine even more gene· 
ral purpose. For instance, in a typical data 
manipulating program one might be sequen-
tially accessing locations in the data storage 
area while possibly searching for a certain 
code. At other times one might branch off 
to perform work in another area of memory. 
In the latter case one would probably have 
to perform an LLI XXX instruction. Thus, 
the inclusion of the INL command in the 
subroutine takes care of all the times that 
one needs to access the next location in the 
data area, yet it does no harm if the program 
will be directed to a different memory area' 
(Note, however, that one would have to 
examine carefully just how often the main 
program might be required to access the 
exact same location again, thus requiring 
a compensating DCL instruction in the main 
portion of the program.) 

One of the most powerful memory saving 
techniques for '8008' systems is based on the 
use of a class of instructions that many novice 
programmers completely overlook! This class 
of instructions is the RESTART (RST XXX) 
group. For, while the mnemonic for a RE-
START instruction is shown as consisting of 
two parts, the actual machine code results in 
an effective one byte CALL instruction. While 
the RST commands were included in the in-
struction set for the '8008' to facilitate im-
plementing start-up operations in conjunction 
with the INTERRUPT facility on typical sys-
tems, they may also be put to extremely ef-
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fective usage in general programming appli-
cations. The reason is easy to understand once 
it has been pointed out. Being able to CALL a 
subroutine with a one byte instruction instead 
of a three byte instruction can save a large 
amount of memory space if a routine is 
called frequently in a program. 

The reader may want to review the material 
in the first chapter which explained the re-
start instructions. There are eight restart loca-
tions on PAGE 00 in an '8008 ' system. That 
means that one may have up to eight different 
subroutines in a program that can be accessed 
with a single byte CALL instruction. While 
the restart locations are spaced just eight loca-
tions apart, one can still use the restart loca-
tions for saving memory space even if the de-
sired subroutines will not fit in eight loca-
tions. This may be accomplished by simply 
placing a JUMP instruction at a RESTART 
location to direct the program to the actual 
location of a subroutine! 

To see the importance of using RST com-
mands in large programs consider the fact 
that it may often be necessary to call a 
particular subroutine 30 or 40 (decimal) 
tim es in a program. U sing a one byte RST 
command instead of a three byte CAL in-
struction can thus save 60 to 80 memory 
locations . That is roughly one-fourth of a 
PAGE of memory. Multiply that by a fac-
tor of eight, the number of RST locations 
available, and one can see a very considerable 
savings in memory usage. The person who has 
developed a fairly decent sized program for 
an '8008' system without taking advantage of 
the RST command to conserve memory is 
often amazed when such programs are re-
written to utilize the technique. 

As a challenge to the reader who is in-
terested in doing a little creative trimming 
of a . program, why not try reducing the 
size of the FPINP, FPOUT, and FPCONT 
routines presented in the previous chapter? 
Using the techniques described in this chap-
ter one should be able to work those rout-
ines down from the roughly three pages of 
memory they required to about two pages! 



INPUT/OUTPUT PROGRAMMING 

This chapter will be concerned with dis, 
cussing programming techniques for trans-
ferring information to and from the computer 
and external devices. External devices are 
connected to the compu ter via physical con-
nections which carry electronic signals. Since 
it is often desirable to have anum ber of 
diffe rent devices connected to a system at 
one time, a hardware arrangement is generally 
provided that enab les a number of devices to 
be connected at one time. However, o nly one 
such device may actually communicate with 
the computer at any given instant of time. To 
allow control of which dev ice will communi-
cate with the computer at any give n instant, 
an electronic arrangement is nonnally pro-
vided that will allow software selection of in-
put and output ports. As far as a programmer 
is concerned, a port consists of eight parallel 
electronic signals that m ay be in the '1' or 
'0' states. The eight signals correspond to the 
eight bit positions available in the accum -
ulator of the CPU. An in put port accepts in-
formation from an external device and 
presents it to the accum ulator . An ou tpu t 
port takes information from the accumulator 
and passes it to an output device . The 
selection of a particular input or output port 
is specified by the programmer when utilizing 
an I/O command. The reader may desire to 
review the discussion of the I/O instructions 
presented on page 15 of the chapter des-
cribing the instruction set for the 8008 CPU 
at this time . 

NOTE: For the purposes of 
the discussion in this chapter, 
all I/O operations will be 
assumed to take pl ace between 
t he I/O ports and the accum-
ulator of the CPU. Some 
readers may be aware that it is 
possible to communicate with 
a computer via 
known as direct memory ac-
cess, whereby an external 
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device places data directly into 
areas in memory, or vice-versa. 
Such transfer techniques are 
essentially hardware con-
tro lled and are outside the 
pure programming realm to 
which this manual is devoted . 

The basic concept behind comm un icating 
with a computer lies in providing some form 
of systematic system for encoding infor-
mation from an external device that will allow 
a program to decode the information and take 
appropriate action. And, to allow a program 
to send codes to an external device that will 
direct it to perform in a desired manner. 

Such a system may be created entirely by 
the programmer. Indeed, in many special ap-
plications, such as controlling a unique piece 
of machinery, that is just the approach taken. 
For example, suppose some manufacturer had 
a machine that was to be controlled by the 
computer. The machine could be constructed 
so that when it was performing a certain type 
of function it would close a particular elec-
tr ical switch. There might be a number of 
such switch es on the machine and each one 
could be connected to an input line, repre-
senting one bit on an input port . For the sake 
of discussion , suppose a machine had eight 
such input switches, one connected to each 
possible line making up an input port . When 
the switch was closed, a '1 ' condition woul d 
be placed on the line, and when it was open 
the line would represent a '0' condition. For 
the sake of simplicity, it could also be 
assumed that only one switch could be closed 
at any given time. 

Now , assume the computer was to monitor 
the status of the switches by periodically exe-
cuting an input instruction for the input port 
to which the switches were attached. Then, 
depending on which switch was in the closed 



condition, the computer would direct infor-
mation to be outputted on an output port, 
say, to direct another part of the machine to 

perform a specific operation. A programmer 
might ' make up an input program in the 
following manner. 

INCTRL, INP X 
NDA 

Read data from port X into accumulator 
Set flags after input operation 

JTZ INCTRL 
CPI001 

No switches closed - keep looking 
Is it switch No.1? 

JTZ STARTl 
cpr 002 . 
JTZ START2 
CPI004 

Yes, do required routine 
Is it switch No.2? 
Yes, do required routine 
Is it switch No.3? 

JTZ START3 
CPI 010 

Yes, do required routine 
Is it switch No.4? 

JTZ START4 Yes, do required routine 

CPI200 Is it switch No.8? 
JTZ START8 
JMPERROR 

Yes, do required routine 
If program ever gets here, something is wrong 

The above input routine is quite simple and 
lacks a technical consideration that might be 
necessary in a real system (how can the rou-
tine tell whether a reading indicates a new 
switch closure or a previous condition still 
present?). However, it does illustrate the con-
cept of inputting information and having the 
computer interpret that information. 

In a similar manner to the input routine, 
one could connect, say, the co ils of elec-
tronic relays to the output lines of a specific 
output port. Each of the eight possible lines 
connected to an output port could activate 
the associated relay when a '1' condition was 
present, but not when a '0' condition existed. 
Since each line corresponds to one bit in the 
accumulator, one could easily develop a pro-
gram to control the operation of the relays 
by placing appropriate codes in the accum-
ulator of the CPU, and then executing an 
OUT Z instruction where Z represented the 
output port whose lines were connected to 
the relays. 

In the above example input program to 
monitor the status of a set of switches it was 
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assumed that only one switch could be closed 
at a given time. Th us, there were only nine 
possible signal conditions that could be re-
ceived by the computer - anyone of the eight 
switches, each represented by the status of a 
particular bit in the accumulator, could be on, 
or none of them were activated. Thus, the 
particular coding technique for the example 
was really quite limited. Had it been stated 
that any number of the switches could be on 
at any given time, then there would be 256 
different codes possible on the 8 input lines 
at any given time! Such an encoding scheme 
would allow quite a lot more information to 
be co nveyed to the computer on one input 
port. One could readily envision coming up 
with a system whereby an external machine 
could use the 256 possible states available on 
one input port to provide a lot of information 
to the computer. By assigning different codes 
to represent different artifacts, one could 
easily come up with a device that could 
essentially encode all the letters of the alpha-
bet, the numbers 0 - 9, and a lot of special 
symbols, and still have unused states! Well, as 
the reader undoubtably knows, people de-
veloped such encoding systems quite some 



time ago. In fact, a number of different 
standardized encoding systems have been de-
veloped over the years. One of the most pop-
ular encoding systems, one that is used on 
many kinds of machines such as electronic 
keyboards, typewriters, numerical co ntrol 
machines, and a variety of communication 
devices, is commonly abbreviated and re-
ferred to as t he ASCII code. ASCll is the 
abbreviation for American Standard Code 
for Information Interchange. ASCII code 
itself is actually designed to use just 7 bits 
of information (thus allowing for the en-
coding of 128 differen t sy mbols), however, 
ASC II code is o ften used in devices that use 
8 bits because the last bit of data can be 

CHARACTER 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L' 
M 
N 
o 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 
\ 
1 
t ... 

SPACE 

BI NARY 

11 000 001 
11 000 010 
11 000 011 
11 000 100 
11 000 101 
11 000 110 
11 000 III 
11 001 000 
11 001 001 
11 001 010 
11 001 011 
11 001 100 
11 001 101 
11 001 110 
11 001 III 
11 010 000 
11 010 001 
11 010 010 
11 010 011 
11 010 100 
11 010 101 
11 010 110 
11 010 111 
11 011 000 
11 011 001 
11 011 010 
11 011 011 
11 011 100 
11 011 101 
11 011 110 
11 011 111 
11 100 000 

OCTAL 

301 
302 
303 
304 
305 
306 
307 
310 
311 
312 
313 
314 
315 
316 
317 
320 
321 
3 22 
323 
324 
325 
326 
327 
330 
331 
332 
333 
334 
335 
336 
337 
240 
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used to test for transmission erro rs by 
serving as a parity indicator. More will be 
said about parity a li ttle later. 

While the entire ASCII code is based o n 
the different patterns that will fit in seven 
bits of a register , thus yielding 128 (decimal) 
different codes, a commonly used subset of 
the ASCII code is often utilized. The subset 
does not use eve ry possible pattern but only 
those patterns desired. The subset referred 
to is frequently used in ASCII coded key-
boards, teletype machines, and other de-
vices. In the listing shown below, the 8th bit 
not used by the ASCII code will be shown as 
a '1 ' condition , and the codes will be pre-

CHARACTER 

" 
# 
$ 
% 
& 

* 
+ 

/ 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

< 

> 
? 
@ 

BINARY 

10 100 001 
10 100 010 
10 100 011 
10 100 100 
10 100 101 
10 100 110 
10 100 111 
10 101 000 
10 101 001 
10 101 010 
10 101 011 
10 101 100 
10 101 101 
10 101 110 
10 101 III 
10 110 000 
10 110 001 
10 110 010 
10 110 011 
10 110 100 
10 110 101 
10 110 110 
10 110 111 
10 111 000 
10 111 001 
10 111 010 
10 111 011 
10 III 100 
10 III 101 
10 III 110 
10 III 111 
11 000 000 

OCTAL 

241 
242 
243 
244 
245 
246 
247 
250 
251 
252 
253 
254 
255 
256 
257 
260 
261 
262 
263 
264 
265 
266 
267 
270 
271 
272 
273 
274 
275 
276 
277 
300 



sented as they could appear in the registers of 
an 8008 cpu. 

The subset of the ASCII code just pre-
sented has several nice features worth noting. 
For instance, the 26 letters of the alphabet 

are all encoded in a sequence starting with 
301 (octal) and ending with 332 (octal). Thus 
one can easily check data , for example, being 
inputted by an operator to see if the code 
being received represents a letter of the alpha-
bet by performing a range test as illustrated 
below. 

CKALF A, [NP:X 
CP I 301 

Accept a characte r fro m input device 
See if input in range from 301 

JTS CKALFA 
cpr 333 . 
JFS CKALFA 

To 332, if it is not, ignore th e 
Input, if it is within the range 

ISALFA , 
Then have an alphabetical charac ter 
To process as desired 

The reader may note t hat the numbers a 
through 9 are also grouped together in the 
sequence fro m 260 to 271, and the program-
mer can thus readily perform a similar range 
test to only accept num bers. 

There are seve ral other characters that are 
used by many machines that operate with 
ASCl! code that will be mentioned for re-
ference. The functions carriage return (215), 
line-feed (212), bell (207), and RUBOUT 
(377) are most often found on automatic 
typing mach ines which make very nice [ /0 
devices for a computer. 

