
.ADPIE DOS
and Pieler Lechner SOFTWJlRE

r ,
I ,
I • I

Fourth Printing. May t 982

By Don Worth and Pieter Lechner

A product of
aUJlUTY SOFTWJlRE
6660 Reseda Blvd ., Suile 105 xi 'L

Reseda, CA 91335 I .N ..

Fachhochschulbibliofhek Niederrheio
Abt. Mond ng!odbach

DISCLAIMER
Quali ly Sollware shall haye no liability or re5ponslbilily \0 Ihe

purchaser or any olher person or entity Wilh respect to any liabili' y,
loss or damage caused or alleged to be caused directly or indireclly
by Ihis manual or lis use, Inc luding bot not hm lled to any Interru!>"
lion in service, loss 01 business and antic ipatory protils or
consequenllal damages rHulling Irom lhe use 01 this product.

COPYRIGHT <>1981 BY QUALITY SOFTWARE
This manual is published and copyrighted by Quali ty Sollware.

All rights are reserved by Quality Sollware. COPYing, duplicating.
seil ing or otherwise d istribUling this producl IS hereby expressly
lOfbklden except by pr ior wnllen consent 01 Quali ty Sollwar • .

The word APPLE and the Apple logo are regIstered trademarkS
01 APPLE COMPUTER, INC.

APPLE COMPUTER, INC. was not in any way Involved In the
Will ing or Olner preparation 01 this manual, nor were the lacls
j)fetented here reviewed lor accuracy by that company. Use oltha
hum APPLE shOuld not be construed 10 represen' any endor
mt)(It , olll(lal Of" otherwise, by APPLE COMPUTER. INC.

1 I 1 '1

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 THE EVOLUTION OF DOS
0053
OOS 31
OOS 3.2
DOS 3.2 1
DOS 3.3

Chapter 3 DISKETTE FORMATTING
TRACKS ANO SECTORS
TRACK FORMATTING
DATA FIELD ENCODING
SECTO A INTERLEAVING

Chapter 4 DISKETTE ORGANIZATION
OISKETTE SPAce ALLOCATION
THE VToe
THE CATALOG Us J\ 0 THE TRACK/SECTOR LIST
TEXT FilES
BINARY FILES
APPlESOFT AND INTEGEA FILES
OTHER FILE TYPES
EMERGENCY REPAIRS

Chapter 5 THE STRUCTURE OF DOS
OOS MEMORY USE
THE OOS VECTORS IN PAGE 3
WHAT HAPPENS DURING BOOTING

Ch.p'''. USING DOS FROM ASSEMBLY LANGUAGE
OlReCT USE OF THE DISK DRIVE
CALLING AEAOIWRITE TRACK/SECTOR IAWTS)
AWTS lOB BY CALL TYPE
CALLING THE OOS FILE MANAGER
FilE MANAGER PARAMETEA LIST BY CALL TYPE
THE FILE MANAGER WORK AREA
COMMON ALGOAITHMS

TABLE OF CONTENTS

ChOp'O,7 CUSTOMIZING DOS
SLAVE VS. MASTER PATCH ING
AVOIOING RELOAD OF LANGUAGE CARO
INSERTING A PROGRAM BETWEEN OOS AND ITS BUFFERS
8 AUN OR EXEC A HELLO FILE
REMOVING THE PAUSE DURING A LONG CATALOG

Chop"'S DOS PROGRAM LOGIC
CONTROLLER CARD ROM - BOOT 0
FIRST RAM BOOTSTRAP LOADER - BOOT 1
OOS 3.3 MAIN ROUT INES
OOS FILE MANAGER
REAOIWRITE TAACK/ seCTOR
OOS ZERO PAGE USE

Append'. A EXAMPLE PROGRAMS
TRAC K DUMP PROGRAM
D ISK UPDATE PROGRAM
REFORMAT A SINGLE TRACK PROGRAM
FINO TAACK/ SECTOR liSTS PROGRAM
BINARY TO TEXT FILE CONVERT PROGRAM

Append' •• DISK PROTECTION SCHEMES

Append' . C GLOSSARY

Indell

ACKNOWLEDGEMENTS

Th,nks go to ViC Tolomei IOf h is ,",Slance in di'Me, lng D05 3 I.oct to lou Rlyas 'Of hili
pllient proofreading Thlnkl liso 10 my wlle Carley lor pulling up wilh the cllICkely clack 01
my Diablo long Into the nlghl.

Don 0 Wor1h

TNinks to !he people It Computer'and 01 Sooth Bay (CAlhlornl') wM lent me syppot'l
bOth o l lheirl ime and equIpment. arid speci.1 th.nk,loJohn 00111.1$0. whoseencour.gement
helped me to complete Ihe 'ask

BAG OF TRICkS
A Supet' DI" UtNlty by the Authors oj 8_.th OOS .3
1/ you linG BENEATH APPlE OOS 1.1"'1.11, you iIoI'IOuIO allo find BAG OF TRICKS an Impo,,.nl
help In ... mlnlng .nd up ";'OUr di "".
BAG OF TRICKS I, I package ollouf mlehlno .",brO\ll lntt wh!eh go I., beyond thl
.... mpte prOOf.tnt In AppendiI A 01 tl'ris tIOOII . Ute< frleOOly and _II aocurMntld. dl'k

'- undoubtedly the besl one ,w"Jlble'or m. Apple II, " !he low prIc.

The 1000f prog,.ml and thel, lunelions .ra:
I TRAX durnjM .nd ... "" "'11' !tICk. -'1!let t l-MeIOf Of .8-Mc:IOf. d ltpllp tne Inter".!

Apple d ,p.". !Otll'lllthng InfOfll'lllllOtl,:j ". exception' to , .. nOIIrd formalS
2 INIT ... ,11 ,.IOtIl'lllI one Ot fIlOI" tr.cU on dl n., ... hile Inempling to Pf_ Iny atl on ,!\em. Both 13-MeIOt Ind l 6-MelOt IOtm,1S 1'1 Iuppoflld
3. ZAP pro¥idn IhtI buIc capabihly to f'IIId. Ind uPCIIII di,kln. MeIOfi Mo,. thin

50 eomtnllldt _ IVI,lebie 10 " IIIe u_ In Ioc:Iting. COInpII"ng, Ind chlngitlg tnedl"
Of! the d,1io;1'I11 Prinler IUppofl. 100. You won'I "-lieve now mlny UMlul OPIioM ZAP ha,

.. flllCAT lutomttMth, P'o(;M,ol 'eeo 'ng .d.mIlgldClI.logtrlC. TII.ditloetl.etnOfo
lOt trac. HCtor h then ,,,. UHf can .uIgn.".me to """ound Irf flllCA

and '"lOtI IhenIIO the CI"1og En",. ClI ... mIIy be , .. tOtId In tllll,..
II you hive _ "-d • ditlo c,ull, you know ... h.\. good dilk II wortll. e.gln,.,.,. ... ,11
.pprecilot. tile "hind-hOldIng" IUIOtIaII Ihll ... 11I.u,.1 h im In repairing hll CllmII!JId d i " H •
.....:j trtl ."panenc.ct 11 .ppreelol'- now lut INtily ne can perIorm .f'I.Ilpll and
r.palfl
BAG Of TAICI<S ,eq ... J'M I .81< Apple II Ot Appl. \I Plu • .

CHAPTER 1
INTRODUCTION

i)cne!'th Apple OOS is intended to serve as a companion to
A.pple ' s DOS Manual , providing additional information for the
advanced programmer or the novice Apple use r who wants to
know more about the structure of diskettes. It is not the
Intent of this manual to replace the documentation provided
bV Apple COlllputer Inc. Although, for the sake o f
continuity . some of the material covered in the Apple manual
I . also covered here , it will be assumed that the reader is
re.aonably familiar with the contents of the DOS Manual .
S ince all chapters pr e sented here may not be of use to each
Apple owner, each has been written to stand on its own .

The information pres ented here is a result of intens ive
disassembly and annotation of var ious ver s ions of DOS by the
au tho r s and by other experienced sys tems programmers. It
also draws from application no te s , articles, and di sc ussions
with knowledgeable people. This manual wa s not prepared
with the assistance of Apple Computer Inc . Although no
guarantee can be made concerning the accuracy of the
Information presented here , all o f the material included in
o nea th Apple DOS has been thor oughly researched and
tested .

There were several reasons for wr iti ng Beneath Apple DOS:

TO show direct assembly language access to DOS.
To help you to fix clobbered diskettes .
TO correct crrors and omissions in the Apple documentation.
TO allow you to cus t omize DOS to fit your need s .
TO provide complete i nfo r mation on diskette formatting .

I NI., WUE SEVEMl fIfAS(ljS "BENEATH API'lE ,-,

When Apple Computer Inc . introduced its Disk Operating
System (DOS) version 3 in 1978 to support the new DISK II
drive , very little documentation was provided. Later , when
DOS 3 . 2 was released , a 178 page instructional and refe r ence
manual became available covering the use of DOS from BASIC
in depth and even to uched upon some of the internal wor king'
of DOS. With the advent of DOS 3 . 3 , the old 3 . 2 manual waa
updated but the body of information in it remained
essentially intact . Beyond these Apple manuala, there have
been no significant additions to the documentation on DOS ,
apart from a few articles in APPLE user group magazines and
newsletters . This manual takes up where the Disk Operating
System Manual leaves o ff .

Thr oug ho ut this manual , discussion center s primarily on DOS
version 3 . 3 . The reasons for this are that 3. 3 was the most
recent relea se of DOS at the time of this writing and that
it differs less from DOS 3 . 2 than o ne would imagine .
Wherever there is a major difference belween the various DOS
releases in a given topic, each release • • 11 be covered .

In addition to the DOS dependent information provided , many
of the discussions also apply to o ther operating systems on
the Apple II and Apple III . For example, disk formatting at
the track and sector level is , for the mos t part, the same.

14

I ,
1

CHAPTER 2
THE EVOLUTION OF DOS

Since its introduction , Apple OOS has gone through three
major versions . All of these versions look very much the
same on the surface . All commands supported by 005 3.3 are
a180 supported in 3 . 2 and 3 , 1 . The need for additional
versions has been more to fix errors in DOS and to make
.t nor enhancement s than to provide additional
functionality . Only DOS 3.3 has offered any major
improvement in function; an increase in the number of
sectOrs that will fit on a track from 13 to 16 .