When an input instruction is executed, the 
computer will receive eight bits of infor-
mation sim ultaneously, corresponding to the 
eight possible lines of an input port which are 
fed into the accumulator. [n other words, the 
data is accepted in parallel. Likewise , when an 
output instruction is executed, the computer 
will send all eight bits in the accumulator out 
to the appropriate output port simulta-
neously. However, some devices which one 
desires to operate with the computer may not 
be parallel devices. They may instead be 
serially operated, which means they do not 
transmit information over a group of wires, 
but rather send the information one bit at a 
time over a single wire. Such devices may, 
however, still be connected to an 8008 system 
since one may simply discard the unused bits 
corresponding to unused lines of an [ /0 port. 
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[n such cases, the programmer must know 
which line of a port is the active line and take 
care to ensure that the program manipulates 
bits of information so that they appear on 
that line at the proper time. Whether a parti-
cular device connected to a compu ter is se rial 
or parallel III operation (as far as the 
computer is co ncerned) is often a function of 
the type of hardware interface provided for 
the external device. For instance, electric 
typing machines are essentially serial devices 
since they act on information one bit at a 
time . However , when actually connected to a 
computer, one can elect to have a hardware 
interface that converts information received 
from the mach ine in serial form and places it 
in a parallel register before passing the data to 
the computer. Going in the other direction 
one may have the computer send data in 
parallel form to the interface which will then 
pass it on to the machine in bit-serial fashion. 
Such an interface can save a lot of computer 
time because the external hardware interface 
is able to handle the time consuming serial to 
parallel and parallel to serial tasks. However, 
such hardware costs money I and in many ap-
plications one may desire to have the com-
puter do the serial to parallel conversion and 
vice-versa. This can be accomplished quite 
readily with a suitable program that actually 
utilizes the computer's o wn timing to de-
term ine when to look or sample for the next 
bit of information from the serial devic e, or 
when to send the next bit of information to 

• 



the serial device. While the details of carefully 
controlling the timing for such a program will 
be discussed in the next chapter, the concept 
of having the computer perform parallel to 
serial or serial to parallel conversion will be 
demonstrated with several routines at this 
point. The technique consists of using accum-
ulator rotate instructions to sh ift the serial 
data in or out of the computer. 

In the parallel to serial routine shown next, 
it will be assumed that a device that accepts 
serial data is connected to the least significant 
bit line of output port X, and that the re-
maining lines available on the port are unused. 
The device will be assumed to be a unit that 
operates with ASCII code, and before the il-
lustrated routine is called, that the code for a 
character has been placed in the accumulator. 

PARSER, 
NEXOUT, 

LCI010 
OUTX 
RRC 
DCC 

Set up register C as a bit counter 

JFZ NEXOUT 
RET 

Output data in ACC to port X, only the 
Data in LSB used, now rotate ACC right 
Ignore carry, then decrement bit counter 
Do next bit if counter not zero 
Exit routine when all 8 bits transmitted 

In the following serial to parallel routine it 
is assumed that data is arriving at the most sig-

nificant bit position of an input port, and that 
it is to be assem bled into an eight bit format. 

SERPAR, XRA 
LBA 
LCIOIO 

Clear accumulator and also clear 
Register B at start of routine 
Set a bit counter 

NEXTIN, INP X 
NDI 200 
RAL 
ADB 
RAR 
LBA 
DCC 

Bring in data from input port X 
Since only MSB has important data, mask 
Off other bits and clear carry, now rotate 
Left to save new bit, then add in any 
Previous bits from B and rotate right 
To add on latest bit, store in B 
Decrement bit counter 

JFZ NEXTIN 
RET 

If not finished, get next bit 
Exit routine when 8 bits received and stored 

Another popular standardized code for 
operating I/O devices is known as BAUDOT 
code. BAUDOT code is a 5 level code in that 
it requires five bits to specify a particular 
character. Thus , there are theoretically 32 
different patterns that can be represented 
when using BAUDOT code . Now, BAUDOT 
code has long been used in a variety of 
electro-mechanical typing machines and other 
communication devices, and the code is of 
interest to many computer owners because 
older model machines, paper tape punches , 
and paper tape readers can often be obtained 
from second-hand sources at quite reasonable 
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prices, and used as an I /O device for a com-
puter. Wbile BAUDOT code can only re-
present 32 different bit patterns, these 
machines can print all the letters of the alpha-
bet, the numbers a through 9 , and a variety 
of punctuation sym bois! That is a lot more 
than 32 different characters' How is it done? 

Well, the designers of those machines used 
a little ingenuity to enable the machines to 
handle almost double the number of char-
acters that could be represented by a five bit 
code by using several of the codes to shift 
the machine between two modes, so that in 



one mode it would interpret the codes to 
mean one set of characters, and in the other 
mode it would interpret the codes to repre-
sent a different set of characters. In one 

mode, termed the letters mode, all the letters 
of the alphabet may be printed. In the figures 
mode, numbers and punctuation are printed . 
The BAUDOT code is presented below. 

LC UC BIT POSITION CODES 

A 
B ? 
C 
D $ 
E 3 
F 
G & 
H :# 
I 8 
J 
K 
L 
M 
N 
0 9 
P a 
Q 1 
R 4 
S Bell 
T 5 
U 7 
V 
W 2 
X / 
y 6 
Z " 
SPACE 

CAR . RET. 
LINE FEED 

NULL 
FIGURES 
LETTERS 

In the BAUDOT table shown above, the 
octal codes column was shown assuming that 
the codes were stored in the least significant 
bit positions of an 8008 register with the 
three most significant bits set to O. The reader 
can now see that 26 of the possible 32 codes 
can represent two different characters de-
pending on which mode the machine is in. 
The functions SPACE, CARRIAGE-RE-
TURN, LINE-FEED, and NULL mean the 

00011 003 
1 100 1 031 
a 111 a 016 
a 1 a a 1 all 
00001 001 
a 1 101 015 
110 1 a 032 
10100 024 
00110 006 
a 101 1 01 3 
01111 017 
100 1 a 022 
11100 034 
01100 014 
110 a a 030 
10110 026 
10111 027 
01010 012 
00101 005 
10000 020 
00111 007 
11110 036 
100 1 1 023 
1 1 101 035 
10 1 a 1 025 
10001 021 
a a 100 004 
01000 010 
00010 002 
00000 000 
11011 033 
1 1 1 1 1 037 

same regardless of which mode the machine 
is in, and two codes FIGURES and LETTERS 
are used to switch the mode of the machine. 
While everything may seem fine at this point, 
it is important to discuss handling the code as 
part of an I/O routine because there is a 
subtle factor that can be over-looked by some 
beginning programmers! 

In actual operation, a BAUDOT machine 
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operates in the mode that it was last placed in 
by a figures or letters key , and remains in that 
mode until t he opposite mode code is 
received. Thus, a mechanical arrangement 
actually serves to rem ember a bit of infor· 
mation. The fact that an external mechanical 
linkage is used to hold a bit of information 
must be taken in accou nt if a computer pro· 
gram is to process the code with practical 
results! 

For instance , if one had an inpu t rou t ine 
that simpl y looked for a five bit pattern from 
a BA UDOT device, o ne could get that pattern 
in many instances from two possible can· 
ditions of the machine . For instance, if 
the operator typed an 'A' or an '. ' mark , and 
the program was designed to perform a cer· 
tain fu nction on receipt of the letter 'A,' it 
would also perform it if the punctuat ion '.' 
was rece ived! To avoid t hat happening , one 
m igh t inform the human operator to always 
enter information during that part of the 
program with the machine in the letters 
mode, but that is not the safest way in which 
to design a program. 

Instead, one would be better off to add a 
bit to the BA UDOT code when it was mani· 
pulated in the compu te r that would serve to 
differentiate between letters and figures. For 
instance, the code 000011 could be used to 
indica te the letter 'A,' and 100011 to indicate 
t he pu nctuation '.' mark . In order to institute 
this method , one would have to have a pro· 
gram that kept track of which mode the 
machine was operating in whenever it was re-
ceiving data from the machine by remember· 

ing the last letters or figures code received. 
Furthermore, in order to ensure that the 
mode was properly received (such as when the 
program was first started, o r power turned on 
th e machine), it would be wise to have the 
computer output a command that would 
place the machine in a known state such as 
would be accomplished by outputting a 
letters or figures code at the start of such 
operations. Then , for storage and manipul· 
ation in the com puter, the input routine 
cou ld set a sixth bit to a '1 ' condition when· 
ever a code was received while t he machine 
was in , say , t he figures mode, and leave the 
sixth b it as a '0' when codes were received in 
the letters mode. The six bit codes could t hen 
be manipulated and stored by th e program in 
much the same manner as one might process 
ASCII codes with the ability to immediately 
recognize the close to 60 different characters. 
When it was d esired to output inform ation, 
the sixth bit would be used to indicate 
whether it was necessary to first output a 
figures or letters code to set the machine in 
the proper mode. (It would not be necessary 
to outpu t a figures or lette rs mode command 
before every character was sent because o ne 
cou ld use an algorithm that would o nly send a 
mode command when the sixth bit was noted 
to have changed from that present when the 
previous character was transmitted.) 

Two sam ple routin es for performing such 
a function, one for inputting data fr om a 
BAUDOT machine, and one for outputting 
data to such a mach ine, will be illustrated 
here. 

BAUDIN, LAI037 Lo ad letters code into accumulator 
CAL O UTPUT 
CAL LETCOD 

INBAUD , CAL INPUT 
CPI033 
CTZ FIGCOD 
CPl 037 
CTZ LETCOD 
ADB 

STORBD , CAL MANIP 
JMP INBA UD 

Call routine to send BAUDOT character 
Initialize register B to letters 
Now accept BAUDOT characters from machine 
See if figures code 
Go set up '1 ' as sixth position bit 
See if letters code 
Go set up '0 ' as sixth position bit 
Add in status of sixth bit position 
User subroutine to process data 
Get next character in sequence if applicable 
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FIGCOD, LBI040 
RET 

LETCOD, LBIOOO 
RET 

Set sixth bit in B = 1 
Return to main subroutine 
Set sixt h bit in B = a 
Return to main rou tine 

The reader should note that there are 
actually two entry points to the routine just 
presented. The subroutine BAUD1N should be 
called to initialize the condition of the 
BAUDOT machine whenever the program is 
first started, o r at other times when the mode 
of the machine is not certain. Once the mach-
ine and routine have been initial ized, then the 
program may be called at lNBAUD as long as 
some other routine does not interfere with 
the status of register B. The reader who is 
interested in logic might note that register B 
in the above program acts as a flip-flop to re-
member the mode in which the typewriter is 

operating. 

The ro utine shown next also has two entry 
points. The first termed BAUDOT is used 
when the first character of.a string of charac-
ters is to be outputted in order to initialize 
the BAUDOT machine , and set up register C. 
The entry point OTBAUD may then be used 
until the mode memory register (C) is inter-
fered with by any other external routine. 
Note too, that the routine below expects the 
character to be ou tpu tted to be resid ing In 

register B when the subroutine is called! 

BAUDOT, LAI037 Load letters code into accumulator 
CAL OUTPUT Call routine to send BAUDOT character 
LCIOOO Set indicator for letters in C 

OTBAUD, LAB Move character from B to accumulator 
NDI 040 See if sixth bit = 1, if yes = figures 
JTZ LTCHAR Character, if not = letters character 
NDC If figure see if last out also figure 
JTZ LASLET If a here then last was a letters 

OUTCOD, LAB Put present character in accumulator 
CAL OUTPUT Send the BAUDOT character 
RET Return to calling routine 

LASLET, LAI033 Since last was letter put figures code 
LASFIG, CAL OUTPUT Send code 

LCB Save latest in register C for comparison 
JMP OUTCOD Send current character 

LTCHAR, LAI040 Set m ask and see if last was letters 
NDC By comparison of sixth bit position 
JTZ OUTCOD If a here, last was also letters 
LAI037 If not, send letters code first 
JMP LASFIG By using above routine to send letters code 

It is often desirable to have I /O routines 
that will convert between one type of I/O 
code and another, such as between ASCII and 
BAUDOT. This may be desired for a number 
of reasons. For instance, because one has had 
one type of input device using one code, and 
a different output device using another code. 

Or, one might desire to use a particular pro-
gram that was written to use one kind of 
code, with a machine that used a different 
kind of code, without having to modify a lot 
of locations in the original program that 
m igh t have been testing for specific I/O codes 
from an external device. In such cases, the 
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computer's capability to perform conversio n 
functio ns is readily capitalized upon by con-
structing a lookup table and using a suitable 
program to convert from one code to another. 

For example, suppose it was desired to use 

ADDRESS CONTENTS 

10 000 
10 001 
10 002 
10 003 

10 076 
10 077 
10 100 
10 101 

10 174 
10 175 
10 176 
10 177 

301 
003 
302 
031 

240 
004 
241 
015 

277 
071 
300 
000 

In constructing the table, one could elect 
to leave out or ignore characters that were not 
represented by both codes, or to substitute a 
substitute character when one code does not 
have an equivalent character. Either method 
requires consideration when the search rou-
tine is developed. The former method leaves 
the possibility that a human operator migh t 
type in a character that did not exist in the 
table, and so the programmer would have to 
be careful to limit the table search routine. 
Note that if every possible entry existed in 
the table, then the table search routine will 
be self limiting in that a match will always be 
found. On the other hand, the latter choice 
of using a substitute character requires that 
the table be organized so that the preferred 
character for cases of multiple substitution 
will be the one found first by the table look-
up routine. For instance, there are several 
characters besides the @ mark, such as '1 ' and 
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a BAUDOT machine with a program that was 
developed originally to operate with a 
machine that used ASCII code. One could 
proceed to first construct a lookup table 
similar in format to that shown here: 

COMMENTS 

A (ASCII) 
A (BAUDOT) 
B (ASCII) 
B (BAUDOT) 

SPACE (ASCII) 
SPACE (BAUDOT) 
",,, (ASCII) 
",,, (BAUDOT) 

"?" (ASCII) 
"?" (BAUDOT) 
"@" (ASCII) 
Substitute null (BAUDOT) 

'[' which could be included in the above table 
which are represented by ASCII codes but not 
BAUDOT codes. If one decided to include 
them in the table, but have NULL characters 
as their conversion equivalent , one can see 
that a problem arises when one uses the same 
table to convert from BAUDOT to ASCII, as 
now there are several places in the table that 
have the NULL code. As will be clear shortly, 
the routine that converts from BAUDOT to 
ASCII will always represent a NULL charac-
ter in BAUDOT as a ' @ ' symbol in ASCII 
because the BAUDOT routine searches the 
table from highest address to lowest, and will 
find the NULL to '@ ' entry first. Naturally, 
the table could be re-organized so that some 
other NULL conversion entry was located 
first. Or, a different type of lookup routine 
than the one to be presented can be de-
veloped. These factors are simply being 
pointed out to increase the reader 's aware-



ness as to the types of facto rs that must be 
cons idered when performing such operations. 