DOS 3 • 2t June 1978
DOS 3.1 - 20 July 1978
The first release of DOS was apparently a victim of a rush
at Apple to introduce the DISK II . As such , it had a number
of bugs . With the movement towards the APPLE II PLUS and the
introduction of the AUTOSTART ROM , a new release was
needed.

DOS 3.2 • 16 Febru.ry 1979

Although OOS 3.2 embodied more changes from its predecessor
than any other release of OOS , 9o, of the basic st r ucture of
OOS 3 . 1 was retained. The major differences between DOS 3 . 1
and 3 . 2 and later versions of OOS are listed below:

- NOMON C,I,O is the initial default under DOS 3 . 2 . MON
C , I,O was the default under DOS 3.1 .

- Input prompts (> , 1 , *) are echoed when MON 0 is in effect ,
not under MON I as was the case under 3 . 1 .

- When a DOS command was entered from the keyboard , OOS
executed it and then passed a blank followed by a carriage
return to BASIC under 3 . 1 . Under 3.2 only a carriage
return is passed.

- Under 3 . 2 , certain commands may not be entered from the
keyboard but may only be used within a BASIC program
(READ , WRITE , POSITION , OPEN , APPEND).
Under 3 . 2 , when LOADing an APPLESOFT program , DOS
automatically converts from APPLESOFT ROM format to
APPLESOFT RAM format if the RAM version of BASIC is in use
and vice versa .

- DOS 3.1 could not read lower case characters from a text
file; DOS 3 . 2 can.

,-,

- Some OOS co .. ands are allowed t o create a new file, other .
will not . Under OOS 3 .1, any reference to a file that
didn 't exist, caused it to be created . This forced OOS 3 . 1
to then delete it if a new file was not desired . (LOAD XY Z
under 3 . 1 if XYZ did not exist , created XYZ , deleted XYZ,
and then printed the file not found error message .) Under
3 . 2 , OPEN is allowed to create a file if one does not
e xist , but LOAD may not.

- Under 3 . 1, exiting to the IDOnitor required that the
MOnitor status registe r location ($48) be set to zero
before reentering OOS . Under DOS 3.2 this is no longer
nece •• ary.

- The Read/Write-Track / Secto r (RWTS) section of DOS disable.
interrupts while i t is executing. Unde r 3 . 1, RWTS could be
interrupted by a peripheral while writing to a disk,
destroying the disk .

- The default for the 8 (byte offset) keyword ts 0 under
3 . 2 .

- DOS was reassembled fo r 3 . 2 causing most of it.
interesting locations and routines to move slightly. This
played havoc with user programs and utilities which had
DOS addressea built into them .

- Additional file types (beyond T, I, A, a nd B) a r e defined
with in DOS J . 2, althoug h no commands yet support the • . Th.
new types are S , R, a new A, and a new B. R has
aubsequently been used by the DOS TOOLK IT fo r relocatable
objec t .odule assemble r files . At present , no other uae
ia aade of these extra file types.

- Support was added unde r 3 . 2 for the AUTOSTART ROM.
- Al l tilea ope n when a di ak full condition occu rs are

closed by DOS 3 . 2 .
- As with each new release of DOS , several new programs were

added to the I114ster diskette for 3 . 2 . Among these wa s
UPDATE 3 . 2, a replacement for MASTER CREATE, the utility
for creating master diskettea . UPDATE 3 . 2 converta a a lave
into a .. ater and a llowa the HELLO file to be renamed.

001 3.2.1 • 31 July 1171

OOS 3.2.1 vas essentially a -maintenance cele ••• - of DOS
3.2. Minoc patches were .. de t o RWTS and the COPY progr ••
to correct a timing problem when a dual d r ive copy was don ••
Additional delaya vere added folloving a switch between
drivea.
2-2

I • I • I

DOS 3.3 - 25 AugUll1t1C1

Introduced in mid 1980 as a hardware/software upqrade f r om
OOS).2.1, the OOS 3.) package includes new bootstrap and
.ta t e ROM chips for the di s k controller card whi c h provide
the capabi lity to format, read , and write a diskette with 16
'ectors . (These ROMs are the same ones us ed with the
I.ANCUAGE SYSTEM .) This imp rovement repre s ents almost a 25'
Inc rease in available disk space over the old 13 sec tor
rorMat. Also included in the).) package is an updated
version of the OOS manual, a BASICS diskette (for 13 s ecto r
boots) , and a master di s kette . Although the RWTS portion of
OOS wa s almost totally rewritten, the rest of 005 was not
reassembled and on ly received a few patches:

- The initial 005 bootstrap loade r wa s moved to $800 under
3 . 1 . It was at $)00 unde r 3.2. In addition, as stored on
the diskette (track 0 sec to r 0) it is nibbilized in the
. ame way as all other sectors unde r).1 .

- A bug in APPEND which caused it to position improperly if
the file was a multiple of 256 bytes long wa s fixed under
) .1 .

- A VERIFY command is inter nally executed after every SAVE
or BSAVE under 1.1 .

- All • bytes are used in the Volume Table Of Con t e nt s
(VTOC) free secto r bit map when keeping track of free
s ectors . Thi s allows 005 to hand le up to)2 sec t o rs per
track. Of course , RWTS will on ly handle 16 secto r s due to
hardware limitations .
I f a LANGUAGE CARD is present, OOS s t ores a zero on it at
$EOOO during bootst rap to f orce the HELLO program on the
master diskette to re l oad BASIC .
OOS is read into memory from the top down (back wards)
under 3 . 3 rather than the bottom up . Its image is s t ill
stored in the same order on the ' diskette (tracks 0 , I, and
2) , however.
Additional programs added t o the master diskette under 3.3
include FlO, a generalized file util i ty which allows
individual files or groups of files to be copied, MUFFIN,
a conve r sion copy rou tine to allow 3 . 2 files to be moved
to 16 sector 3 . 3 di ske ttes , BOOT 11, a program wh ich will
boot a 13 sec t o r diskette , and a new COpy program which
will also support s ingle drive copies .
Unde r 3 . 2, s peed differences i n BOrne drives prevented
their use t oge ther with the OOS COpy prog r am. Because the
COpy p rog ram was rewritten under 1 . 3 , that r est r iction no
longer applies.

2-3

I

CHAPTER 3
DISKETTE FORMATTING

Apple excellent manual on the Oisk Operating
Sys tem (OOS) provides only very bas ic information about how
di s kettes are formatted. This chapter will explain in detail
how information is structured on a diskette. The first
aection will contain a brief introduction to the
and may be skipped by those already familiar with the DOS
manual.

TRACKS AND SECTORS

Por system hOUsekeeping, DOS divides di s kettes into tracks
and sectors. This is done during the
process . A track is a physically defined circular path
which is concentric with the hole in the center of the
diskette . Each track i s identified by its distance from the
center of the disk. Similar to a pho nograph stylus , the
read / write head of the disk drive may be pos itioned over any
given track. The trac ks are similar to the grooves in a
record , but they are not connected in a spiral . Much like
playing a record, the diskette i s s pun at a constant speed
while the data is read from or written to its surface with
the read/ write head. Apple formats its diskettes into 35
tracks , They are numbered from 0 to 34 , traek 0 being the
outer.ast track and track 34 the innermost . Figure 3 . 1
illustrates the concept of tracks , although they are
Invisible to the eye on a real di s kette .

--- --" ---. " " . (('0";'-"\'-'
, " \) \ \ 0' , , " , . , ",-0.-,'/ - -',,,'

'. , .-
FIGURE 3.1

\/
SECTORS

ONE TRACIt

3-1

It should be pointed out , for the sake of accu r acy , t hat the
disk arm can position itself over 70 · phases· . To move the
arm past one track to the next , two phases of the steppe r
motor , which moves the arm, must be cycled. This implies
that data miqht be stored on 70 tracks, rather than 35 .
unfortunately, the resolution of the read/ write head and the
accuracy of the stepper motor are such , that attemp t s to u ••
these phantom -half - tracks create so much cross- t a lk that
data is lost or overwritten . Although the standa rd DOS u •••
only even phasea , some protected disks use odd phases or
combinations of the two, provided that no two tracks are
closer than two phases from one another . See APPENDIX B for
more information on protection schemes .

A sector is a subdivision of a track . It is the smalleat
unit of ·updatable· data on the diskette . DOS gene r ally
reads or writes data a sector at a time. This is to avoid
using a large chunk of memory as a buffer to read or wr it.
an entire track . Apple has used two different track fo r.at.
to date. One divides the track into 13 sectors, the other ,
16 sector.. The sectoring does not use the index hole ,
provided on most diskettes , to locate the first sector of
the track. The implication is that the sof tware must be
able to locate any given track and sector with no help fro.
the hardware . Thi s scheme, known as ·soft sectorinq- , tak ••
a little more space for storage but allows flexibility, a.
evidenced by the recent change from 13 sectors to 16 sector.
per track . The follOWing table catagorizes the amount of
data stored on a diskette under both 13 and 16 sector
formats.

DISK ORGANIZATION
TRACKS

All DOS versions • . ••• .. ••• . 35

SECTORS PER TRACK
DOS 3 . 2 . 1 and earlier ••••• • ••••• 13
DOS 3.3 .• • . •• •• • • •• .•••••••• ••• • 16

SECTORS PER DISKETTE
DOS 3.2 . 1 and earlier • . ••• . •••• 455
DOS 3.3 ••• .•• ••• 560

BYTES PER SECTOR
All DOS versi ons ••••.••••• .. ••• 256

BYTES PER DISKETTE
DOS 3 . 2 . 1 and ear11er 116480
DOS 3 . 3•••.••.• •.••• . 143360

USABLE· SECTORS FOR DATA STORAGE
DOS 3 . 2.1 and ear1ier ••• .• • 403
DOS 3.3 • • •••••• •• •••••• . •• •••.. 496

USABLE· BYTES PER DISKETTE
DOS 3.2 . 1 and ear11er• •• 103168
DOS 3 . 3 •. • •• ••• .. ••••• •. •. .. 126916

3-2
• Excludes DOS. VTOC . and CATALOG

TRACK FORMATTING

Up to this point we have broken down the structure of dat.'
to the track and sector level . To better understand how
data is stored and retrieved , we will start at the bottom
and work up.

A. this manual is pri.arily concerned with software, no
attempt will be made to deal with the specifics of the
hardware. For example, while in fact data is stored as a
conti nuous stream of analog signals , we will deal with
discrete digital data, i.e. a 0 or a 1. We recognize that
the hardware converts analog data to digital data but how
thia ia acca.plished is beyond the scope of this .. nual.

Data bits are recorded on the diskette in precise
Intervals . For the purposes of this discussion, the
demarcation of these intervals will be depicted by a clock
bit . USing this representation , data written to and read
back fro. the diskette takes the form shown in Figure 3 . 2 .
The data pattern shown represents a binary value of 101.

a lTS ON DiSl(

FIGURE 3.2
C&.0CIl lIT'

I

Aa can be seen in Figure 3.3, the clock bits and data bits
(if present) are interleaved . The presence of a data bit
between two clock bits represents a binary I, the absence of
a data bit between two clock bit. represents a binary O. We
will define a -bit cell - as the period between the leading
edge of one clock bit and the leading edge of the next clock
bit.

A liT ClU

FIGURE 3.3

I - wrclU-1 .-
A byte would consist of eight (8) consecutive bit cells.
The most significant bit cell is usually referred to as bit
cel l 7 and the least significant bit cell would be bit cell
O. When reference is made to a specific data bit (i . e . data
bit SI , it is with respec t to the corresponding bit cell
(bit cell 51. Data is written and read serially . one bit at
• tl.. . Thus, during a write operation , bit cell 7 ot each
byt. would be written first, with bit cellO being written

3-3

last. Correspondingly , when data is being read back from the
diskette , bit cell 7 is read first and bit cellO ia r.ad
last . The diagram below illustrates the relationship of the
bits within a byte .

-------------------------,'"'-----------------
,

- -
FIGURE 3.4

To graphically show how bits are stored and retrieved, we
must take certain liberties. The diagrams are a
representation of what functionally occurs within the disk
drive . For the purposes of our presentation , the hardware
interface to the diskette will be represented as an eight
bit -data latch-. While the hardware involves considerably
more complication, from a software standpoint it is
reasonable to use the data latch, as it accurately embodies
the function of data flow to and from the diskette .

Figure 3 . S shows the three bits, 101 , being read from the
diskette data stream into the data latch . Of course another
five bits would be read to fill the latch . As can be seen ,
the data is separated from the clock bits. This taak is
done by the hardware and ia shown more for accuracy than for
ita importance to our discuasion .

Writing data can be depicted in much the same way (aee
Pigure 3.6) . The clock bits which were separated from the
data must now be interleaved with the data a8 it is
written. It should be noted that , while in write mode ,
zeroa are being brought into the data latch to replace the
data being written. It ia the task of t he aoftware to make
aure that the latch Is loaded and i nstructed to write in 32
cycle intervala . If not, zero bits will continue to be
written every four cycles, which is , in fact, exactly hOw
self-sync bytes are created. Self-sync by tea will be cove red
in detail ahortly .

3-4

flUOINO DATA FflOIl OISKIITTE

o .. t .. u,ta.!

IIIII
lIT STllf.UI ___ -'

I I

FIGURE 3.5

3-5

M'IIT INO DATA TD Dll.I(nTl
DA'.U.'CH

rl:C. oirl I)-

10(.101. 101. [0101 __ 0

10 1,101, 101, 10101

rl :C. II 1- 0)- rclL ________________ __

[01, 10 I, 1010 10 10 1_0

101.101,101010101

FIGURE 3.8

3 ..

A -field- is made up of a group of consecutive bytes . The
number of bytes varies , depending upon the nature of the
field . The two types of fields present on a di s kette are
the Addre s s Field and the Data Field . They are similar in
that they both contain a prologue, a data area, a checksum,
ft nd an epilogue . Each field on a track is separated from
ft d j ac ent fields by a number of bytes. The s e areas of
separation are called -gaps - and provided for two
r ea sons . One, they allow the updating of one field without
ftff ecting ad j acent fields (on the Apple, only data fields
ftre upda ted) . Secondly, they allow the computer time to
decod e the address field before the corresponding data field
can pass beneath the read/ write head.

Al l gaps ar e pr imarily alike in content, cons i s ting of
s el f -sync he xadec imal FF ' s , a nd va r y only in the number o f
bytes t hey conta in . Figu r e 3 .7 i s a d i agr am of a portion of
II typical track , broken into i t s major component s •

} -, = - , R" _ _. I"> • "
.<. " " " -. , . .- -
- I..:. I= I=H-- - 1 ::;'" 1- -"1- 1

/ ---- I I _- I 1 -_._-- '- _ " n -,-
FIGURE 3.7

Self-sync or auto - s ync bytes are s pec ial bytes that make up
the three different t ypes o f gaps on a track . They are so
named because o f their ability t o automatically bring the
hardware into sync hronizat ion with data bytes on the di s k.
The diffi culty in dOing this lies i n the fact that the
hardware reads bi ts and the data mu s t be stored as eight bit
bytes . It has been mentioned that a track is literally a
continuous stream o f data bits. In fac t, at the bit level,
there is no way t o determine where a byte s tarts or ends,
because each bit cell is exactly the same, written in
precise intervals with its neighbors . When the drive is
instructed to read data, it will s tart wherever it happens
to be on a particular track . That could be anywhere among
the SO , OOO or so bits on a track. Distinguishi.ng clock bits
from data bits, the hardware finds the first bit cell with
data in it and proceeds to read the following seven data
bits into the eight bit latch . In effect, It asaulles that
it had started at the beginning of a data byte. Of cou r se ,

3-7

in reality , the odds of its having started at the beginning
of a byte are only one In eight. Pictured in Figure 3.8 I.
a small portion of a track . The clock bits have been
stripped out and D' s and l ' s have been used for clarity.

AN EXAMPLE 81T STREAM ON THE DISK

011010111010110011110110111010 I

FIGURE 3 8

There is no way from looking at the data to tell what byte.
are represented, because we don't know where to start . This
is exactly the problem that self-sync bytes overcome.

A self-sync byte is defined to be a hexadecimal FF with a
special difference. It is, in fact, a 10 bit byte rather
than an eight bit byte. Its two extra bits are zeros .
Figure 3 . 9 shows the difference between a normal data hex FF
that might be found elsewhere on the disk and a self-sync
hex FF byte.

NORMA.L BYTE HEX FF SELF· SYNC BYTE HEX FF

FIGURE 3.9

A aelf-sync is generated by using a 40 cycle (micro-second)
loop while writing an FF . A bit is written every four
cycles, so two of the zero bits brought into the data latch
while the FF was being written are also written to the disk ,
making the 10 bit byte . (DOS 3.2 . 1 and earlier versions use
a nine bit byte due to the hardware ' s inability to always
detect two consecutive zero bits .) It can be shown, using
Figure 3.10 , that five self-sync bytes are sufficient to
guarantee that the hardware is reading valid data . The
reason for this is that the hardware requires the first bit
of a byte to be a 1 . Pictured at the top of the figure is a
stream of five auto-sync bytes . Each row below that
demonstrates what the hardware will read should it start
reading at any given bit in the first byte . In each
by the time the five sync bytes have passed beneath the
read/ write head, the hardware will be ·synched· to read the
data bytes that follow. As long aa the disk is left in read
.ode , it will continue to correctly interpret the data
unless there is an error on the track .

3-8

5 AUTOSYNC BYTES

, 00 , , 0 0 , , 0 0 , , 0 0 , "

I 00 , , 0 0 ,

, 0 0 , , 0 0 ,

,..!....!...!Lt. ' , 0 0 , , 00. ' !.J...!-L!.O 0

I 0 0 I '" ", I

FIGURE 3. '0

We can now discuss the particular portions of a track in
detail. The three 9aps will be cove red first. Unlike some
o ther disk f o rmat s , the size of the three 9AP types wil l
vary from drive to drive and even from track to track.
During the initialization process , DOS will sta rt with large
gaps and keep makin9 them smaller until an entire track can
be written without overlapping itself. A minimum of five
se lf-sync bytes must be maintained f or each gap type (as
discussed earlier). The result is fairly un ifo rm gap s izes
within each particular track.

3-9

Gap 1 is the first data written to a track during
initialization. Its purpose is twofold. The gap origi nally
consists of 128 bytes of self-sync , a large enough area to
insure that all portions of a track will contain data .
Since the speed of a particular drive may vary, the total
length of the track in bytes is uncertain, and the
percentage occupied by data is unknown. The initialization
process is set up, however, 50 that even on drives of

speeds , the last data field written will overlap
Gap 1, providing continuity over the entire physical track.
Ca re is taken to make sure the remaining portion of Gap 1 i a
at least as long as a typical Gap 3 (in practice its length
is usua lly more than 40 sync bytes) , enabling it to serve aa
a Gap 3 type for Address Field 0 (See Figure 3.7 for
clarity) •

Gap 2 appears after each Address Field and before each Data
Field . Its length varies from five to ten bytes on a normal
drive. The primary purpose of Gap 2 is to provide time for
the information in an Address Field to be decoded by the
computer before a read or write takes place. If the gap we r e
too short, the beginning of the Data Field might sptn past
while D05 was still determining if this was the sector to be
read. The 240 odd cycles that six self - sync bytes provide
seems a.ple time to decode an address field. When a Data
Field is written there is no guarantee that the write will
occur in exactly the same spot each time . This is due to
the fact that the drive which is r ewri ting the Data Field
may not be the one which originally INITed o r wrote it.
Since the speed of the drives can vary, it is possible that
the write could start in mid-byte. (See Figure 3 . 11) Tills h
not a as long as the difference in positioning is
not great. To insure the integrity of Gap 2, when writing a
data field , live self-sync bytes are written prior to
writing the Data Field itsell . This se rves two purposes .
Since relatively little time is spent decoding an address
field , the five bytes help place the Data Field near its

AOOAUI
fiELD

3·10

,
QAP,

, , , , , ,

NEW
DATA
FIUD

!
DATA ---t"

I I FIELD : -
NEW
DATA
fllLD

FIGURE 3.1'

GAP,

I ,
I ,
I ,
l ,
I • I ,
I ,
I ,
I ,
I ,
I ,
I

original position. Secondly . and more importantly , the five
self-sync bytes are the minimum number r equired to gUArantee
read-synchronization. It is prObable that, in writing a
Data Field, at leas t one s ync byte will be destroyed . This
is because , just as in read ing bits on the track, the write
.ay not begin on a byte boundary, thu s altering an existing
byte . Figure 3.12 illustrates this.