A routine that will use the lookup table to 
convert ASCII characters to BA UDOT is illtlS-

trated next. This program, and the BAUDOT 
routine discussed earlier could be used to out-
put characters from a program that was 
actually doing internal processing with ASCII 
codes. 

ASBAUD, LHI 010 
LLIOOO 

Set page address pointer to location of table 
Set low address pointer to top of table 

FASCII, CPM 
JT Z FNDBDO 
INL 
INL 
JMP FASCH 

FNDBDO, INL 
LAM 
RET 

Compare (ASCII) code in accumulator to contents 
Of table, if match, do conversion 
Otherwise advance low address pointer 
To next ASCII code location in table 
And keep looking for a match 
When have ASCII match, advance pointer 1 location 
And fetch BA UDOT equivalent into accumulator 
Exit lookup routine 

The above routine assumes that the code 
(in ASCII) for a character that exists in the 
table is in the accumulator when the routine 
is entered . Note that the routine does not test 
for the end of the tab le because of that 
assumption. If for any reason it might be 
possible for a code to be in the accumulator 
that was not in the table, then it would be 
necessary to add an end of table test each 
time the tab le pointer was advanced, and to 
take appropriate action if no match was 
found in the table. 

verse process, using the same table, to co nvert 
BAUDOT codes to ASCII codes. It cou ld be 
used along with the previously described 
BAUDIN routine to accept characters from a 
BAUDOT machine and convert them for use 
in a program that utilized ASCII codes. As 
in the above routine, the program assumes 
that a valid BAUDOT code is in the accum-
ulator when the routine is called . Note that 
the routine starts searching the table in the 
opposite direction than the routine presented 
above. 

The next routine does essentially the re- Naturally, the techniques illustrated to 

BAUDAS, LHI 010 
LLll77 

FBA UDO , CPM 
JTZ FNDASC 
DCL 
DCL 
JMP FBAUDO 

FNDASC, DCL 
LAM 
RET 

Set page address pointer to location of table 
Set low address pointer to bottom of table 
Compare (BAUDOT) code in accumulator to contents 
Of table , if match, do conversion 
Otherwise decrement low address pointer 
To next BAUDOT code location in table 
And keep looking for a match 
When have BAUDOT match , decr pointer 1 location 
And fetch ASCII equivalent into accumulator 
Exit lookup routine 

convert between ASCII and BAUDOT codes 
may be applied to many other types of codes. 
Indeed , the small computer makes an ideal 
device fo r coupling between a variety of 1/0 

devices, particularly in communication appli-
cations, thus enabling machines with different 
characteristics and using different codes to 
communicate with one another. 
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A concept that will be discussed more fully 
in the next chapter will be briefly mentioned 
at this time to point out an important con-
cept when dealing with 1/0 devices co nnected 
to the computer. As the reader und oubtably 
knows, many mach ines that might be con-
nected to a computer are much slower in op-
eration, in fact o ften times orders of magni-
tude slower, than the basic operating cycle 
of a computer. For instance, an 8008 system 
req uires but a mere 32 millionths of a seco nd 
in a typ ical system to execut e an input in-
struction. That is, in that short amount of 
time it can access an input port and bring in 
8 parallel bits of informat ion into the accum-
ulator of the CPU. 

The extrem e speed of the computer can in 
fact cause problems when perfo rming 1/0 
operat ions if steps are not taken to cont rol 
the situation . Assume, for example , that a 
person desired to connect an electronic key-
board unit, similar to a typewriter , that 
would present the ASCII cod e for the key 
being depressed in parallel on the lines of an 
input port. If the perso n just connected the 
keyboard output lines to the input lines of 
an input port, and wanted to d evelop a pro-
gram that would accept information from the 
keyboard, there would be a number of rather 
tough problems, and they would be related to 
the speed at which the computer can operate 
relative to the speed at which a human can d e-
press the keys on a keyboard . 

Suppose that the keyboard was directly 
connected to an input po rt, and a pro-
grammer t ried to develop a routine that 
would simply read the code being sent by the 
keyboard, store the character in memory , and 
go on to read the next character . In the first 
place , how would the program be able to even 
te ll if a key had been depressed? True, one 
could assume that if no keys were depressed 
the code being received would be all zeros, 
and a program could check for that condition _ 
But, even if that was done, the programmer 
would soon have another problem . When a 
key was actually depressed, and a non-zero 

7 - 11 

condition received , a short program to place 
the character in memory and advance the 
memory pointer would be accomplished in 
the order of a hundred -millionths of a second . 
The poor human depressing the key wouldn't 
have a chance of getting a finger off the de-
pressed key in that amount of time, and in 
fact it would take on the ord er of several 
tenths of a seco nd for a person to remove 
a finger from a key. In that amount of time, 
the simple input routine could have read that 
same character and packed it into memory 
locatio ns a few hundred times' Not exactly 
the desired resul t . What now? Well, one could 
develo p t he input algorithm so that , once a 
non-zero code was rece ived, o ne would not 
accept another character until a zero code was 
observed . That might improve things some-
what, but it would preclude actually being 
able to receive a zero code (that might repre-
sent a valid condition) and, because of tech-
nical consideratio ns (such as contact bounce 
on the mechanical switches of the keyboard) 
it would not be a very reliable m ethod to 
utilize. 

Instead, it would be far better to place an 
interface between the keyboard and the com-
puter input port that would accomplish t he 
foll owing objectives. Whenever a key on the 
key board was depressed, the interface would 
latch (hold) the code represented by the key 
in an e lectronic buffer that was connected to 
the lines of an input port. The buffer wo uld 
thus hold data from the keyboard. Next, 
when the key that had been depressed was re-
leased, t he interface would present a signal 
to an input line of another input port, termed 
a control port. Finally , the interface would 
have a line coming from an output port of 
the computer that would allow the computer 
to signal to the interface that it had taken 
appropriate action . A diagram of an elec-
t ronic interface with the characteristics 
described is shown in the next illustration. 

With such an interface, one could develop 
a much m ore re liable system using an input 
program that would perform in the manner 
illustrated after the diagram. 



MACHINE 
DATA 

OUTPUT 

strobe 
LATCH 

+ 

L I ----. 

DATA 
INTO 

PORT X 

CONTROL 
INTO PORT Y NEW 

CYCLE 
SIGNAL elk 0 

I CONTROL 
OUTOF PORT Z 

MACHIN, INP Y 
JFSMACHIN 
INP X 

Check status of control from machine 
If data not ready then wait by looping 
Data ready now so fetch DATA 

LBA Save DATA in register B 
LAI001 Prepare to pulse line on PORT Z 
OUT Z 
XRA 

Send a logic one on PORT Z control line 
Clear accumulator 

OUT Z 
LAB 

Send logic zero on PORT Z control line 
Restore data to accumulator 

RET Exit routine with DATA in accumulator 

The above routine assumed that the control 
line from the interface came into the most 
significant bit of the accumulator and that 
the control line going to the interface origi-
nated from the least significant bit in the 
accumulator. Furthermore , while the above 
routine waited for new data to arrive from the 
external device by monitoring the input con-
trol port continuously , the JFS MACHIN in-
struction could have been replaced by a 
directive to have the computer perform some 
other function(s) before testing INPUT 
PORT Y again instead of wasting time doing 
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nothing! 

A similar type of interface , and similar 
programming techniques can be applied to a 
wide variety of devices that might be connec-
ted to the computer . While the example 
showed but one line being used on each 
control port, one should note that with 
eight lines available on one port, one can 
use just a few control ports in a system to 
monitor and control a large group of ex-
ternal instruments by using the available 
bit positions. 



TESTING FOR ERRORS DURING 
I/O OPERATIONS 

It is often desirable to transmit data to an 
external device that will store the data in 
some sort of permanent form, such as on 
paper tape or magnetic tape. Then, at some 
later time, read the data back into the com-
puter. During such a p rocess it is possible for 
erro rs to occur. That is, bits of information 
within a word may be altered because of noise 
or random erro rs occurring in the I/O system. 
While such errors are likely to occur at a very 
low rate in a well designed , properly operating 
[ /0 system, it is often desirable to utilize 
techniques that will at least indicate when an 
error has occurred. There are a vari ety of 
error checking techniques available, some so 
soph isticated that they can often correct 
certain types of errors that occur during I/O 
operations. Two techniques will be discussed 
here. While neither one of them has error 
correcting capa bility, they are capab le of de-
tecting the most common type of I/O error 
which is for a bit in a word changing state . 

The fi rst method to be discussed concerns 
the use of using parity techniques to detect 
transmission errors. The technique consists 
of examining a group of bits for t he number 
of bits that are in t he '1' condition when it is 
being readied for transmission, and then 
setting a bit aside for the purpose to the state 
that will make the total number of bits that 
are in the '1' condition either an odd or even 
count (for the entire group). For instance, it 
was mentioned earlier that the ASCII code 

ORIGINAL 7 BIT ASCII CODE 

(A) 1 000 001 
(B) 1 000 010 
(C) 1 000 all 
(D) 1 000 100 
(E) 1 000 101 
( 0) a 110 000 
(1) a 110 001 
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required 7 bits to represent all the possible 
128 characters defined by the code, but that 
many systems employed an 8'th bit for parity 
purposes. Thus, the ASCII code is ideal for 
use in typical 8008 systems because there are 
exactly 8 bits to a computer word. 

Furthermore, the 8008 CPU has as part of 
its instruction set specific instructions to 
facilitate the use of parity techniques. Re-
memb er the parity flag that was discussed in 
the chapter on the 8008 instruction set, and 
the various conditional branch ing instructions 
t hat use the status of the parity flag? 

When the codes for the ASCII subset were 
described earlier, it was mentioned that the 
eighth bit position (most significant bit) in 
the listing was arbitrarily set to the '1 ' con-
dition as the ASCII code did not use that 
bit. However, that bit position may be used to 
specify the desired parity in a system where 
parity checking is to be employed. For 
instance, if one wanted to establish an even 
parity system, one would proceed in the 
following manner. 

Examine the seven bits making up the code 
for the character to be transmitted (assuming 
ASCII code for th is example) . If t he number 
of bits in the character that are a logic '1' are 
even, that is there are 0, 2 , 4, or 6 bits in the 
'1 ' state, set the 8'th bit to a '0.' If t he num-
ber of bits are odd, that is there are 1,3,5, or 
7 bits in the '1 ' state, set the 8 'th bit to a '1 ' 
condition so that the total number of bits in 
the entire group becomes an even number ! 
Some examples are illustrated below. 

8 BIT EVEN PARITY COD E 

01 000 001 
01 000 010 
11 000 all 
01 000 100 
11 000 101 
00 110 000 
10 110 a a 1 



One could also elect to use an odd parity 
system by essentially reversing the scheme so 
that the 8 'th bit is always set to make the 
total number of bits in a group that are in the 

ORIGINAL 7 BIT ASCII CODE 

(A) 1 000 001 
(B) 1 000 010 
(C) 1 000 011 
(D) 1 000 100 
(E) 1 000 101 
(0) 0 1 1 0 000 
(1) 0 110 001 

Once one has selected which parity (odd or 
even) to use with a system, one simply sends 
the data in the desired mode to the I/O de-
vice. Then, when the data is later read into 
the computer, a check is made on each word 
of data received to determine if the parity is 

'1' state to be an odd number. ASCII code 
using an 8 'th bit to produce an odd parity 
system is illustrated below for several char-
acters . 

8 BIT ODD PARITY CODE 

11 000 001 
1 1 000 010 
01 000 011 
11 000 100 
01 000 101 
1 0 110 000 
00 110 001 

correct. If it is not , then an error has 
occurred. Sample routines to generate even 
parity words for an output routine , and for 
checking for even parity in an input routine 
are shown next. 

SEVENP, NDA 
JTP GOUT 
XRI200 

GOUT, CAL OUTPUT 
RET 

REVENP, NDA 

Assume 7 bit ASCII code in accumulator, 8'th bit 
Init 0, if parity even as is, send data 
Otherwise set MSB = 1 to get even parity 
User routine to transmit data to I /O 
Exit even parity generator routine 

RTP 
JMPPERROR 

Assume data from I/O device in accumulator 
Set flags, if even parity, all O .K. 
If not even parity do user error routine 

Similar routines are easily developed for 
utilizing odd parity. The programmer should 
note that parity techniques can be used with 
virtually any coding technique as long as one 
bit is set aside for the parity indicator. For in-
stance, one could easily adapt parity tech-
niques for the BAUDOT code discussed 
earlier provided that the I/O device could 
handle the extra bit. That might not be 
possible with a BA UDOT coded machine 
but it might be applicable, say, if BAUDOT 
code was being written on a magnetic tape 
unit where extra bits could be added to the 
code and processed by the I /O unit. 
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The reader should also be aware of the fact 
that the use of parity checking techniques is 
not infallible. It does detect errors that re-
sult in an odd number of bits changing state 
within a group, but not if an even number of 
state changes occur. It it thus most useful in 
a system where the expected probability of 
more than one error occurring in a group of 
eight bits is extremely low. The programmer 
might also want to consider when using a 
parity checking scheme the possibility of 
transmitting each group of bits twice. Then, 
when data is read back from the I /O device, 
an algorithm that will skip the second group 



if the group is received correctly the first 
time , or read the second group if an error was 
detected in the first group, can be utilized . 
Such a format, while requiring a longer trans-
mit and receive time, can result in highly 
rei iable I/O data handling operations . 