WRITING OUT OF SYNC

......

FIGURE 3.12

Gap 3 appears afte r each Data Field and before each Address
Field . It i s longer than Gap 2 and generally r anges from 14
to 24 bytes i n leng t h . It is quite simila r in purpose t o
Gap 2. Gap 3 allows the additional time needed to
manipulate the data that has been r ead before the next
sectO r is t o be read . The leng th o f Gap 3 is no t as
critical as that of Gap 2 _ If the fol l owing Address Field
Is missed , DOS ca n always wait for the nex t time it s pins
arou nd under the r ead/ write head, at most one revolution of
the disk . Since Address Fields are neve r rewritten, there
Is no problem with thi s gap providing synch r onization, s ince
o nly the first part o f the gap can be overwritte n o r
damaged. (See Figu re 3 . 11 for clarity)

An exami nation o f t he con tents of the two type s of fields is
in order . The Address Field contains t he -address - o r
identifyi ng i nformation about t he Data Field whi c h follows
it . The volume, trac k, a nd sec t o r number of any given
aec tor can be thought of as its -add r ess -, much like a
country, city , and s treet number might identify a house. As
s hown previously in F igure 3 . 7 , there are a number of
components whi ch make up the Address Field. A mo r e detailed
illustration is given in Figu re 3.13 .

3- 11

ADDRESS FIELD

__ __ ''''U 110:100 _00_ _

105 AA" !XX VV! XX vvlxx VV!XX YY !OE AA Eel

ODD·EVEN ENCODED

QATA BYTE
XX - 1Q. lo.10. 10,
VV-lo.10.1Q. 1Do

FIGURE 3. J3

The prologue consists of three bytes which a unique
sequence , found in no other component of the track . This
fact enables OOS to locate an Address Field with almost no
possibility of error . The three bytes are SD5 , SAA , and
S96. The SDS and SAA are reserved (never written as data)
thus insuring the uniqueness of the prologue. The S96 ,
following this unique string, indicates that the data
following constitutes an Address Field (as opposed to a Data
Field). The address information follows next , consisting of
the volume , track, and sector number and a checksum. This
information is absolutely ess ential for OOS to know where it
is positioned on a particular diskette . The checksum is
computed by exclusive-DRing the first three pieces of
information , and is used to verify its integrity . Lastly
follows the epilogue , which contains the three bytes SDE ,
SAA and SEB. Oddly . the SEB is always written during
initialization but 1s never verified when an Address Field
is read . The epilogue bytes are sometimes referred to as
-bit-slip marks-, which provide added assurance that the
drive is still in sync with the bytes on the disk . These
bytes are probably unnecessary . but do provide a means of
double checking.

D AT A FIE L D
3-12

r ,
I

The o the r field type is the Data Field . Much like the
Addres. Pield , it consists of a p rologue , data, checksum ,
and an epilogue . (Refer to Figure 3 .14) The prologue is
dltferent only in the third byte. The bytes are $05 , $AA ,
and $Ao . which again form a unique sequence , enabling DOS to
l oca t e the beginning of the sec tor data. The data consists
of 342 bytes of encoded data. The encoding scheme used will
be discussed in the next section . The data i s followed by a
checksum byte, used to verify the integrity of the data just
cead . The epilogue portion of the Data Field i s absolutely
Identical to the epilogue in the Add r ess Field and it se r ves
lhe same function.

DATA FIELD -- _
105 ADI 342 BYTES DATA

DATA FIELD ENCODING

SIX AND TWO
ENCOD£D

FIGURE 3.14

Due to Apple ' s hardwar e , it i s no t poss ible to read all 256
poss ible byte values from a diskette. Thi s is no t a great
problem, but it does require tha t the data written to the
disk be encoded . Three different techniques have been
used . The first one, which is currently used in Address
Pields , involves writing a data byte a s two disk bytes , one
con taining the odd bits, and the other containing the even
bits. It would thu s require 512 -dis k- bytes for each 256
byte sec tor of data . Had thi s technique been used for
sec t o r data , no more than 10 sector s would have fit on a
track. This amounts to about 88K of data per di s kette , or
roughly 72K of space available to the user! typical fo r
5 1/ 4 single density drives.

ENCODING
3-13

Fortunately, a second technique for writing data to diskette
was devised that allows lJ sectors per track. This new
method involved a -5 and J- split of the data bits, ver s us
the -4 and 4- mentioned earlier . Each byte written to the
disk contains five valid bits rather than four. This
requires 410 -disk- bytes to store a 256 byte sector. Thi s
latter density allows the now well known 13 sectors per
track format us ed by DOS 3 through DOS 3 . 2.1 . The - 5 and J -
scheme represented a hefty JJ\ increase over comparable
drives of the day .

Currently, of course, DOS J.J features 16 sectors per track
and provides a 23\ increase in disk storage over the 1)
sector format. This wa s made possible by a hardware
modification (the P6 PROM on the di sk controller card) whi c h
allowed a -6 and 2- split o f the data. The change wa s to
the logic of the - s tate machine - in the P6 PROM, now
allowing two consecu t ive zero bits in da t a by t es .

These three different encoding techniques will now be
cove red in some de tail. The ha rdwa r e for DOS 3.2 . 1 (and
earlier versions of DOS) imposed a numbe r of restric tions
upon how data could be sto r ed and retrieved. It required
that a disk by t e have the high bit set and , in addition , no
two consecu tive bits coul d be zero . The odd-even "4 and 4"
technique meets these requirements. Each data byte is
represented as two bytes , one con t aining the even data bit.
and the o ther the odd data bits . Figure 3 . 15 illustrates
th Ls It should be noted t hat the unu s ed
bits are all set to one t o gua r antee meeting the two
requ i rement s .

lO, I etl O. IO,
OATA BYTE

10.10. 10, 100

FIGURE 3 IS

No matter what value the o riginal data data byte has , this
technique insures that the high bit is set and that there
can not be two consecutive zero bits . The -4 and 4-
technique is used to store the information (volume , track .
sector, checksum) contained in the Address Pield . It i.
quite easy t o decode the data, since the byte with the odd
bits is simply shifted left and logically ANOed with the
byte containing the even bits. Thi s i s illustrated in Pigure
3.16 •

0 . 10.10.1 0 "
AND 10.10.107 10.

0 .0.0. 0.0. 0 , 0 ,00

FIGURE 3. Ie

(.hilled 141"1

Il I, laporta nt that the least s ignificant bit contain a 1
whe n lhe odd -bi t s byte i s left shifted . The entire

pe r atlon Is ca rried out in the RDADR subroutine at $B944 in
008 (4811 1 .

The Majo r di f ficulty with the above technique is that it
t ak •• up a l o t o f room on the track . To overcome this

the - S and 3- encoding technique was developed .
I t I. IK) na. ed becau s e, instead of splitting the bytes in
ha l t , al i n the odd-e ven techniqu e , they are s plit five and
Ihr ••. A by t e would have the fora oooxxxxx, where x is a
y. l id da t a b it. The above byte could range in value from
'00 to SLY. a t o tal of 32 different values. It so happens
l h. the re are)4 valid -disk- bytes, ranging from $AA up to
" '. wh ic h meet the two requirements (high bit set, no
C n •• cu tlv. zero bits) . Two bytes . $DS and $AA . were chosen

• r •• e r ved by t es , thus l eaving an e xac t mapping between
IlvI bit data bytes and e igh t b it -d isk - bytes . The process or converti ng eight bi t data by te. t o e ight bi t -d isk -
lIyte. , then , is twofold . An overview is diag rammed i n Fig ur e
1. 17.

-, 0.'. 0 011'" _n, 1-1
s(COfOIONILY

0 011'"
"'''111

FIGURE 3.11

_IT'
ItOVTINI)-- 01 .. UCYOII

, Ir s t, the 256 bytes that will make up a sector must be
t r a ns lated to five bit bytes. This is 'done by the
- pre n ibble - routine at $8800 . It i s a fairly involved
proc ••• • invo lving a good deal o f bit r.arrangeaent . Pigure
). 18 . hows the before and after of prenibbilizing. On the
l et t 's a buffer of eight bit data bytes, as passed to the
RWTS s ubroutine package by DOS . Bach byte in this but fer is
repre.ented by a letter IA . 8, C. etc .) and each bit by a
nUMber (1 through 0) . On ' the right lide are the re.ults of
t he tunsforaation . T.he primary bufter contains five
dis tinct areas at five bit byte. (the top three bits of the
el ht bit byte. aero-tilled) and the secondary but fer
contains three areas, graphically illustrating the name -5
and 1- .

-5 MKI 3- PAEHIIIILlZIHQ

....
SECTOR

DATA
BUFFER .." 00 O A,..A A. A,

A "''''A.",,,, ,, At
e 8011>&.e,&e Ito
C'C.C.C.C>c,C ,c.
00.0.0.0 .0 .0 ,0. i £' £O £,. £,. £,, £,> £, E W

.... o 0 0 II BoB B. B,

Ii;
>

! o 0 0 c c.c.c.c,

W

" m eecc o 0 000.0>0.0.

E """ 000 E £o £ -E. E,
3

a """ < 000 A, A ","O,L

o 0 0 8. 8 ,"0 E,

BC" o 0 0 C.C,C.DoIEo

FIGURE 3. '8

total of 410 by tee a r e needed to store the original 256.
This can be calculated by finding the total bits of da ta
(256 x 8 • 2048) and dividing that by the number of bite per
byte (20 48 I 5 • 409.6) . (two bits a re not used) Once t hla
process is completed , the data is further tran.formed to
make it valid bytes , meeting the disk ' s
requirements. This is much eas ier , involving a one to one
look-up in the table given in Pigure 3.19.