Another error checking method that is 
often used when passing data to and from I/O 
devices is termed the check-sum technique. 
The method is quite simple in application, yet 
remarkably powerful in detecting errors. The 
tech nique consists of simply maintaining a 
one register sum of all the data transmitted 
within a block . That is, as each word is sent 
out, it is summed with a register that con-
tains the sum of all previous data words trans-
mitted in the block. (Over-flows in the 
summing register are ignored.) At the end of 
a block of data, the two's complement of 
the sum that has been compiled is sent as the 
final piece of data in the block. 

When the block of data is read back into 
the computer a similar sum is formed as each 
data word is received . Then, when the last 

piece of data is received, which is the two's 
complement of the check-sum, that value is 
added to the sum obtained from all the 
previous data words in the block . The result , 
if no transmission errors have occurred, will 
be zero, the result of adding any number to 
its two's complement. If it is not zero , then a 
transmission error has occurred. The method 
is simple and quite reliable. The reader can 
readily determine that if errors have occurred 
it will affect the value of the sum as it is 
formed , and thus likely result in a non -zero 
value as a final result when the check-sum and 
its two's complement are added. (Note: It 
is theoretically possible for just the right num-
ber of errors to occur when reading a block of 
data to result in a zero condition, but it is 
quite small, hardly enough to lose sleep over') 

A routine for generating a check·sum and 
placing the two's complement of that value 
as the last word sent in a block of data 
followed by a routine that will read back a 
block of data using a check-sum technique 
and test to see if any errors occurred is shown 
below . 

SCKSUM, LHI XXX 
LLIYYY 
LEI ZZZ 
LDI 000 

Set page address where block of data stored 
Set location on page for start of data block 
Set number words in block counter 

NXC KSM, LAM 
ADD 
LDA 
LAM 
CAL OUTPUT 
INL 
DCE 
JFZ NXCKSM 
LAD 
XRI377 
ADI001 
CAL OUTPUT 
RET 

RCKSUM, LHIXXX 
LLI YYY 
LEI ZZZ 
LDI 000 

INCKSM, CAL INPUT 

Set check-sum register to 0 at start 
Fetch data word from memory 
Add present data to check-sum value 
Save new check-sum value 
Restore original data word from memory 
Output the data word to I/O device 
Advance memory pointer 
Decrement word counter 
If counter not 0 , fetch next data word 
Put check-sum value in accumulator 
Fonn two's complement value 
In standard manner 
Send two 's complement of check-sum as last 
Word in block and exil routine 
Set page address where block of data goes 
Set starting location on page for data 
Set number words in block counter 
Set check-sum register to 0 at start 
Fetch data from I/O device 

7 - 15 



LMA 
ADD 
LDA 
INL 
DCE 
JFZ INCKSM 
CAL INPUT 
ADD 
RTZ 
JMP CKSMER 

Store data word in memory 
Add new data to currect check-sum value 
Save new check-sum value 
Advance memory pointer 
Decrement word counter 
Get next data word if counter not ° 
Next word from I/O is two 's complement of check-sum 
Add it to check-sum formed by data 
If result is 0, O.K., exit subroutine 
Otherwise go to user error routine 

The above routines, as the reader will note, 
assume that data blocks are one page or less 
in length, and do not cross page boundaries. 
However, by this time the reader should 
have little difficulty writing a check-sum 
routine that could handle larger blocks. 

The next chapter will contain more infor-
mation of interest to those developing pro-
grams for I/O operations that requ ire 
consideration of real-time parameters. 
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REAL-TIME PROGRAMMING 

Real-time programming as discussed in t his 
manual applies to the development of pro-
grams whose proper execution are dependent 
on the length of time it takes for the com-
puter to perform an operation or series of 
instructions . The need for real-time program-
ming is invariably related to the receipt of in-
formation from devices at specific times or 
the control of devices external to the co m-
puter whose proper operation depend upon 
receiving commands from the computer at 
specific times. 

The discussion of the subject of real-
time programming has been deferred to the 
latter portion of this manual as real-time 
programming is generally more difficult 
than the development of programs that are 
not restricted by execution times . The reason 
is sim ply that in addition to the logic and 
technique factors that the programmer must 
consider when developing any program , the 
programmer must now add in the factor of 
how much time it will take for the computer 
to execute various instructions and instruc-
tional sequences. The problem is really one 
of increased complexity in the program de-
velopment task. 

However, real-time programming is often 
vitally necessary m certain applications. 
Hence the programmer must beco me aware 
of some of the critical aspects of such pro-
gramming. The reader should not, however, 
be over-whelmed by the prospects of such 
complications. For, once one has an under-
standing of standard machine language 
programm ing procedures and has gained a 
little experience, which one should have 
obtained by the time one is delving into 
this section, one should find the aspects 
of real-time programming simply one step 
up in d ifficulty and an enjoyable challenge . 

As with many other aspects a f program-
ming, proper preparation, such as clearly 
defining the problem to be handled, and pro-
ceed ing in an o rderly fashion, using methods 
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already discussed , can greatly ease the overall 
task of developing real-time programs. 

The last several pages of Chapter One pre-
sented the typical execution times for the 
various classes of instructions available in an 
'8008' based microcomputer. The times 
shown are those for an '8008' unit whose 
master clock has been adjusted to a nominal 
frequency of 500 kilohertz. When getting 
down to practical applications, one must 
realize that any system will have some 
finite deviation from the nominal frequency. 
For instance, if an '8008' system has a crystal 
controlled master clock , the possible variation 
from the nom inal frequency might be in the 
order of 0.05 to 0 .1 percent. Some '8008' 
systems migh t have resistor-capacitor con-
trolled master clocks and the possible de-
viation from the nominal frequency could be 
co nsiderably more, up to four or five percent. 
In any event, when contemplating the devel-
opment of real-time programs, one must 
always take into account the possible varia-
tion from nominal of the master clock 
frequency. In fact, one should plan programs 
to operate under worst case variation condi-
tions. Thus, if one was thinking of using an 
'8008' system to control a process that re-
quired timing accuracies of 0.01 percent, 
o ne could immediately stop considering the 
use of a computer that had a master clock 
accurate to only 0 .05 percent! A seco nd 
consideration regarding whether to use a 
computer to control time dependent events 
involves how close together events that need 
to be controlled will occur . It may be obser-
ved by examining the information at the end 
of Chapter One, that almost all instructions 
require a minimum of 20 microseconds to 
execute in an '8008' system. Thus, one 
cannot plan on using such a computer to 
control events that are less that that far 
apart in time. In fact, because I/O operations 
themselves take 24 to 32 microseconds, 
and because those instructions would invar-
iably be required to be in use when dealing 
with external devices, along with the fact 



that one will almost certainly want to use 
some other instructions between I /O com-
mands, it is a pretty good rule of thumb to 
disqualify the use of an '8008' based system 
as a real-time controller if any two events 
dependent upon timing from the computer 
will occur within 100 microseconds. A second 
rule of thumb is to immediately reject the use 
of such a system as a real-time controller if 
the application will require much more than 
one thousand I/O operations per second. 
Unless such operations are strictly repeti-
tive and the previous rule (events are at 
least 100 microseconds apart) can be met. 
This second rule of thumb is derived from 
practical experience with programming over-
head that results when a variety of time-
dependent events must be juggled in a real-
time program. 

The prospective real-time programmer 
should become familiar with the lengths of 
time required to execute the various classes of 
instructions. One of the first new habits to 
learn when preparing real-time programs is 
to write down the execution time required for 

START 1 2 3 

'l I a 1 a 1 

I I 
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each instruction along side of the mnemonic 
as the program is written. It then becomes an 
easy matter to figure out totals for various 
portions of the routine. Additionally , it is 
often helpful to write down the total execu-
tion times along paths and ioops on a flow 
chart of the program. Real-time programming 
often requires a fair amount of juggling be-
tween choices of instructions used and alter-
nate sequences of commands in order to ob-
tain desired program execution times. Having 
critical timing information on hand in the 
forms suggested can provide the programmer 
with a quick view of how the program devel-
opment effort is proceeding. 

In any programming application, flow 
charting is an extremely valuable aid to enab-
ling one to obtain an overall view of a pro-
gram 's operation. In real-time programming 
another tool of equal importance should be 
brought into use. That tool is a TIMING 
DIAGRAM. A timing diagram illustrates the 
relationships in time between the occurrences 
of specific events of interest to the pro-
grammer. 

4 5 STOP1 STOP2 
5 

a 1 1 1 

I 

)/ 
TIMING DIAGRAM FOR SENDING BAUDOT CHARACTER 'Y ' OR '6 ' TO PRINTER 

A timing diagram is illustrated above . The 
diagram indicates the desired status of a signal 
line as a function of time for an electronic 
signal that is to provide information to a 
BAUDOT coded typing machine. The diagram 
shows the signal conditions required to direct 
the machine to print the letter Y or the figure 
'6' depending on which mode the machine is 
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operating in (LETTERS or FIGURES) at the 
time the code is sent. This diagram will be 
used to develop a sample program for opera-
ting a BAUDOT printer mechanism as an 
introduction to the considerations required 
when dealing with real-time programming. 

In order to clarify the diagram a brief 



explanation of the operation of a BAUDOT 
coded printing mechanism will be presented. 
The printing mechanism is assumed to be an 
AS YNC HRO NOUS device in that it requires 
START and STOP information. Once the 
printing mechanism has begun a cycle of 
o peration as the result of receiving a START 
signal level, t he machine will examine the 
status o f a signal line during specific time 
periods in order to rece ive a CODE that will 
enable it to pr int a spec ific character. At the 
end o f a mach ine cycle the machine expects 
to see a STOP signal. The STOP signal must 
last for a certain amoun t of time so that the 
machine may complete various mechanical 
operations and reset itself in order to be 
ready to receive more signals and comme nce 
a new cycle. A CYCLE in this co ntext shall 
mean a certain number of units of time. The 
TIM ING DIAGRAM just illustrated shows a 
cycle that is d iv ided into eight eq ual units of 
time. The first unit of time is reserved for a 
START pulse. By definition in this example, 
the start pulse is a logic zero level as shown 
in the diagram. The next five units of time 
in the cycle are used to t ransmit the 
BA UDOT code for whatever character is to 
be printed by the machine. The last t wo 
u n its of t ime are defined to be a logic one 
level to serve as STOP pulses. This info rma-
tion is summarized in the timing diagram . 
To put the diagram to practical use, one must 
define the length of a unit of time in the dia-
gram! For instance, suppose one had a print-
ing mechanism that was designed to operate 
co rrectly when each unit of time (the length 
of time denoted by the distance labeled A in 
the above diagram) was 20 milliseconds (nom-
inally). An entire cycle would thus require 

24 
20 

BDOUT , LCI006 
NDA 
RAL 

MORBDO, OUT X 
RAR 

160 milliseconds (the time span marked off 
by the distance labeled B in the diagram) . 

If it was desired to have the computer send 
a signal on an output line that closely approx-
imated the desi red signal pattern, one would 
have to d evelop a program t hat would change 
the state of the line on an output port that 
was supplying the signal to the machine at the 
t imes indicated by the marker lines in the dia-
gram (where the signal changes state). Such a 
program would be a real-time program ! 

Real-time programming for this type of ap-
plication is relatively straightforward. First of 
all, there is only one signal line to be con-
cerned with (in many real-time applications 
there may be a multitude of lines to con-
tro l)! Secondly , t he amount of t ime between 
events is quite large so that there will not be 
any requiremen t for fancy programming 
that has to be streamlined for maximum 
speed of operat ion . In fact, all one really has 
to do is make some sim ple mathematical 
calculations and develop so me TIMING 
LOOPS that will make the program wait for 
the desired length of time between sending 
bits of information to the ou tput port that 
will carry the signal to the typing unit. The 
program becomes simply a little fancier ver-
sion of the PARALLEL TO SERIAL output 
program discussed in the previous chapter . 

A suitable program is presented below. 
A discussion will be presented after the pro-
gram. Note now that the execution times have 
been provided alongside the time-dependent 
portions of the program . 

Set bit counter = number of bits + 1 
Set carry bit equal to ' 0' 
Bring ' 0 ' fro m carry into LSB of ACC 
Send START or CODE bits to machine 
Position next bit of information 

44 + 19,848 
20 

CAL BDELAY 
DCC 

Give machine one unit of time 
See if finished START and CODE bits 
If not, send next bit 44 / 36 

32 
24 

JF Z MORBDO 
LAI001 
OUT X 
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Prepare to send,STOP bits 
Send STOP bit number one 



44 + 19,848 CAL BDELAY Give machine one more unit of time 
44 + 20 CAL DUMMY Provide a little more time 
44 + 20 CAL DUMMY Provide a little more time 
24 OUT X Send stop bit number two 
44 + 19 ,848 CALBDELAY Give machine one more unit of time 
44 + 20 CAL DUMMY Provide a little more time 
44 + 20 CAL DUMMY Provide a little more time 

RET Exit outputting a character routine 

20 DUMMY, RET Short routine to eat up time 

32 BDELAY , LDI 215 Set timer loop counter 
24 OUT Z Output to unused port to t rim time 
24 OUT Z Output to unused port to trim time 
44 + 20 CAL DUMMY Use a little more time B4 starting loop 
44 + 20 MDELAY , CAL DUMMY Form a time consuming loop 
20 DCD See if time expired (counter = zero?) 
12 / 20 RTZ Exit back to calling routine when done 
44 JMPMDELAY Otherwise continue using up time 

The above routine assumed that the data to 
the printing machine originated from the least 
sign ificant bit in the accumulator. 