3-16

"5 and 3"
WRITE TRANSLATE TABLE

00 _ AB ,. - 00 ., - AD " - DE
02 - AE " - OF ., -AF " - EA .. BS .. - EB
OS -.. " - EO
'" -B7 " -EE
07 BA " EF
08 BB OS - F5
09 • BO " - F6
OA • BE .. - F7
OB " SF 'B - FA
oe - 06 'C - FB
00 " 07 00 - m
OE " 0 ... ' E - FE
OF " DB " -"

I Reserved By les

FIGURE 3 19

The Data Pield has a checksum much like the one in the
"ddr ... Pield , used to vedfy the integdty of the data . It
also Involves exclusive- ORing the informa t ion , but , due to
ti.e constraint s during read i ng bytes , it is implemented
difCerently. The data is exclusive-ORed in pairs befo r e
being transformed by t he look-up table in 3 . 19 . This
can beat be illus t rated by Fi gu re 3 , 20 on the following
)UHJt" • •

Th. reason fo r th i s t r ansfor mation can be be tter unde r stood
by exaaining how t he info rmation is r etrieved f r om the
diak . The read routine must read a by t e , transfo rm it , and
atore it -- all in unde r 32 cycles (the time taken to wr i t e
a byte) or the in f ormation will be lost . By using the
checksua computation to decode data , t he transformation
shown in Pigure 3 , 20 greatly facilita t es the time
conatraint . "s t he data is being read f rom a sec t o r the
accumulator con t ains t he cumulative result of all previous
hytes . excluaive-ORed t oge t her . The value of the
sccuMulator af t e r any exclus i ve-OR ope r a ti on i s t he ac t ual
data byte Co r t ha t poin t in the se r ies . This pr oceas ia
diagrammed in Figu r e 3 . 21 . ·

. riqurea 3.20 and 3 . 21 pr esent the nibbl i zing pr ocess used
by he -6 and 2- encoding technique . However , the concep t
Is th aaae for t he · S and 3" technique ,

3-1 7

--" s.cln_, -. --..
• I less

.e .. I .""

.

.
.cs< I .eu

1 .co, I . • coo
.coo I I ... , ... , I ,
"FO I
,.F! I . III'''

I.'" "- "

W'UTtNG TO DI"ETTIl, DOS U

• •

• •

• •

• •

•

•

•

•

•
FIGURE 3.20

....
OATA

....

.....

1r1. IS

.... "

.,.. t7

." ...

.......

READING FROM DISKETTE, DOS 3.3

D,. 0 .,.
". ,

I". IS _

I, .. H

.,k I' .,k H

I, .. :MO _

',..:141
,,":142

.lA.
TAANSLATE

TAIL!

PA ' MARY "
EffECT'VE SECONOAl'lV
ACT'ON IUffEAS - EOA 0 SICSS

EOA SIess SICSot - EOA SlCS4 SICU

- EOA IICOI - sacoo
EOA SlCOO - 11800

_ EOA 'IIIOCI - 11801
EOA SI801 _ '1102

_ EOFt '11rn _ SlIfE

EOR , •• fE _ ".1'1'
_ EOI'I Sllff _ 0 If 10

FIGURE 3.2'

3-19

The third encoding technique, currently uaed by DOS 3 . 3, i.
siailar to the -5 and 3-, It wa s made posaible by a chanq.
in the hardware which eased the for valid data
soaewha t . The high bit must atill be set , but now the byte
may contain one (and only one) pair of consecutive zero
bits. This allows a greater number of valid byte. and
permits the use of a -6 and 2- encoding technique . A . ix
bit byte would have the form OOXXXXXX and has values from
SOD to SlF for a total of 64 different value.. With the
new, relaxed requirements for valid -disk - bytes there ar.
69 different bytes ranging in value fraa $96 up to $PF.
After removing the two reserved bytes, $AA and $05 , thara
are still 67 -diak - bytes with only 64 needed . An
additional requirement was introduced to force the aapptnq
to be one to one , namely , that there must be at leaat two
adjacent bits let , excluding bit 7 . This produces exact ly 64
valid -di sk- values . The initial transformation i. don. by
the prenibble routine (still located at $BBOO) and it.
results are shown in Figure 3.22 .

-. and 2" PRENIB81l1ZING

. - 00 "'
o 0 I 8080808 8
o 0 c ·CoCoc.c,c,
o 00·0.0.000,0.-
o 0 I! £"£,,E. E.b

SECTOR
OATA

BUFFER
o Of-f. f , f,f, F "' >

88088088.8
C coc c.e,c c ·c.
00.0-0,0000.

£·e ·E E ffi " · FF ,F "f

=

ill w

I
0 0 <

" ,. "
"
" o.D.

" CoC •

"
I •• '"'"

FIGURE 3.22

3-20

II
IT au ITE SIMPLE, - °6 2' IS LESS THAN -5 3

A tOtal of 342 bytes are needed , shown by finding the total
luaber o[bita (256 x 8 - 2048) and dividing by the number
II bit. per byte (20 48 I 6 •)41 .)3) . The transformation
rON the aix bit bytes to valid data bytes is again

,.rtormed by a one to one mapping shown in Figure 3 . 23.
Once agaln , the s tream of data bytes written to the diskette
Ir e a product of exclusive-ORa , exactly as with the ft S and

• tochnique discussed earlier ,

M6 and 2"
WRITE TRANSLATE TABLE

00 ... 10 .. 20 DO '" . ED

" • 97 " B, " • 07 " • EE
02 • 9A 12 • .. 22 • DO 32 EF
03 • 9B " • B7 23 ' DA 33 • F2 .. ° 90 " B9 " • DB ,.. • F3 .. • 9E " • BA " • DC " " .. ' OF " BB 26 • DO 36 • " 07 o M " • BC 27 • DE 37 • F,
08 • 1.7 " • BD 2. • OF ,. • F1
09 • AS " • BE 29 • " 39 • " OA • AC '" • BF

,. . " ,. . FA
DB . AD 18 • CB 2B • E7 3B • FB
OC • AE Ie . co 2C ' EO 3C ' FC
00 · AF 10 . CE 20 • EA 3D • FD
OE • B2 IE • CF 2. • EB " . FE
OF • 83 IF • 03 2F • EC OF ' "

I Reserved Byte.

FIGURE 3 23

3·21

SECTOR INTERLEAVING

Sector interleaving . or skewing . is the staggering ot
sectors on a track t o acc ess speed. There t.
usually a delay between the time DOS r eads o r write. a
secto r and the time it is ready to read o r write anothor.
This delay depends upon the appli c ation program using the
disk and can vary great l y. If sector s were stored o n the
track in sequential o r der . it would usually be necessary n
wait a full revo lutio n o f t he diskette befo re the neat
sector could be a ccessed . Ordering the sectors no n-
sequentially (skewing them' can provide improved ace •••
speeds.

On DOS 3 . 2.1 and earlier ve r sions. the 13 sectors are
physically skewed on the disKette . During the boot
operation. sec t o r s a re l oaded from the diskette in ascendinq
sequential o rder. Howeve r. files gene r all y a r e loaded in
descending sequent ial o r der. As a result, no sing l e skewin
scheme wo rk s well for both booting and sequentially
access ing a f ile .

A di ffere nt approach has been used i n DOS 3 . 3 in an a tt •• pt
to maximize performance. The skewi ng is no w done in
sof tware. The 16 physical sectors are numbered in ascending
o r de r (0 . I, 2 . 15) and are not physically skewed at
all . A look-up t able i s used t o tr ans l a te a log ical o r soft
sector numbe r used by RWTS into the physical sector number
found on the diskette . For example. if the logical sec t o r
number were a 2 . this wou ld be transl a ted into the physical
sec t o r number 11 (SOB). Thus. RWTS treats physi ca l sector
11 (SOB) as sec t o r 2 f o r all int e nt s and purposes. This
presents no problem if RWTS is used for disk access. but
wou ld become a consideration if access were made without
RWTS. DOS 3 . 3 uses what we refer t o as a "2 descending"
s kew.

In an attempt to eliminate the differ ences between
boo ting and reading files, ano ther change was made t o DOS
3.3 . During the boot process , DOS i s l oaded ba c kwards in
descendi ng sequential o r de r into just aa files are
accessed . However. due t o differences in the delays f o r
booting and reading filea, no aingle skewing scheme i s
opt i.al . For a detai l ed disc ussi o n o f this sub jec t r efer t o
HOW S ECTOR SKEWING CAN AFPECT DI SK PERFORMANCE i n the
docume ntation f o r BAG OF TRICKS· .

It is interesting t o point out that Pas cal, Fortran, and
CP/M diskettes all use software skewing also. However . each
uses a different sec tor o r de r . Pascal and Fortran use a 2
ascending skew and CP/M diskettee use a 3 ascending skew. A
compa rison o f these differenc es ie presented in Figure 3.24 •

• see the page o pposite page 1-1 f or a description o f BAG OF
TRI CKS .

COMPARISON OF SECTOR SKEWING
LOGK:AL SECTOR

""SICA&.
.. CTOO .oS :1.3 OASCAI. ""1M

0 0 0 0
1 • •

2 E •
3 • • • 0 2 C

• • A 1

• C 3 2
1 • • 0

• • , • • 3 C 3
A A • E

• 2 0 •
C 9 • •
0 E F

E • 1 A

F F F •
FIGURE 3.2"

3-23

CHAPTER 4
DISKETTE ORGANIZATION

Aa wa. described in CHAPTER 3, a 16 sector diskette consists
of ' 60 data areas of 256 bytes each , called sectors . These
aector . are arranged on the diskette in 15 concentric ring8
or tracks of 16 sectors each. The way DOS allocates these
tracks of sectors is the subject of this chapter.