The reader should note that for cases where 
there are two possible execution times for an 
instruction) such as a conditional instruction, 
that the time required for the condition most 
often occurring in the program was shown 
first, followed by the time required when the 
other condition occurred. 

The program was initially developed by 
writing the main portion with the time re-
quired for the BDELA Y subroutine consid-
ered as an unknown factor. When the basic 
format of the program had been determined 
the execution time of the loop starting at the 
label MORBDO which included the five in-
structions: 

MORBDO, OUT X 
RAR 
CAL BDELAY 
DCC 
JFZ MORBDO 

was calculated, leaving out the as yet un-
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determined time of BDELAY. The time re-
quired by the five instructions when looping 
was found to be 152 microseconds. Since it 
was known that a total of 20,000 micro-
seconds (20 milliseconds) was desired be-
tween outputting each bit in the code it 
was then easy to calculate that: 

20,000 - 152 = 19 ,848 

microseconds delay was required in the 
subroutine BDELA Y. 

The subroutine BDELA Y is a typical 
example of a timing delay loop . The main 
portion of the delay loop starts at MDELA Y 
and includes the four instructions: 

MDELAY, CAL D UMMY 
DCD 
RTZ 
JMP MDELAY 

The theory behind the BDELAY subroutine 
was to execute the MDELA Y loop the re-
quired number of times to get close to a 
delay of 19 ,848 microseconds and then close 
any gap by the setup instruction(s) for the 
loop. 



The time required to complete the four 
instructions in the MDELA Y loop when the 
RTZ condition is not met is 140 micro-
seconds. Finding out how many times it is 
necessary to execute the loop to get close to 
a delay of 19,848 microseconds is a simple 
matter of dividing. Doing so yielded a figure 
of almost 142 (decimal). Taking into account 
the fact that it was not desirable to go over 
the alloted time, and the fact that setting up 
the loop would take some time, the figure of 
141 decimal was chosen, which is 215 octal . 
One other factor had to be considered. When 
the counter in the loop reached zero, the RTZ 
instruction would be executed and the JMP 
MDELA Y command would not . Thus, the 
fu ll loop would only be executed 140 (deci-
mal) times . The last t ime through the 
MDE LA Y routine would only take 104 
microseconds. Thus, at this point it was 
possible to calculate the total delay caused by 
executing the MDELA Y loop the selected 
number of times: 140 X 140 = 19,600 plus 
104 for a total of 19 ,704 microseconds. 
Then it was an easy matter to determine 
how much time to use to setup the MDELA Y 
subroutine. The desired total delay of 
19,848 minus the 19 ,704 microseconds 
consumed by executing the MDELA Y rout-
ine 141 (decimal) times left 144 micro-
seconds to be consumed. The LDI 215 at 
the start o f BDELA Y only required 32 micro-
seconds so 112 more microseconds were con-
sumed by adding the filler instructions 
CAL DUMMY and two OUT X commands. 
The total BDELA Y subroutine then was 
exactly equal to the desired delay time of 
19,848 microseconds! 

After sending the START and five CODE 
bits it was necessary to send a two unit 
STOP pulse. Since the STOP pulse by defi-
nition was to be a logic one , it was neces-
sary to setup the stop bit as a one in the 
accumulator. The reader can calcu late that 
the actual delay between the sending of the 
last CODE bit and the first STOP unit in the 
routine comes out to be 20,024 micro-
seconds. Remember in making the calcu-
lation that the JF Z MORBDO instruction 
will o nly require 36 microseconds on the 
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final execution of the loop thereby reducing 
the loop execution time to 19 ,992 micro-
seconds and the LAI 001 will add 32 micro-
seconds to that value before the next OUT X 
instruction can be executed. However, for 
the application , the value of 20,024 is plenty 
close enough to 20 ,000 (off by about 0 .1%) 
to operate a mechanical machine which can 
typically operate reliably with the timing off 
as much as 10 to 20 percent' 

The delay between the first stop unit and 
the second, as well as the final delay to co m-
plete the second stop unit , was made to come 
out nicely to 20,000 microseconds by the in-
sertion of the CAL DUMMY commands fol-
lowing the CAL BDELA Y instructions. 

The routine just presented, as the reader 
can undoubtably see, could be modified to 
serve a variety of electro-mechanical printing 
machines operating at different speeds by 
changing the timing loops. The program 
could also be modified to serve ASCII coded 
machines, or other types of codes by chang-
ing the bit counter and possibly altering the 
length of the STOP pulse(s) depending on the 
type of machine being driven. Furthermore, 
the techniques demonstrated can be applied 
to many other types of problems. 

A similar routine could be developed to 
receive data from the same kind of BA UDOT 
machine. However, when receiving data from 
such a unit there are a few new concepts to 
consider. 

When the computer was sending infor-
mation to the printing mechanism it had 
an advantage it will not have when it is used 
to receive information from the machine . 
Namely, when transmitting, the computer 
had control of when the external machine 
would be operated. In the reverse mode, the 
computer will have no knowledge of when the 
ex ternal device will begin to 0 perate and 
transmit data to the computer ' 

Additionally, once a character starts 
arriving on a line of an input port, the 
tolerance situation reverses. What is meant by 



this is that the computer sent data to 
the printer mechanism, it was possible for the 
computer to be much more accurate in pro-
viding proper timing to the machine, than the 
machine required to operate successfully. 
Thus, if the time period for a unit of time was 
off a few tenths of a percent when generated 
by the com pu ter, it would not affect the 
operation of the machine. However , when the 
computer is receiving data from the machine, 
the start of each unit of time may be off by as 
much as 10 percent because of the loose tol-
erance of the electro-mechanical machinery . 
If the computer program does not make pro-
per allowances for such possible variations, 
then incorrect data may be received. 

Fortunately, the problems related to these 
concepts are not too difficult to overcome. 
The first problem, determining when the 
external machine is starting to send, can be 
solved by periodically checking the input 
line for the presence of a zero logic condi-
tion indicating a START bit. (Note : while 
there is another manner in which one could 
detect the beginning of an external opera-
tion in a properly equipped microcomputer 
system , through the use of a hardware gen-
erated INTERRUPT scheme, such a method 
is more properly concerned with hardware 
considerations which are not within the in-
tended subject matter of this manual. If such 
a detection scheme were used, the remainder 
of this discussion on handling the receipt of 
the incoming data would still apply.) Natur-
ally, how often one checked for the presence 
of a START bit would have an affect on the 
overall ability of a real-time program to re-
ceive the data. For instance, assuming a 
START bit is present for 20 milliseconds as in 
the case for the hypothetical machine being 
discussed , it would be foolish to test for the 
presence of such a start bit at periods that 
were 21 milliseconds apart! In fact , because 
of other considerations, it would not be wise 
to check for a START bit much less often 
than every few milliseconds . 

The second problem of dealing with the 
loose tolerance of the machinery can be ef-
fectively dealt with by adjusting the receive 
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routine so that it SAMPLES the incoming 
signal at the theoretical middle of a unit of 
time rather than at the beginning or end of a 
time period. Of course the ability to do this 
also depends on how closely one is able to 
detect the actual start of a character as it is 
sent by the machine. 

A timing diagram showing a BAUDOT 
character being sent by a machine is illus-
trated at the top of the next page. Short 
upward point arrows along the bottom of 
the diagram illustrate the times at which a 
real-time program would need to sample 
the incoming line in order to correctly 
receive the data. Note that prior to the time 
a START signal is detected, t he computer 
should sample the line often in order to 
minimize the period of t ime in which a 
START signal might be present but unde-
tected. Next, it is desirable to adjust the 
sample period so that it coincides with the 
theoretical middle of a unit of time, rather 
than sample at integers of units of time 
after the start signal was detected. This 
method compensates for the tolerance pro-
blem mentioned previously . 

Finally, after the fifth code bit has been 
received , one may observe that it will not 
be necessary to start testing for a new start 
pulse for about two and a half t im e units as 
it is known that the mach ine will be using 
that time to complete its operation cycle. 
Thus, the computer would be able to per-
form some other functions for about 50 
milliseconds before going back to the 
SAMPLE mode to look for a new START bit. 
That is enough time to perform a few 
thousand or more instructions in a typical 
microcomputer system! 

A sample routine for receiving information 
from a device in accordance with the timing 
diagram illustrated, assuming that the time 
span marked C in the timing diagram was 10 
milliseconds, and that marked D was 20 milli-
seconds, is illlustrated following the diagram. 
The reader may not that it is essentially an 
expanded version of a SERIAL TO PARAL-
LEL routine. 
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TIMING DIAGRAM FOR R ECEIVING BA UDOT CHARACTER 'V ' OR '6' 

BDIN, LBIOOO Clear incoming storage register 
LCI005 Set bit counter 

32 STRTIN, INP X Look for START bit 
32 NDI 200 Mask off irrelevant data 
44 / 36 JTS STRTIN If no START bit , fonn sampling loop 
44 + 9796 CAL HDELAY If find logic '0' assume start, delay 
32 INP X To middle of START unit & verify 
32 NDI 200 By making appropriate test 
36 / 44 JTS STRTIN If not '0 ' here assume false START pulse 
44 + 20 CAL DUMMY Stretch the delay a little 
44 JMP MORBD1 Stretch the delay a little mo re 
44 + 19748 MORBDI, CAL IDELAY Main delay loop , almost 1 full time unit 
32 INP X Get next bit 
32 NDI 200 Trim to just desired data 
20 RAL Save incoming bit in carry flag 
20 LAB Get any previous bits 
20 RAR Rotate new bit fm carry to register 
20 LBA Save in register B 
20 DCC Decrem ent bits counter 
44 / 36 JF Z MORBDI Delay & fetch next incoming bit 
20 RRC Have all 5 bits, right justify 
20 RRC In accumulator by rotating 
20 RRC Before preparing to exit routine 
44 + 9796 CAL HDELAY Optional delay to make sure into STOP 
44 + 20 CAL DUMMY Part of optional delay 
44 + 20 CAL DUMMY Part of optional delay 
20 RET Units area before exiting subrout ine 

32 !DELAY, LDI 215 Set time loop counter 
12 RTS Trim time, this condition never met 
44 + 20 RDELAY, CAL DUMMY T ime consum ing loop 
20 DCD Decrement counter 
12 / 20 RTZ Exit to calling rtn when counter = zero 
44 JMP RDELAY Otherwise continue using up time 
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HDELAY , LDI 106 Set time loop counter 32 
44 JMP RDELAY Go use up about half a t ime unit 

20 DUMMY, RET 

While the routine just presented is similar 
in many respects to the one described earlier 
for transmitting data from the computer, 
several different features will be high-lighted . 
First, the read er may note that the program 
expects data to be arriving at the most sig-
nificant bit position of the accumulator (as in 
the SERIAL TO PARALLEL · routine in the 
previous chapter). 

Next, the reader should note that the three 
instructio ns starting at the label STRTIN 
fo rm a loop to test for a START bit arriving 
from the input port. The reader can see that 
the loop requ ires 108 microseconds to exe-
cute and thus it is possible for a start unit to 
have been present for almost that length of 
t ime before it is detected . F or instance, if the 
start pulse actually started just a microseco nd 
after the INP X instruction at STRTIN was 
executed, that pulse would not be detected 
until the INP X instruction was executed on 
the next round . However , it is also possible 
fo r the program to detect t he start bit at 
just about the instant it actually happens. 
Thus, t here can be a variation in d etecting 
t he beginning of the START t ime unit of 
about 108 microseconds. Now, the actual 
detection of the start pulse is used as a 
reference for delaying to the middle of a time 
unit in ord er to samp le the remaining bits 
in the desired region. On the average , one 
could assum e that the start pulse was d e-
tected in about the m iddle of the possible 
range of variation, which would be about 
54 microseconds after th e pulse actually 
started. This information is used to establish 
approximately how long the HDELA Y loop 
should be in order to get close to the theo-
retical middle of a tim e uni t. Thus, if one 
assum es that on an average, the start pulse is 
detected 54 microseconds after it began, and 
one adds 144 microseconds for the execu-
tion of t he instructions from STRTIN to the 
CAL HDELA Y instruction , one can deter-
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Short routine to use up time 

mine that HDELA Y needs to consum e 9802 
microseconds. The value 9796 actually de-
veloped was a close enough com promise for 
the situation. 

Another area of interest near the end of 
the main routine is marked by t he comments 
as an optional delay to make sure that the 
program has consumed enough t ime so that 
the sending unit will be sending the STOP 
units before the routine is exited. As pointed 
out earlier, after the five data bits have been 
sampled the computer has quite a bit of t ime, 
up to about 50 milliseconds in which to per-
form some other functions because the send-
ing machine would be unable to send a new 
START pulse until it had completed its cur-
rent cycle which includes two units of time 
for the STOP pulses . However, in som e 
instances, the computer may not require 
anywhere near that amount of t ime to pro-
cess the character it had just received. In 
such cases the programmer would want to 
make sure the program did not start looking 
for a new START bit before the last DATA 
bit had been completed . The optional half 
a time unit delay ensures in such a case that 
the machine would be in its stop uni ts phase, 
which by definition here would be a logic 
one state , before the computer began looking 
for a new logic zero condition that would 
signify the start of a n ew character. 

Finally, the reader might take note of an 
interesting t rick to get a rather short addi-
tional delay by the use of th e RTS instruc-
tion as the second command in the IDELA Y 
subroutine . A condit ional return instruction 
when the condi t ion is not met is the only 
type of command in an '8008 ' CPU that will 
use 'just 12 microseconds of time . The RTS 
instru ction inserted at that point will never 
have the TRUE condit ion met as the reader 
may verify by close examination of the pos-
sible condition of the SIGN FLAG at that 



point in the program. It is a good technique 
to remember if a 12 microsecond delay is 
required. However, the programmer must 
make certain that the condition will never be 
satisfied when used for that purpose' (Re-
member, virtually all other types of instruc-
tions take up at least 20 microseconds of 
time to be executed in a nominally adjusted 
'8008' based system.) 

As another example of the details of 
real-time programming, the above example 
will be expanded to demonstrate how the 
program could be improved to increase the 
reliability of receiving correct data from 
the external machine. As many readers 
may know , the incoming data from an 
electro-mechanical machine may be noisy. 
That is, a signal that is supposed to be, for 
instance, in the logic one state for an entire 
unit of time may occasionally go to the logic 
zero condition for small fractions of a unit 
of time, or vice-versa. In the program just 
presented the computer sampled the state 
of the incoming signal just once in each 
unit of time. If by chance it should sample 
the signal at the moment that noise was 
present on the signal line, incorrect data 
might be received . In a critical application, 
it might be desirable to reduce the chance 
of such an error occurring . This could be 
done by sampling the incoming signal 
several times during each unit of time and 
then computing an average of the value 
received to determine whether the signal 
was truly in a logic one or logic zero state . 
For instance, one could elect to sample 
the signal five times near the middle of each 
time unit and then make a decision as to 
whether the signal was a logic one or zero 
by determ ining which state was detected 
three or more times out of the five samples. 
Such a sampling method would greatly re-
duce the chances of noise causing an in-
correct signal level to be received by the 
computer. 

The timing diagram illustrated at the 
top of the next page shows a signal being 
sampled at multiple points as indicated by 
the arrows at the bottom of the signal 
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diagram. Developing a program to give the 
improved performance is not difficult but 
it does require a few more time related 
considerations when developing the soft-
ware. These considerations will be pointed 
out in the following discussion . 

To begin development of the multiple-
sampling program a major subroutine was 
developed that would perform the task of 
sampling five times in succession, keeping 
track of whether a logic one or zero was 
received, and finally determining which 
state was received most often. The sub-
routine with the execution time for each 
instruction IS presented immediately fol-
lowing the timing diagram on the next 
page. The reader might pay special atten-
tion to the manner in which the predom-
inant signal state was determined in the 
program. 

Information regarding the amount of 
time required to execute portions of the 
multiple sampling routine were required 
before the overall routine could be developed 
for reasons that will soon be apparent. 

The reader may confirm that the time 
between each of the five samples will be 
280 microseconds for a typical '8008 ' sys-
tem regardless of what signal state is re-
ceived. It is important to notice how the 
samp ling routine was balanced by the 
appropriate choice of instructions so that 
the receipt of either signal state resulted 
in the same total time to execute the sam-
pling loop . If this requirement were not met 
the programmer would have quite a difficult 
time trying to develop an accurate routine 
based on all the possible combinations of 
one and zero signal states the could be re-
ceived! 

The reader should also note that the setup 
time, that is the time to execute the instruc-
tions from the label SAMPLE to BITEST plus 
the time to actually call the subroutine would 
require 108 microseconds. That is, it will take 
108 microseconds from the time the program 
starts to call the subroutine until the first 
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T IMING DIAGRAM FOR MULTIPLE SAMPLING OF INCOMING SIGNAL 

32 SAMPLE, LDI 005 Set counter for number of samples 
32 LEI 377 Setup register E for storing signal state 
32 BITEST, INP X Sample current signal on input line 
32 NDI 200 Mask off unused input lines 
44 / 36 CTS PLUSE Increment E if signal a logic one 
32 NDI 200 Restore flags to reflect ACC contents 
36 / 44 CFS MINUSE Decrement E if signal a logic zero 
20 DCD Decrement sampling counter 
44 / 36 JFZ BITEST Sample again if counter not equal to '0' 
20 LAE 
32 NDI 200 
20 RET 

20 PLUSE, INE 
20 RET 

20 MINUSE, DCE 
20 RET 

INP X instruction is encountered. 

Additionally , the reader should note that 
it will require 344 microseconds from the 
time the fifth sample is taken until the sub-
routine is actually exited. 

It is important to know these relation-
ships so that t he entire subroutine can be 
properly located within a time frame. For 
instance, since it would be desirable to have 
the third sample take place at the theoretical 
middle of a unit of time it will be necessary 
to start calling the sample subroutine when 
there are about 668 microseconds remaining 
before the theoretical middle of the unit of 
t ime. This is because it will require 108 micro-
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When have 5 sam ples place E into ACC 
Mask o ff all but most significant bit 
Exit with predominant state in MSB 

Increment register E 
Exit subroutine 

Decrement register E 
Exit su broutine 

seconds between the first and second sample 
and another 280 microseconds between the 
second and third sample. 

Similarly it is important to know that there 
will be 904 microseconds from the time the 
third sample is taken until the routine is 
exited . As 280 microseconds will be taken 
between sample number three and four, 
another 280 microseconds between samples 
four and five, and an additional 344 micro-
seconds from sample number five to the time 
the routine is exited. 

With this information now available one 
can calculate how much time should be used 
from the time a start bit is received until it is 



time to call the sample subroutine so that the 
third sample point will be in the middle of a 
unit of time. And, after that, how much delay 
to provide from the time the sample sub-
routine is exited in one unit of time until 
it is to be called again to sample the signal 
in the middle range of the next unit of time . 

In a situation such as the one being dis-

START 

cussed, it is often helpful to produce an 
expanded timing diagram to illustrate small-
er portions of critical time relationships. 
An expanded diagram showing the informa-
tion just derived as it applies to the START 
bit and the first OAT A bit of the example in-
coming signal is shown below. Remember, the 
diagram only illustrates two units of time out 
of the eight contained in the character! 

1 Jl 
t t t t t LJ 

54 
904-1--- 18,428 ------{668 

9041 
10,000 -*----- 20,000 

EXPANDED TIMING DIAGRAM 

With the timing requirements of the 
SAMPLE subroutine known, the approp-
riate delays to place the sampling subroutine 
such that the third sample is at the middle of 
a unit of time can be ascertained as shown on 
the above expanded timing diagram. It is then 

a relatively easy matter to modify the pro-
gram previously developed for the case when 
.only a single sample was taken per time unit 
so that it calls the SAMPLE subroutine. An 
example of such a routine is presented next_ 

32 
32 
44 / 36 
44 + 9184 
44 + 1528 
36 / 44 
44 + 20 
20 
20 
44 + 18240 

BDIN , LBI 000 
LCI005 

STRTIN, INP X 
NDI 200 
JTS STRTIN 
CAL HDELAY 
CAL SAMPLE 
JTS STRTIN 
CAL DUMMY 
NDA 
NDA 

MORBDI, CAL IDELAY 
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Clear incoming storage register 
Set bit counter 
Look for a START bit 
Mask off irrelevant data 
If not START bit, form sampling loop 
If find logic zero, assume start, delay 
and then do multiple sample on start bit 
If result not zero assume false start 
Add compensating delay before entering 
Main DATA sampling routine 
With these three instructions 
Execute main delay loop 



44 + 1528 CAL SAMPLE Multiple sample routine on DATA bits 
20 RAL Save resulting state in carry flag 
20 LAB Get any previous bits 
20 RAR Rotate new bit from carry into ACC 
20 LBA Save formation in register B 
20 DCC Decrement bits counter 
44 / 36 JFZ MORBDI Delay and then fetch next DATA bit 
20 RRC Have all five DATA bits so right justify 
20 RRC In accumulator by rotating 
20 RRC Before preparing to exit 
44 + 9184 CALHDELAY Optional delay to reach STOP area 
20 RET Exit BAUDOT input subroutine 

32 !DELAY, LDI 202 Set time loop counter 
20 NDA Trim time delay 
20 NDA Trim time delay 
44 + 20 RDELAY, CAL DUMMY Time consuming loop 
20 DCD Decrement counter 
12 / 20 RTZ Exit to calling routine when cntr is zero 
44 JMP RDELAY Otherwise continue using up time 

32 HDELAY, LDI 101 Set time loop counter 
20 NDA Trim time delay 
20 NDA Trim time delay 
44 JMP RDELAY Go use up more time 

20 DUMMY, RET 

The information presented to this point in 
the chapter has been concerned with illus-
trating techniques to coordinate the exe-
cution of a program with the timing require-
ment of an external device, through the 
method of providing time delays to effec-
tively slow down the execution of a program. 
However, another aspect of real-time 
programming involves essentially the opposite 
objective. That is to obtain maximum speed 
of operation from a computer program so 
that it may handle events that might be 
occurring quite rapidly. The balance of this 
chapter will present several basic guide lines 
for streamlining the operation of a program to 
obtain maximum speed of execution . 

Perhaps the first point to present is that 
there is a corollary between obtaining maxi-
mum operating speed and the amount of 
memory required by the program that may at 
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Short routine to use up time 

first seem a little strange. That is that as one 
attempts to program most microcomputers to 
execute a function in a minimum amount of 
time, one generally will increase the amount 
of memory required to hold the program! 
The reason for this relationship is that stream-
lining a program generally requires the elimi-
nation or reduction in the use of loops and 
subroutines, which, the reader may recall, 
were earlier stressed for their ability to save 
memory storage space! 

To illustrate how the elimination of loops 
can dramatically reduce the time required 
to execute a specific function , consider the 
exaniple presented next. In this case, a pro-
grammer needs to load three consecutive 
words in memory with the contents of the 
accumulator in as little time as possible. A 
routine using a loop might appear as shown 
next. 



32 
28 AGAIN, 
20 
20 
44 / 36 

LBI003 
LMA 
INL 
DCB 
JFZ AGAIN 

The reader may easily calculate that the 
total time required to execute the above 
loop would be 360 microseconds . A routine 
that did not use a loop cou ld be executed in 
about one third the time in this particular 
case as illustrated next. 

28 
20 
28 
20 
28 

LMA 
INL 
LMA 
INL 
LMA 

The straight routine only requires 124 
microseconds to do the same job. While the 
corollary mentioned above might not seem 
evident when such a short loop is involved, 
consider the same case if 20 locations in 
memory were to be loaded with the data that 
was in the accumulator. One can calculate 
that the loop method would only require 
eight (decimal) locations in memory for the 
operating portion of the program and would 
execute in 2,264 microseconds. On the other 
hand, the straight routine method would re-
quire some 39 locations in memory for 
storage of the operating program , but that 
straight routine would be executed in a mere 
940 microseconds. 

The elimination of subroutines can also 
greatly speed up the operation of a critical 
portion of a program as shown by the fol-
lowing example. The following subroutine 
method might be used as part of a program 
that was to rapidly output the contents of 
the accumulator as a series of octal digits . 

24 
44 + 80 
24 
44 + 80 
24 
16 

OUTX 
CAL ROTAND 
OUTX 
CAL ROTAND 
OUTX 
HLT 
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Where the subroutine ROT AND appears as: 

20 
20 
20 
20 

ROTAND, RAR 
RAR 
RAR 
RET 

One can calculate tbat executing the above 
subroutined program would require 336 
microseconds. The straight program method 
shown below only requires 208 microseconds 
to do the same function. 

24 
20 
20 
20 
24 
20 
20 
20 
24 
16 

OUTX 
RAR 
RAR 
RAR 
OUT X 
RAR 
RAR 
RAR 
OUTX 
HLT 

While the above example does not support 
the memory usage corallary one can see that 
if the subroutine were somewhat longer, say 
it contained eight or nine instructions, then 
the corallary would be true. 

Another rule of thumb to apply towards 
developing programs to operate in a minimum 
amount of time is to do as much work as pos-
sible with CPU registers instead of with mem-
ory. For instance, suppose one had an in-
strument interfaced to an '8008' system that 
periodically needed to send a short burst of 
data to the computer for storage . For tech-
nical considerations assume that is was de-
sired to receive the burst as rapidly as pos-
sib le , after which the computer would have 
some idle time to process the data. One can 
readily see by the following example that it 
will take much less time to store, for instance, 
four characters in CPU registers, than to store 
the same amount directly in memory loca-
tions. A routine to store the characters 
directly in memory as illustrated next would 
require a total of 300 microseconds. 



Storing the data in CPU registers would 
only require 216 microseconds using the 
following routine. 

32 
20 
32 
20 
32 
20 
32 
20 

INP X 
LBA 
INP X 
LCA 
INPX 
LDA 
INP X 
LEA 

The factor that m igh t be particularly 
valuable in a time-tight situation is that 
each character in the second routine could 
be accepted at 52 microsecond intervals 
while the first routine could not accept 
the characters at a rate faster than every 
80 microseco nds. Naturally, the above 
example is strictly limited to the case where 
very short bursts are being handled as there 
are a limited number of CPU registers avail· 
able in which to store data . However, the 
principle can be valuable. 

The concept of utilizing CPU registers 
as much as possible can be extended to a 
variety of applications besides the one just 
illustrated. For instance, it is often advan-
tageous to setup CPU registers in advance of 
a critical time period in order to streamline 
a program during selected operating periods. 
For instance, suppose one needed to input 
data at a fast rate and also perform some 
manipulation of the data, such as perform a 
two's complement operation and then depo-
sit the data in memory. One way to develop 
the routine would be as follows. 

32 RECEIV , INP X 
32 NDI377 
32 ADI001 
28 LMA 
20 INL 
44 / 36 JFZ RECEIV 

The above routine could have the time 
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factor decreased by about 12 percent if, 
prior to entering the loop (a necessary evil 
in this example because a large block of data 
is hypothetically being processed), one first 
set CPU register B to contain ' 377' and CPU 
register C to hold '001 ' and used t.he routine 
shown next. 