A tiL. (be it APPLESOFT, INTEGER, BINARY. or TEXT type)
con,i a t a of one or more sectors containing data. Since the
•• ctor i, the smallest unit of allocatable space on a
di s kette, a file will use up at least one sector even if it
i a Ie •• than 256 bytes long; the remainder of the sector is
w • • ted. ThuB , a file containing 400 characters (or bytes)
of data will occupy one entire sector and 144 bytes of
another with 112 bytes wasted . Knowing these facts, one
would expect to be able to use up to 16 times 35 times 256
or 143,360 bytes of space on a diskette for files. Actually,
the largest file that can be stored is about 126,000 bytes
long. The reason for this is that some of the sectors on the
di a kette .uat be used for what is called ·ove[head- .

•
" " " "

0 ... ¥OU.IIe: 001
' f ooa aLl,D

" 00 a ftX'I' ... LI:
• 001 IlI1A1t't PI LE ,-

"

" LL:..:'----___ --l!.

FIGURE. I

-, .-
---- --.,

4-1

Overhead sectors contain the iMage of DOS which is 10ad •• 1
when booting the diskette, a list of the nallles and loes,lollll
of the files on the diskette, and an accounting of the
sectors which are free for use with new files or expon.lu".
of existing files. An example of the way DOS uses lectDr. ,.
given in Pigure 4 . 1 .

DISKETTE SPACE ALLOCATION

The map in Pigure 4 . 1 shows that the first three trackl nl
each diskette are always reserved for the bootstrap lmaqa nr
DOS . In the exact center track (track 17) is the VTOC
catalog . The reason for placing the catalog here il liMpla,
Since the greatest delay when using the disk is waiting tnr
the arm to DOve frca track to track, it is advantageous to
minimize this arm movement whenever possible . By placlnq
the catalog in the exact center track of the disk , the arlll
need never travel IIIOre than 17 tracks to get to the caulo<,
track. As files are allocated on a diskette, they occupy
the tracks just above the catalog track first. When lhe
last track, track 34, has been used, track 16, the track
adjacent and below the catalog, ia used next, then 15, 14,
13 , and so on, moving away from the catalog again , toward
the DOS image tracks. If there are very few files on the
diskette , they will all be clustered , hopefully , near the
catalog and arm movement will be Additional spacs
for a file, if it is needed, is first allocated in the
track occupied by the file . When that track ia full.
another track is allocated elsewhere on the disk in the
manner described above.
THE VTOC

The Volume Table Of Contents is the -anchor- of the entire
diskette. On any diskette accessible by any version of DOS,
the VTOC sector is always in the same placel track 17,
sector O. (Some protected disks have the VTOC at another
location and provide a special DOS which can find it .) SinCe
files can end up anywhere on the diskette , it ia through the
VTOC anchor that DOS is able to find them. The VTOC of a
diskette has the follOWing fotmat (all byte offsets are
given in base 16. hexadecimal) :

BYTE
00
01
02
03
04-05 D.
07-26
27

'-2

VOLUME TABLE OF CONTENTS (VTOC) FORMAT

DESCRIPTION
Not used
Track nuaber of first catalog sector
Sector number of first catalog sector
Release number of DOS used to INIT this diskette
Not used
Diskette volume number (1-254)
Not used
Haxlaua number of track / sector pairs which will tlt
in one file track/ sector list sector (122 for 256
byte sectors)

28-2P 3.
J1
32-33

" ")6-37
38-38
3C- 3F
40-43

DC-OF
CO-C3
C4-PF

Not used
La s t track where sectors were allocated
Direction of track allocation (+l or -I)
No t used
Number of tracks per diskette (normally 35)
Number of sectors per track (l3 or 16)
Number of bytes per sector (LO/HI format)
Bit map of free sectors in track 0
8it map of free sectors in track 1
Bit map of free sectors in track 2

Bit map of free sectors in track 33
Bit map of free sectors in track 34
Bit maps for additional tracks if there a r e more
than 35 tracks per diskette

BIT MAPS OF FREE SECTORS ON A GIVEN TRACK

A four byte binary string of ones and zeros ,
representing free and allocated sectors respectively .
Ilexadecilllal sector numbers are assigned to bit
positions as follow s :

BYTE SECTORS
+0 PEOC BA98
+1 7654 3210
+2 (not used)
+3 (not used)

Thus, if only sectors E and 8 are free and all
othe r s are allocated, the bit map will be:

41000000

If all sec tors are free :

FFPFOOOO

An e xample of a VTOC sector is given in Figure 4.2. This
VTOC cor responds to the map of the diskette given in Figure
4.1.

4-3

Flnl CATAlOG MCtof II on Ir.ell 11 (M_).
actor OF (M_)

OOSU

Volume .,
23 (M_) lr.ck.,tdIN
10 (n._) Melon/lrKk

0100 (M_, bytftlMelor

122 Til ,.11'1 .. " In. TIS 'Is' "", " ,

""',"'" ,

,..:·C· C· ';..". TrKk 0 I,
L .. , trKl! ___

Tr.ek 1 h

... 15 (he_), _ , ,_, '_" MIoc:.led
N.d.,,1 be • •
15+1 - " (he_), 60 -' '-' '-" J:..Kt.12 II

(22 dK"-'l 6C . .i:.;;"_
71 Onty MCtor,
I ..]"...OOOO]PP1'QOC)O]Pr1'OOOO 1_ • • ,-., 1_,. I. ,nd 15 ,r,

...

90 1'TPP'OOOOttttOOOOl'1'P't'OOOO
9C 1"t1'tOOOOttttOOOOt1'1't'OOOO on 'r.ell 11
AI •••• OOOOPP" OOOOt1'1't'OOOO
. OOOOPP" OOOC+"'OOOO
co _
C'C OOOOOOOOOOOOOOO ""',., .. ,.
De OOOOOOOOOOOOOOO
r.: .. OOOOOOOOOOOOOOO
to OOOOOOOOOOOOOOO
'" OOOOOOOO

FIGURE 4.2 - EXAMPLE VTOC

Tr.ek ,.. --

f

II""
/ noe

-
-
-

• • , • • • -,,<

-Third 1 ,--..., ... , ,
'\ -

filii 1 "

5«101' 0

Sector 1

4-8

Sector C

Seclor 0

Sec:tor E

Sector F

THE CATALOG

In order for OOS to find 4
given file , it must first read
the VTOC to find out where the
first catalog sector i.
located. Typically , the
catalog sectors for a diskette
are the remaining sectors on
track 17 . following the VTOC
sec tor. Of course, as long 8S
a track/sector pointer exis ts
in the VTOC and the VTOC i8
located at track 17 , sector 0 ,
DOS does not really care where
the catalog resides. Figure
4.3 diagrams the catalog
track. The figure shows the
track/ sector pointer in the
VTOC at bytes 01 and 02 as an
arrow pointing to track 17 Ul
in hexadecimal) secto r F . The
last secto r in the trAck is
the first catalog sector and
describes the first seven
files on the diskette . Each
catalog sector has a
track / sector pointer in the
same position (bytes 01 and
02) which points to the next
catalog sector. The last
catalog sector (sector 1) has
a zero pointer to indicate
that there are no more catalog
sectors in the chatn .

In each catalog sector up to
seven files may be listed and
described. Thu s , on a typical
DOS 3 . 3 diskette, the catalog
can hold up to 15 times 7, or
105 files. A catalog sector ts
fo rmatted as described on the
follOWing page.

FIGURE 4.3 - TRACK 17. THE CATALOG TRACK

4-5

BYTE
00
01
02
03-0A
OB-2D
2£-50
51-1)
74-96
97-89
SA-DC
OD-...

RELATIVE

CATALOG HCTOR fORMAT

DESC RUT I ON
Not uaed
Track numbe r of next catalog sector (uaually 11 h ••)
Sector number of next catalog sector
Not used
Pirst fil e descriptive entry
Second file descriptive e ntry
Third fil e descrlpt lve entry
Pourth file descriptive entry
pifth file descriptive en try
Sixth file descriptive entry
Seventh file descriptive entry

FILE DESCRIPTIVE ENTRY FORMAT

BYTE DESCRIPTION
00 Track of firat track/aector list sector.

If this is a deleted file, this byte containa a h'"
PP and the original track numbe r is copied to the
last byte of file name field (BYTE 20).
If thia byte contains a hex 00 , the entry ia assuNad
to never have been uaed and is available for use.
(This track 0 can never be used for data even
it the OOS i.age is ·w ipedM fro. the diskette .)

01 Sector of firs t track/aec tor list sector
02 Pile type and nags:

Hex 80+file type - file is locked
00+f11e type - file ia not locked
00 - TEXT fil e
01 - INTEGER BASIC tile
02 - APPLESOPT BASIC file
04 - BINARY file
08 - 5 type file
10 - RELOCATABLE obj.c t .adule tile
20 A type file
40 - B type file

(thua, 84 is • locked BINARY file, and 90 i s •
locked R type file)

03-20 Pile naNe (30 character s)
21- 22 Length of file in aectora (LO/HI toraat).

The coaaand will only foraat the LO byte of
thi s length giving 1-255 but a tull 65,535 aay be
atored her e .

rigure 4.4 ia an example of • typical catalog sector . In
this exaaple ther e a re only tour filea on the entire
di.kette. ao only one catalog sector va . needed to describe
thea. There are four entries in use and three entries whi c h
have nevet been uled and oont.in zetos.

Nat CATALOG -=- .. '"-* 111_) •
.ctor .. ,)

,1n4...., __ !rot .. fie
.. tit tnc:* 12 , ...). __ 0fI ,h ..)

......
,. IIIIUtI' rua:
14 II0llOllOllOlloCrltoOAOAOlOll.QAONl
90 IoOAOAOllOAOOIOOOOClOOOOOOO
9C CIOOOOOOOOOOOOO
.... CIOOOOOOOOOOOOO
M CIOOOOOOOOOOOOO
co CIOOOOOOOOOOOOO
a: 00000000000Cl00
01 OOOOOOOOOOOOOOO
E4 OOOOOOOOQOOQOOO

PO OOOOOOOOOOOOOOC

............

FIGURE 4.4 - EltAMPLE CATALOG SECTOR

Tell typt
No .-.-..

.-1

THE TRACK/SECTOR LIST

Each file has associated with it a -Track/ Sector List-
sector. This sector contains a list of track/ sect,or ronin! I
pairs which sequentially list the sector. which 'Mk. "I
the file . The file descriptive entry in the cataloq •• ellli
points to this TI S List sector which, in turn , point. II
e"ch sector in the file . This concept is In ,'1'1'11
4.5 .

f""COI .,

CA '","OO NCf Oll.

-"(;TOIl 01"
"Nuo'

.. uo

'''I'' "CfOll Of
.... uo

Ool, ,, ,,crOllt

FIGURE.f 5 · PATH DOS MUST FOLLOW TO FIND A FILE

The fo(."t of a Track / Sector List sector is giVen below ,
Note that since even a minimal file requires one T/ S Li.t
sector one data sector, the least number of sectors a
non-empty file can have is 2 . Also , note that a very large
file, having more than 122 sectors , will more than
one Track/ Sector List to all the Track/ Sector pointer
pai ra .

BnE
00
Ol

02
03-04

4-8

TRACK/SECTOR LIST FORMAT

DESCRIPTION
Not uaed
Track number of next T/ S List sector if one waa
needed or zero if no .are TI S List aectors,
Sector number of next TI S List sector (if pre'ent).
Not used

•
05-06 ,
07-08
OC-OD
OE-OF
lO-FF

•

, ·

Sector offset in file of the first sector descrlbed
by this list.
Not used
TrAck and secto r of first data secto r or zeros
Track and sector of second data sector or ze ros
Up to 120 more TrAck/ Sector pairs

00
oc
u

" ,.
>C
OC

" ..
'" '"
'" ox
DO

TIMor..,.. no TIS II,t
MeIOf'1 IOf ttll, file

lil'll Hetor titled hel1l
Metor 0 01 1M fit.

0.11 nelor I, on
12 (h ••). toKIO!' OE (he_,

The,.. It no aecond HelOt"

OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOO

.. OOOOOOOOOOOOOOO
PO OOOOOOOOOOOOOOO
no OOOOOOOO

FIGURE .u - EXAMPLE TRACK/SECTOR LIST

4-9

A sequential file will end when the first zero TIS
entry is encountered. A random fi1e , however , can hav.
spaces within it which were never allocated and thUflhll.
have no data sectors allocated in the T/S List. Thi.
distinction is not always handled correctly by DOS. Th.
VERIFY command, for instance, stops when it gets to
first zero T/S List entry and can not be used to vedry 8."
random organization text files .

An example T/ S List sector is given in Figure 4.6. Thl
example file (HELLO, from our previous examples) ha. oilly
one data sector, since it is less than 256 byte. in Iln!tl It,
Counting this data sector and the T/ S List sector, II
2 sectors long, and this will be the value shown when I
CATALOG command is done.

Following the Track /Sec tor pointer in the T/S Lilt .. tnt,
we come to the first data sector of the file . AS we ell,.I""
the data sectors, the differences between the file
become apparent . All files (except , perhaps , a random Tr.XT
file) are considered to be continuous streams of date, IV."
though they must be broken up into 256 byte chunks to til II
sectors on the diskette. Although these sector. are not
necessarily contiguous (or next to each other on the
diskette) , by using the Track/Sector List, DOS can read eat I
sector of the file in the correct order so that the
programmer need never know that the data was broken up Intn
sectors at all.

TEXT FILES

The TEXT data type is the least complicated file data
structure . It consists of one or more records, separated
from each other by carriage return characters (hex 80'.).
This structure is diagrammed and an example file ia given tn
Figure 4.7. Usually, the end of a TEXT file is Signaled by
the presence of a hex 00 or the lack of any more data
sectors in the TiS List for the file. AS mentioned earlief,
if the file has random organization, there may be hex 00' .
imbedded in the data and even missing data sectors in .r •••
where nothing wa s ever written . In this case , the only war
to find the end of the file is to scan the Track /Sector L •
for the last non-zero Track /Sec tor pair. Since carriage
return characters and hex OO ' s have special meaning in a
TEXT type file, they can not be part of the data itself. ro
this reason, and to make the data accessible to BASIC, the
data can only contain printable or ASCII characters
(alphabetics, numerics or special characters, see p. 8 In
the APPLE II REFERENCE MANUAL) This restriction makes
processing of a TEXT file slower and less efficient in the
use of disk space than with a BINARY type file, since each
digit must occupy a full byte in the file.

RECORD' 19 RECORD a I@I RECORD:I I@Q
A s.qUfllIIal Text Type File

Record 1

,,-2._
lO_ x:_
4'_
54 _
60 ooooooooooooooo "'-7'_ .. -
90 OOOOOOOOOOOOOOO
9<_ u_
.. ooooooooooooooo
co ooooooooooooooo
CC OOOOOOOOOOOOOOO
01 OOOOOOOOOOOOOOO
t:4 OOOOOOOOOOOOOOO
PO OOOOOOOOOOOOOOO
PC oooooooo

l,2,l, 4"",

........

FIGURE 4.l - TEXT FILE DATA TYPE

4- 11

BINARY FILES

The structure of a BINARY type file is shown in 41 1,
An exact copy of the memory involved is written to ttl."
sector (s) , preceded by the melDOry address where it w •• tr lUI
and the length (a total of four bytes) . The at!ldr ••• anl'l
length lin low order , high order for.at) are tho •• qlv.n 111
the A and L keyword. from the BSAVE com.and which creAI'"
the file . Notice that DOS writes one extra byte to the
file. This does not matter too much since BLOAO and tUlIIH
will only read the nUlllber of bytes given in the lenqt h
field . (Of course , if you BSAVE a lIIultiple of 256 bvte.,
sector will be wasted because of this error) DOS coull1 10
aade to 8LOAD or BRUN the binary image at a different
address either by providing the A (address) keywort!l when til
command i. entered, or by changing the addre •• in the tl"l
two bytes of the file on the diskette.

APPLESO" AND INTEGER FILES

A BASIC prQ9ram, be it APPLESOFT or INTEGER, ,. uvt'd ttl It,
diskette in a way that is similar to BSAVE . The forNat fit
APPLESOPT file type i. given in Figure 4.9 and that or
INTEGER BASIC in 4.10 . When the SAVE command is typet!l. 1)('lI
deter.intls the location of the BASIC prograll illag. In .. "',,'
and its length . Since a BASIC program is alway. load.d at •
location known to the BASIC interpreter, It is not nec •••• 11
to store the addreu in the file .a with a 8INARY til •. TI ...
length Is stored , however, as the first two bytes. and ,.
followed by the image from memory . Notice that, again ,
incorrectly writes an additional byte , even though It vtll
be ignored by LOAD . The memory Im.ge of the prograM conata,
of program linea in an internal format which i ... de up of
what are called ·tokens· . A treatment of the .tructur. or a
BASIC program as it appears in meaory is outside the scOp
of this manual, but a breakdown of the example INTEGER BASIC
program is given in Figure 4.10.

OTHER FILE TYPES (S,R, n. w At n.w B)

Additional file types have been defined within DOS as can he
seen in the file descriptive entry format, shown earlier . NO
DOS commands at present use these additional types so thetr
eventual meaning ia anybody's guess. The R file type.
however, haa been used with the DOS TOOLKIT assembler tor
ita output file. a relaeatable object module . Thia til. type
is used with a special form of BINARY file which can contain
the memory image of a machine language program which may be
relocated anywhere In the machine based on additional
information stored with the image itself . The format for
this type of file is 9iven in the documentation accompanylnq
the DOS TOOLKIT. It is recomaended that if the reader
requires .are information about R files he should ref.r to
that docUMentation .

MEMORY IMAGE •••
It BIMty Type File

File lent"" · 0030 lhe_,

DO P .O . L1. L .. L l
OC '(.57-. ' •.. '-
11 C2AAACClJIA604CS.L.UDEA4C ." , A· ' LQ(JJL
24 59PABP90ll.csI,..,4C6SrP4C TZl . ILX-Le_ L
30 e_e_ • ••••.•.
X OOOOOOOOOOOOOOO •......
• • OOOOOOOOOOOOOOO .. . •....•.••
5 . OOOOOOOOOOOOOOO
60 OOOOOOOOOOOOOOO "'-7. OOOOOOOOOOOOOOO
I .. OOOOOOOOOOOOOOO
90 OOOOCIOOOOOOOOO
9C OOOOOOOOOOOOOOO
AI OOOOOOOOOOOOOOO
B4 OOOOCIOOOOOOOOO
CO OOOOOOOOOOOOOOO
ex: OOOOOOOOOOOOOOO
DO OOOOOOOOOOOOOOO
.. OOOOOOOOOOOOOOO
PO OOOOOOOOOOOOOOO

'" OOOOOOOO

·
·

·

FIGURE 4,8 - BINARY FILE OATA TYPE

An "pI IlftT,..,..

10 "'TNT '1cna..-o] OPDI TOT
10 "'TNT '1cna..-o] .'UTf: TEXT FtLIF" • "'TNT "1»
.. "'TNT '1CTM.-oJ ClOSE TEXT nu"
50 DID

b--.... I ...
'
_-r ,*;' oft",...

00 •• ,. , " . OPI!i
OC 4E20 • 7IXr PILE"
11 . ..r7
Z4 <UZOSMSSI54Z0464MCU22 • 7IXr PIU"
30 . 1 .•• , "1.Z.]
]C .4 (
.. 4C4PS34SZOSMSSIS4ZO<K4' t.OSI: ftft 1'1
S4 LE" .) . Z •
60 .<tOOOOCOOOOCIOO " .• ,
Ie OOOOOOOOOOOOOOO , •• , • • • •... •
71 OOOOOOOOOOOOOOO •... . • . • . •••
14 OOOOOOOOOOOOOOO
90 OOOOOOOOQOOOOOO
9C OOOOOCOOOOOOOOO
.. oooooooooooaooa
1M oooooooooooaooo
CO 00Cl00Cl0000000
CC ooooooaoooooooo
011 OOOOOOOOOOOCOOC
.4 OOOOOOOOOOOOOOO
PO OOOOOOOOOOOOOOO
PC OOOOOCOO

.

.. " ..

FIGURE·U - APPt.ESOFT BASIC FILE TYPE

PROGRAM MEMORY IMAGE

Prooer-n .. 5 bytIR aong
l of .. (S .,..)