32 RECEIV, 
20 
20 
28 
20 
44 / 36 

INP X 
NDB 
ADC 
LMA 
INL 
JFZ RECEIV 

A few closing comments on the subject of 
streamlining real-time programs would include 
the mention that if subroutines are necessary, 
to use those valuable RESTART commands 
which only require 20 microseconds for an 
effective CALL instead of 44 microseconds. 
Additionally, the programmer should pay 
strict attention to overall program organi-
zation in order to reduce time consuming 
overhead operations. Or, at least to defer 
such operations for execution during non-
critical time periods. 

Finally, real·time programming is an 
area where the creative programmer can 
have a lot of fun. Experiment, look for new 
methods to solve a particular problem. You 
may find a better, faster way! Such as: 

Have the first instruction of the above 
routine located at the address of restart 
location 'X.' Modify the routine as il-
lustrated below and cut another seven per· 
cent off the execution time of the routine! 

32 
20 
20 
28 
20 
12 / 20 
20 

INP X 
NDB 
ADC 
LMA 
INL 
RTZ 
RST X 



PROM PROGRAMMING CONSIDERATIONS 

For readers who may not be familiar with 
t he abbreviation, a PROM is a PROGRAM-
MABLE READ-ONLY MEMORY element. A 
programmable read-only memory element is 
an electronic device that can be programmed 
with a program using a special instrument so 
that it contains a permanent program. Some 
PROM elements can be ERASED and repro-
grammed by using special instruments which 
are generally too expensive for the average 
user to have readily available. When the pro-
grams in such elements need to be changed it 
is generally necessary to send the device back 
to the manufacturer or representative for 
processing. 

The key feature that a READ-ONLY 
MEMORY element has over a RAM (read and 
write memory) device is that once a program 
has been placed in a ROM it is non-volatile, 
or permanent. A semiconductor RAM device 
will lose its contents if power is removed from 
the device. A ROM will retain the information 
placed in it if power is removed. Thus, the 
ROM is an ideal memory device in which to 
store programs that are permanent in nature, 
or that have frequent uses in a system where 
power may frequently be removed. It elimi-
nates the process of having to load programs 
back into memory when a computer system 
is initially powered-up for a period of 
operation . 

The key disadvantage of t he ROM is that 
the computer cannot alter the contents of 
those memory locations assigned to a ROM 
device. Thus one must take special pre-
cautions when designing programs that are to 
reside in a ROM device . 

For instance, one cannot use memory 
addresses in a ROM to store temporary 
pointers and counters for a program that 
needs to alter such pointers and counters 
during the program's operation. Similarly, one 
cannot use any such locations for any kind of 
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temporary storage of data or other temporary 
infonnation because, as just mentioned, the 
computer will not be able to write the in-
formation into the ROM! 

Thus, if a program is to be stored in a 
ROM, and it is necessary to use pointers and 
counters in a program (as wiil certainl y be the 
case in many applications), one should 
arrange the program to use CPU registers for 
those purposes . Or, to use addresses in 
memory that will contain RAM elements. 

A ROM element can be considered as a 
hardware memory element and as such, one 
of the first matters one should consider when 
planning on instailing ROMs in a computer 
system is where to assign the ROM elements 
in memory . A good rule of thumb is to place 
such elements at the upper extreme addresses 
available in the system. For instance , if one 
has an '8008' system capable of addressing up 
to 4 K of memory, (PAGES 00 through 17) 
it would be advisable in most cases to develop 
programs for ROM(s) that are on page 17, or 
if more pages are required for ROMs , to work 
downward from that address. (Most ROM and 
PROM devices can contain 256 eight bit 
words, or one page in a typical '8008' sys-
tem.) This allows all addresses below the 
ROM element(s) to be available as one con-
tinuous block of read and write memory. 
This is generally a more convenient arrange-
ment than, say, sticking a ROM element on 
page 10 in such a system , thus dividing the 
available addresses for RAM memory into two 
separate areas. 

Alternatively, one might want to consid er 
p lacing ROM e lements at the lowest avail-
able addresses for the system. and leaving the 
upper addresses available as one continuous 
block for RAM elements. However. unless a 
system is being designed to serve as a special 
function device, it is generally wise to not use 
a ROM on page 00 in an '8008' system , as it 



will occupy all the possible RESTART (RST) 
instruction locations! The exception to this 
would be if one deliberately wanted to have 
power-up routines that used the interrupt 
facility of the '8008' system in conjunction 
with a ROM to automatically go to a RE-
START location. The RST class of instruc-
tions, which use the special locations on 
page 00, are particularly useful commands 
with general purpose applicatio ns, as dis-
cussed elsewhere in this manual. One should 
consider their general purpose capabil ities 
carefully before deciding to restriCt them to 
a ROM application. 

The types of programs that are generally 
most suitable fo r placement on ROMs in-
clude: routines to assist getting a system o n-
line immediately following power turn-o n, 
such as I/O routines and program loaders, 
frequently utilized programs that one may 
not want to have to be bothered loading each 
time a system is started, or programs for 
dedicated applications. 

For instance, a user with an electronic 
typewriter might want to put a standard rou-
t ine to input and output information to the 
device (which could be called by general 
routines) and possibly a loader program that 
would enable the user to quickly load pro-
grams into RAM memory via a paper tape 
reader. In such an application, one might also 
have space on a PROM to include a simple 
program that would enable one to examine 
and modify memory locations using the 
electronic typewriter device. Thus, whenever 
power was applied to the computer system, 
one would instantly be in a position to load 
larger programs into RAM memory. Or, to 
immediately use an electronic keyboard to 

place information into RAM memory . With-
out a ROM, the user would have to use 
manual control methods to load a loader 
program or other routines into memory. The 
savings in time one can achieve by using a 
ROM to store start-up programs over having 
to use purely manual procedures can be well 
worth the cost of a ROM or PROM device. 

However, a user who desired to develop 
such a package for storage on a ROM device 
would have to be particularly careful when 
developing the I/O routine if such a routine 
requ ired real-time programming consid-
erations, such as a timing loop. For instance, 
the reader who has read the previous chapter 
will realize that if the computer program itself 
will control the actual operation of a device 
such as an electronic typewriter, and timing 
loops are established to control the precise 
time at which events will occur, that the 
actual timing required to properly operate a 
device will be a function of the device being 
controlled as well as the timing in the com-
puter itself. The accuracy at which such 
timing must be maintained is a function of 
the accuracy of the timing in the computer 
system and the device itself. This accuracy 
may vary between different units. If a fixed 
timing loop was programmed into a PROM, 
and at some later data the external device was 
replaced with a different one, or the timing of 
the computer was adjusted, the original 
timing loop might be made invalid . Thus, in 
such an application it might be wise to place 
the actual data value that is to control the 
timing loop in a RAM location, and then have 
the program in the PROM access that value, 
which would be manually inserted by the 
operator, rather than having the value fixed in 
the PROM. The following two subroutines 
will help clarify the point. 

PROM PROGRAM WITH A FL,,(ED TIMING LOOP VALUE 

TIME, 
TIMER, 

LOIlOO 
CAL DUMMY 
OCD 
RTZ 
JMP TIMER 

Set timing loop counter 
Delay subroutine 
Decrement timing loop counter 
Exit subroutine when time delay done 
Otherwise continue timing loop 
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PROM PROGRAM WITH CAPABILITY TO ALTER TIMING LOOP VALUE 

TIME, LHI XXX 
LLI YYY 
LDM 

Set pointer to RAM location where 
Timing loop counter stored 
Set timing loop counter value 

TIMER, Same as previous routine 

The second routine illustrated above 
assumes that the CPU memory pointer regis-
ters will be setup to point to a location in 
RAM memory where the actual loop counter 
value will have been placed by the operator. 
While the method necessitates the operator 
having to set the proper value into RAM 
memory before using the program in the 
ROM, it avoids the problem of having a use-
less program in the ROM if a timing value 
must be altered at some future date. It should 
be apparent that this kind of scheme can be 
applied to any similar situation where a value 
used by a program might conceivably need to 
be altered. 

If, for some reason, one did not want to 
have to dedicate a location in RAM memory 
for a variable value in such a routine, there is 
still another trick that can save the day in 
such a situation . The operator could man-
ually load the D register in the CPU prior 
to using the above type of subroutine (or 
have an external routine in RAM memory 
perform the same function before using the 
routine). In that case, one could eliminate 
the portion of the above routine labeled 
TIME and simply use that portion labeled 
TIMER. 

A good rule of thumb to apply when con-
sidering the use of ROM in a system is to 
tailor the program for compactness . After 
all , the more routines or subroutines one 
can store on a PROM, the more useful the 
device will be. Make every effort to save 
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memory space by judicious use of sub-
routining, with multiple entry points if 
applicable, and by use of program loops. 
An earlier chapter stressed the concepts and 
provided guide lines and formulas for cal-
culating when such techniques are appli-
cable. One should figure on spending some 
extra time when developing programs to 
be stored on ROMs in order to look for 
ways to save memory space. Try to use 
every available location on a PROM. After 
all, any unused locations will be permanen-
tly wasted. If one finds one has some room 
left in a PROM after one has placed the 
programs required to be on the device for 
a particular application, consider the pos-
sibility of tucking in a few small routines 
that would have general usefulness. Such 
subroutines as SWITCH, ADV, and CNTDWN 
which were presented and used frequently 
in examples throughout this publication 
are typical kinds of generally useful sub-
routines that one might consider having on 
a ROM rather than wasting locations. These 
types of routines would then always be 
available in the system for use by programs 
residing in RAM memory. 

Above all, however, once one has devel-
oped routines for a PROM, one should 
thoroughly CHECK and TEST the program(s) 
to make sure they are absolutely operating 
as intended. It is a bit costly to have to make 
a program patch on a read-only memory 
element! 



CREATIVE PROGRAMMING CONCEPTS. 

Once one has become familiar with the fun-
damental aspects of machine language pro-
gramming. Once one is familiar with the 
mnemonics that represent the machine 
language commands and can mentally think 
of the functions that those mnemonics repre-
sent. Once one has learned how to formalize 
and plan out a program, understands flow 
charting, and memory allocation or mapping. 
Once one has had some practice at developing 
algorithms and com bining smaller algorithms 
into fuB sized programs by subroutining. 
Once one is familiar with setting up pointers, 
counters, forming program loops, utilizing bit 
masks. Once one has a feel for organizing data 
for tables, and understands how data can be 
sorted . Once one understands how mathe-
matical information may be processed by t he 
computer. And, once one knows how to get 
data into and out of the CPU from and to 
som e external device. For example, once one 
has spent a little time studying the aspects of 
machine language programming a computer , 
as one will have done by reading (and hope-
fuBy learning') the information presented 
in the preceeding sections of this manuaL 
Then, one should be in a position to under-
stand and appreciate the t rue potential of a 
digital computer when its power is unleashed 
under the auspices of a creative programmer. 
That is when one can really start having fun 
creating and developing completely original 
programs to perform myriads of personally 
desired functions. This is the point at which 
one may take a broad view of the immense 
capability of the machine by standing back 
and pondering some scenes , much the wayan 
artist would ponder a blank canvas before 
starting to paint a concept or image that 
existed purely in the artist's mind. The dis-
cussion that follows merely presents some 
ways in which to view the capability of a 
digital computer. Some points of view that 
may help programmers approach program-
ming tasks with creativity. No great magic is 
claimed for the ideas presented. No guarantee 
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is made that the points of view will inspire 
everyone to greater programming creativity 
or ability. But, it is known that the views 
presented have helped at least one program-
mer to create countless programs, some of 
which others had claimed couldn' t be done 
on a small machine, and solve numerous 
programming problems, while having a lot of 
fun, and quite often saving a lot of time! 
Thus, the ideas w,iB be presented in the hopes 
that perhaps a few others will benefit a little, 
or a lot . 

It must be admitted that to some readers 
the concepts discussed in this section might 
seem trivial at first glance. Perhaps the reason 
some people initiaBy see the concepts as 
trivial is because they are profoundly broad, 
and to some lucky people, perhaps instinc-
tively obvious. However, most readers will 
probably find the concepts grow as one does 
more and more programming, until one day 
the reader discovers a profoundly simple way 
to handle a programming problem based on 
a variation of one sort or another of the con-
cepts presented in this section . 

For what they are worth , the concepts to 
be presented will be discussed in three parts. 

THE ONE DIMENSIONAL VIEW 

The underlying principal in this entire dis-
cussion on creative programming is to le£lVe 
out the details of the operation of the CPU 
and its associated registers. It is known tbat 
the CPU and the associated registers can do 
a whole host of specific operations, mathe-
matical, Boolean logic , execute conditional 
branches and whatever. These functions will 
be taken for granted in the following dis-
cussion. What is important in the present 
situation is to realize that the power of the 
computer is in its memory. The CPU obtains 
its instructions from memory , and the CPU 



is able to manipulate information in memory. 
The CPU is able to access a particular word in 
memory, in the case of an '8008' system, by 
pointing to the address using the H & L re-
gisters. F or each specific address there is a 
specific word in memory that contains eight 
binary bits. 

One way to view organization of memory is 

to think of memory as being one long line of 
words, stacked one after the other. In fact, 
this is the way virtually any machine language 
programmer first starts thinking of memory 
because of the simple way in which each 
memory address corresponds to a word in 
memory, and memory addresses are simply 
a series of consecutive words. 

************************************************** 
* ADDR NO. N * MEM WORn NO. N * 
************************************************** 
* ADDR NO. N + 1 * MEM WORn NO. N + 1 * 
************************************************** 
* ADDR NO. N+2 * MEM WORn NO. N + 2 * 
************************************************** 

************************************************** 
* ADDR NO. N+X * MEMWORD NO. N+X * 
************************************************** 

Thus one can consider memory as simply 
heing one long string of locations that may be 
filled with whatever information is desired in 
a serial sequence . If one were to fill each 
memory word with a code that symbolized 
a letter or digit, or punctuation symbol, one 

N o w 
ADDRN ADDR N+l ADDR N+2 

Or, one could place mathematical values 
in memory locations, separate those values by 
operator symbols, and process columns of 
mathematical data . (Assuming in this strict 
case that the values were small enough to be 
stored in one memory word.) 

ADDR N 
ADDR N+1 
ADDR N+2 
ADDR N+3 

+100 
MINUS 

- 50 
EQUAL 

Or, the contents of memory words may be 
used to sym bolize just about any abstract 
item that the programmer might desire. The 

could proceed to fill a string of memory lo-
cations with English (or French , or German, 
or whatever) words, and go on to form sen-
tences, and by using other codes, to separate 
sentences into paragraphs. 

SPACE I S 

ADDR N+3 ADDR N+4 ADDR N+5 
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programmer need simply form a code that the 
programmer desires to have symbolize some-
thing. 

ADDR N 
ADDR N+l 
ADDR N+2 
ADDR N+3: 
ADDR N+4: 
ADDR N+5: 

SYMBOL FOR APPLES 
SYMBOL FOR PEARS 
SYMBOL FOR BANANAS 
SYMBOL FOR CHERRIES 
SYMBOL FOR LEMONS 
SYMBOL FOR BELLS 

The reader should realize here that the con-
cept being presented is concentrating on how 
memory is utilized for handling data or in-
formation. It is taken for granted that a por-



tion of memory will be used for the actual 
operating program that controls the mani-
pulation of the memory that is being used for 
the data_ Thus, in the previous examples, one 
must realize that an operating program will 
place the codes for letters or digits, punc-
tuation marks , spaces, and so forth, and per-
form whatever processing is desired _ An 
operating program will take the values given 
in the mathematical example and interpret 
the symbols and perform the desired func-
tions . And, an operating program in the third 
example would recognize a particular code to 
mean apples, and print or display the entire 
word (or picture!) when it interpreted that 
code. The primary point being made is that 
the data is organized as a long line of infor-
mation. That line of information can be 
arbitrarily split up into many parts, and pieces 
of the line be considered as forming one parti-
cular section, as in the case when one English 
word is formed from a series of letters. The 
long line is simply formed and locations along 
the line are marked by a memory address. 

However, and this the creative programmer 
should take particular note of, the fact that 
locations are marked along the line by mem-

ADDR N APPLE ADDR N+X+1 
ADDR N+1 PEAR ADDR N+X+2 
ADDR N+2 CHERRY ADDR N+X+3 
ADDR N+3 BANANA ADDR N+X+4 
ADDR N+4 LEMON ADDR N+X+5 
ADDR N+5 BELL ADDR N+X+6 

One could develop algorithms to spin the 
memory pointer around each ring and ran-
domly come to a stop at a location within 
each ring. The results of events in all 
three rings could then be processed to de-
termine whether one hit a jackpot or missed. 
The details of such a program will be left to 
the creative programmer, but the concept of 
how one could approach such a simulation 
project is hopefully clear. 

Finally , to take the one dimension view a 
little further, one can go down to the bit 

ory address can be transformed by the pro-
grammer so that memory addresses essentially 
stand for any arbitrarily assigned marker. In 
other words, to the programmer, memory 
address number N can correspond to time T, 
or distance D, or point Z. Thus, one can store, 
say, the value of the amplitude of a signal at 
time T in one location, the value at time T+T 
in the next location, the value at time T+2T 
in the next location. Furthermore, it should 
be apparent that T can be scaled as desired 
by appropriate programming so that T repre-
sents one microsecond , or millisecond, or 
second, or a year! 

Furthermore, one can actually go beyond 
the point of considering the locations to be a 
long straight line, by considering the possi-
bility of manipulating the line of locations 
as a piece of string . One can figuratively cut 
the piece of string at any desired location and 
form the string into a ring or circle. This is 
easily accomplished by simply having the 
memory address pointer go back to location 
N when it reaches location N+X. Consider the 
possibility of doing such an operation with 
three sections of the line , and using the tech-
nique to simulate a one armed bandit mach-
ine : 

PEAR ADDR N+2X+1 BANANA 
BANANA ADDR N+2X+2 LEMON 
LEMON ADDRN+2X+3 APPLE 
BELL ADDR N+2X+4 Bell 
CHERRY ADDR N+2X+5 PEAR 
APPLE ADDR N+2X+6 CHERRY 

level. Since a memory word in an '8008' 
system actually consists of eight individual 
bits, one could consider memory to be a long 
list of 'l 's' and 'O's.' Each memory location 
contains eight bits, and by using consecutive 
memory locations one can build up long 
strings of bits. Again, the string can be broken 
at any desired point and manipulated as de-
sired. This technique can be used , say, to 
simulate a huge shift register (using rotate in-
structions), or to represent an event occuring, 
or not occurring at points in time, or at dis-
tances along a line . In this view, a bit is ad-
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dressed as being at a specific position within 
a specific memory address location. While 
the programming overhead to manipulate 
such data will general ly be more complicated 
than the case where entire memory words are 
used to represent a symbol or piece of data, 
one can see that the basic concept of con-
sidering all bits in memory as being formed of 

one continuous line of ones and zeros , is a 
valid, and often useful, image . 

THE TWO DIMENSIONAL VIEW 

The concept of viewing memory as a two 
dimensional plane will be started by con-
sidering an image at the bit level. 

ADDR N 

ADDR N+X 

ADDR N * ADDR N+X+1 * ADDR N+2X+1 

1 '1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 1 0 0 000 0 0 0 0 0 1 
101 0 0 0 0 0 0 0 1 0 1 0 0 000 0 0 101 
100 1 0 0 0 0 0 1 000 1 0 0 0 0 0 1 0 0 1 
1 000 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 000 0 1 
1 0 0 0 0 0 1 0 0 0 0 1 0 000 1 0 0 0 0 0 1 
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 
1 0 001 0 0 0 0 0 0 1 0 0 0 0 0 0 1 000 1 
100 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 
1 0 1 0 0 0 0 1 1 1 111 1 1 1 000 0 1 0 1 
100 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 
1 000 1 0 0 0 0 0 0 1 0 000 0 0 1 000 1 
10000 1 000 0 0 1 000 001 0 0 0 0 1 
100 001 000 0 0 1 0 0 0 0 0 1 000 0 1 
1 0 000 0 1 0 0 0 0 1 0 000 1 0 0 0 0 0 1 
1 0 0 0 0 1 0 1 0 0 0 0 0 001 0 1 0 000 1 
1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 000 1 000 1 
100 1 0 0 0 0 0 1 000 1 000 0 0 100 1 
101 0 0 0 0 0 0 0 1 0 1 0 0 0 0 000 1 0 1 
1 000 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ADDR N+X * ADDR N+2X * ADDR N+3X 

The above diagram illustrates an image 
created by the status of the bits in a plane of 
memory. The plane was established by essen-
tially taking lines of memory addresses (as 
presented in the one dimensional view) and 
placing them alongside one another to form 
a surface or plane. This convention would be 
established by the manner in which the pro-
grammer manipulated the memory pointer in 
the CPU. In the above illustration the p lane is 
established at the most fundamental (and 
complex) level, and bits within each word are 
manipulated. As may be observed in the 
above diagram, one can view and manipulate 
bits in memory so as to form pictures or 

diagrams_ The above represents a rectangle, 
a diamond, and a cross as an image made up 
of appropriate ones and zeros in selected bit 
positions. One could manipulate portions 
of memory to represent pictures . (Or charts, 
graphs, plots!) The degree of detail which one 
can obtain by such manipulations is a func-
tion of how many bits are used to represent 
a given area of a real (or proposed real) ob-
ject. The above example presents all kinds 
of possihities for the creative programmer. 
One can use such techniques to form models, 
create patterns, and so forth. 

In fact, going the other way so to speak, 
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that is from having the computer generate 
patterns or objects, one can also take the two 
dimensional concept and apply it towards 
having the computer recognize objects by 
projecting their shape or form as a similar 
image of ones and zeros in memory. 

Much research is currently being con-
ducted towards developing algorithms that 
can recognize objects . One approach that is 
being studied is an interesting application of 
the two dimensional concept. A picture of an 
object is mapped into memory with '1 's' 
being used to represent the area occupied by 
the object, and 'O 's' for areas outside. Then, 
the computer is trained to identify objects 
by using algorithms based on a neighboring 
bits scheme . In this manner, the computer de" 
termines how many 'D's' surround a '1,' and 
performs calculations to find the outline and 
shape of the object. These findings are then 
coupled with complex algorithms to attempt 
to identify the object from a class of possibil-
ities. 

Such programs are of course quite complex 
and the details of such manipulations are 
somewhat esoteric. But, the idea is intrigueing 
and can provide fertilization for the creative 
programmer's imagination. 

N N+X N+2X 

N 060 065 070 

N+1 061 076 084 

N+2 062 078 088 

N+3 062 078 090 

N+4 055 070 075 

N+(X-1) 040 035 020 

N+3X 

075 

083 

098 

102 

053 

010 

Taking the two dimensional view to the 
memory word level is perhaps a bit less com-
plicated (it is! it is!) than considering it at the 
bit level. In this case, one needs only envision 
a plane of memory words which can contain 
codes for letters, numbers, symbols, or actual 
mathematical values. The reader has already 
seen examples of programs that could be con-
sidered as two dimensional in organization. 
One, for instance , was described in chaoter 
four in the presentation of the names sorting 
program. There, lines of names were formed 
one beneath the other in order to make the 
sort routine easier to program. One might re-
view the diagram showing the sample names 
stored in memory as they relate to the 
memory addresses, which was presented near 
the end of chapter four . 

The programmer is again reminded that as 
in the one dimensional view, the memory 
addresses that form the X and Y boundaries 
of a two dimensional memory plane can 
actually be thought of as arbitrary units, such 
as time, frequency, or distance , and the pro-
grammer also has the freedom to scale both 
the X and Y boundaries by appropriate soft-
ware. The next illustration shows how an 
altitude map of a geographical area might be 
stored in a plane of memory . 

N+4X N+5X N+6X 

074 070 064 500 YDS 

080 076 070 400 YDS 

096 091 082 300 YDS 

101 089 072 200 YDS 

047 063 039 100 YDS 

011 009 008 o YDS 

o YDS 100 YDS 200 YDS 300 YDS 400 YDS 500 YDS 600 YDS 

In the above illustration each memory 10- elevation of a piece of land. The top and left 
cation contains a value that represents the side of the illustration shows the actual mem-
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ory addresses in the computer while the 
bottom and right side illustrate that each 
address actually stands for 100 yards dis-
tance. It should be apparent that the eleva-
tion factors cou ld be, instead, inches of rain-
water, or a temperature profile for the area, 
or, as previously mentioned, that the yards 
can be almost anything else the programmer 

might desire to define. 

As a final example of the two dimensional 
concept, the reader will be left with the fo l-
lowing diagram, which hopefully, will en-
courage one to consider the possibilities for 
much more complex board games. 

.N N + X + 1 N + 2X + 1 

N x * 
* 
* 

a * 
* 
* 

X N + 2X + 1 

************************** ***** ****** 

N + 1 a * 
* 
* 

X 
* 
* 
* 

a N + 2X + 2 

************************************* 

N+X a 

N+X 

* 
* 
* 

Finally, the reader will be reminded, that in 
a manner similar to forming a ring as discus-
sed in the one dimensional view, one can also 
consider forming a cyclinder out of a p lane 
with interesting ram ifications. 

THE THREE DIMENSIONAL VIEW 

It shou ld be apparent that if o ne can set up 
memory locatio ns by appropriate addressing 
to represent Ii"es and planes, one can extend 
the principle out to the third dimension to 
form cubes of memory. There are many in-
teresting possib ilities when memory is viewed 
in th is manner. One can plot th ree dimen-
sional graphs or vectors. One can approach 
many types of modeling and manipulate such 
models so as to obtain different cross-sec-
tional views. 

As in the case of the one and two d imen-

X 
* 
* 
* 

X N + 3X 

N + 2X N + 3X 
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sional images, the programmer can substi-
tute (effectively) memory addresses for 
special scale factors, now along three axis. 
And, as in the previous examp les, one can 
take such manipulations down to the bit 
level if desired. 

A diagram on the following page presents 
an image of memory when viewed as a three 
dimensional working area. 

It is hoped that by this time the reader has 
received sufficient information on the prac-
tical aspects of machine language program-
ming from the preceeding chapters, and that 
this concluding chapter has provided some 
st imulating concepts, so thilt the reader may 
go on to develop programs that will be of 
particular value to the individual. It is also 
hoped that those who have been introduced 
to the subject by this manual will find 
machine language programming an exciting, 
enjoyab le, and in as many ways as Dossib le, 
a rewarding endeavor! 



 

N 

N+l 

N+2 

N+3 

N+X 

// ./ ./ ./ ./ / 
L/ /' ./ ./ ./ ,/ 
/.// ./././ /v 

,/ '/X./ ./ ./ ./ /'" /)1. 
X VV;-V 

x ]I. ,/l-;' /V 
x /V/V 

oX )( 

V ... 
........ 

N+X N+2X N+3X N+4X N+5X N+6X 

THREE DIMENSIONAL VIEW OF MEMORY 
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4(N+6X) 
3(N+6X) 
2(N+6X) 

(N+6X) 