[1 LIM rM.Hftbef (.... OA • 10 dKtIMIl

" / 51 . ENO r "Tok_ 01 • I'ftCI of 1M ..
DC ..
)0 OOOOOOOOOOOOOOO
)C OOOOOOOOOOOOOOO
.. OOOOOOOOOOOOOOO
S4 OOOOOOOOOOOOOOO
lO OOOOOOOCOOOOOOO
iC OOOOOOOOOOOOOOO
7. 000000CI00Cl000
I . OOOOOOOOOOOOOOO
KI OOOOOOOOOOOOOOO
9C OOOOOOOCOOOOOOO
AI OOOOOOOCOOOOOOO
... OOOOOOOCOOOOOOO
CO OOOOOOOOOOOOOOO
CC OOOOOOOOOOOOOOO

E4 OOOOOOOOOOOOOOO
PO OOOOOOOOOOOOOOO
PC OOOOOOOO

.. . . . g

.

FIGURE 4. 10 - INTEGER BASIC FILE TYPE

EMERGENCY REPAIRS

From time to time the information on a diskette can beCOMI
da.aged or lost . This can create various symptoms, ran91nq
fro. mild side effects, such as the disk not bootin9, to
aajor probleas, such as an input/ output (I / O) error in lh.
catalog . A good understanding of the format of a diakelll,
as previously, and a few program tools can allnw
any reasonably sharp APPLE II user to patch up .ost error.
on his diskettes .

A first question would be , -how do errors occur-. The .0.'
common cause of an error ia a worn or physically damaged
diskette. Usually, a diskette will warn you that it J.
wearing out by producing ·soft errors-. Soft error. are 1/0
errors which occur only rando.ly. You .ay get an I / O error
aessage when you catalog a disk one time and have it catal&I
correctly if you try again. When this happens, the s.art
programmer immediately copies the files on the aged dllkett.
to a brand new one and discards the old one or keeps it •••
backup.

EI1ERGEJ'lCY RfP,\IRS ME fASlERIF YOU AAVE A IIAGICI)P.

Another cause of damaged diskettes is the practice of
hitting the RESET key to abort the execution of a program
which is accessing the diskette . will usually occur
when the RESET Signal comes just a. data is being written
onto the disk . Powering the machine off just as data is
being written to the disk is also s sure way to clobber s
diskette. Of course, real hardware problems In the disk
drive or controller card and ribbon cable can cause da.age
as well.

I
c

I ,

I ,
l
t

!
l
I

If the damaged diskette can be cataloqed, recovery is much
easier. A damaged DOS image in the first three tracks can
u8ually be corrected by rUnI,ing the MASTER CREATE proqram
against the diskette or by copying all the files to another
diskette . If only one file produces an I/O error when it is
VERIPYed, it may be possible to copy most of the sectors of
the file to another diskette by skipping over the bad sector
with an assembler proqram which calls RWTS in DOS or with a
BASIC proqram (if the file is a TEXT file) . Indeed, if the
problem is a bad checksum (see CHAPTER 3) it may be possible
to read the bad sector and ignore the erro r and get most of
t.he data .

An t /O error usually means that one of two conditions ha s
occurred . Either a bad checksum was detected on the data in a
.ector , meaning that one or more bytes is bad, or the
eectoring is clobbered such that the sector no longer even
.xia t& on the diskette . If the latter is the case , the
diskette (or at the very least, the track) must be
reformatted, resulti ng in a massive loss of data . Although
DOS can be patched to format a single track, it is usually
eaaier to copy all readable sectOrs from the damaged
diskette to another formatted diskette and then reconstruct
the lost data there .
Disk utilities, such as Quality Software ' s BAG OF TRICKS ,
allow the user to read and display the contents of secto r s.
BAG OF TRICKS will also allow you to modify the sector data
and rewrite it to the same or another diskette . If you do
not have BAG OF TRICKS or another commercial disk utility ,
you can use the ZAP program in APPENDIX A of this book. The
ZAP program will read any track/sector on an unprotected
diskette into memory, allowing the user to examine it or
modify the data and then, optionally , rewrite it to a
diskette . Using such a program Is very important when
learning about diskette formats and when fixing clobbered
data.
Using ZAP , a bad sector within a file can be localized by
reading each track /sector listed in the T/ S List sector for
the file. If the bad sector is a catalog sector, the
pointers of up to seven files may be lost . When this occurs,
a search of the diskette can be made to find T/S List
eectors whi ch do not correspond to any files listed in the
remaining -good- catalog secto r s . Aa these sector s are
found , new file descriptive entries can be made in the
damaged sector which point to these T/S Lists. When the
entire catalog is lost , this process can take houra, even
with a good understanding of the format of OOS diskettes .
Such an endeavor should only be undertaken if there is no
other way to recover the data . Of course the best policy is
to c reate backup copies of important files periodically to
simplify recovery. More information on the above procedures
is given in APPENDIX A.

4-17

A less significant form of diskette clobber, but very
annoying . is the loss of free sectors. Since DOS allocat ••
an entire track of sectors at a time while a file is Open,
hitting RESET can cause these sector s to be marked in USe In
the VTOC even though they have not yet been added to any TIS
List. These lost sectors can never be recovered by normal
means , even when the file is deleted , since they are not In
its TI S List. The result is a OISK FULL message before the
diskette is actually full . To reclaim the lost sectors it
is necessary to compare every sector listed in every TIS
List against the VTOC bit map to see if there are any
discrepancies . There are utility programs which will do
this automatically but the best way to solve this problem I .
to copy all the files on the diskette to another diskette
(note that FlO must be used , not COPY, s ince COpy copies an
image of the diskette, bad VTOC and all).

If a file is deleted it can usually be recovered, providing
that additional sector allocations have not occured since it
was deleted. If another file wa s c reated after the OELETE
command, DOS might have reused some or all of the sectors or
the o ld file . The catalog can be quickly ZAPped to move tho
track number of the TI S List from byte 20 of the file
descriptive entry to byte O. The file should then be copied
t o ano ther disk and then the original deleted so that the
VTOC freespace bit map will be updated.

•

DOS MEMORY USE

CHAPTER 5
THE STRUCTURE OF DOS

DOS is an assembly language program which is loaded into RAM
memory when the user boots his disk. If the diskette booted
is a master diskette , the DOS image is loaded into the last
possible part of RAM memory . dependent upon the size of the
actual machine on which it is run . By doing this , DOS fools
the active BASIC into believing that there is actually less
RAM memory on the machine than there is. On a 48K APPLE II
with DOS active , for instance, BASIC believes that there is
only about 38K of RAM . OOS does this by adjusting HIMEM
after it is loaded to prevent BASIC f rom using the memor y
OOS is occupying. If a slave diskette is booted , OOS is
loaded into whatever RAM it occupied when the slave diskette
was INITialized. If the slave was created on a 16K APPLE,
DOS will be loaded in the 6 to 16K r ange of RAM, even if the
machine now has 48K . In this case, the APPLE will appear ,
for all intents an purposes, to have only 6K of RAM. If t he
.lave was created on a 48K system , it will not boot on less
than 48K since the RAM DOS occupied does not exist on a
smaller machine .

ANATOMY OF
APPLE. DOS

5-1

A diagram of DOS's memory for a 48K APPLE II is given in
Figure 5.1. As can be seen, there are four major divisions
to the memory occupied by DOS . The first 1 . 75K is used for
file buffers . With the default of MAXFILES 3 , there are
three file buffers set aside here . Each buffer occupies
bytes and corresponds to one potentially open file . Pile
buffers are also used by DOS to LOAD and SAVE files, etc. It
HAXFILES is changed from 3, the space occupied by the file
buffers also changes . This affects the placement of HIHEM,
moving it up or down with fewer or more buffers
respec tively.

The 3.5K above the file buffers is occupied by the main DOS
routines . It is here that DOS's executable machine language
code begins. The main r outines are responsible for
initializing DOS , interfacing to BASIC , interpreting
commands , and managing the £ile buffers . All disk function.
are passed on via subroutine calls to the file manager.

The file manager, occupying about 2.8K, is a collection of
subroutines which perform almost any function needed to
access a disk file. Functions include: OPEN, CLOSE , READ,
WRITE, POSITION, DELETE, CATALOG, LOCK, UNLOCK , RENAME,
INIT, and VERIFY. Although the file manager is a subroutine
of 005 it may also be called by a user written assembly
lanaguage program which is not part of 005 . This interface
is generalized thrOugh a group of vectors in page J of RAM
and is documented in the next chapter.

The last 2. 5K of 005 is the Read/Write Track / Secto r (RWTS)
package . RWTS is the next step lower in protocol from the
file manager - in fact it is called as a subroutine by the
file manager. Where the file manager deals with files, RWTS
deals with tracks and sectors on the diskette . A typical
call to RWTS would be to read track 17 sector 0 or to write
256 bytes of data in memory onto track 5 sector E. An
external interface is also provided for access to RWTS from
a user written assembly language program and is described In
the next chapter.

5-2

.eooo OF RAM

"WTS

.HOOr----------------------------------j

filE MANAGER

MAIN DOS ROUTINES

" ... 1-------------------------------------1
DOS FILE BUFFERS 'MAlI FILES 3)

H1MEM

FIGURE 5. 1 - DOS MEMORY USE (48K APPLE}

5-3

THE DOS VECTORS IN PAGE 3

In addition to the
approxi.ately 10K of RAM
occupied by DOS in high
aemory , DOS aatntaina a group
o f what are ca lled · vectors ·
in page 1 of low ae.ory ($300
through $lFP). These vectors
allow acc.ss to certain places
within the OOS collection of
routines via a fixed location
($JDO for instance). Because
DOS aay be loaded in various
l ocations , depending upon the
size of the .. chine and
whether a slave or master
diskette 18 booted, the
address.a of the externally
callable subroutine8 within
DOS will change . By putting
the addreaaea of these
routines in a vector at a
fixed location, dependencies
on DOS ' s location in .. .ory
are eli.i nated . The page J
vector table ia also useful in
locatinq 8ubroutines within
DOS wh ich may not be in the
saae aemory location for
different versions of DOS.
Locations $JOO throuqh $JCF
were used by earlier veraions
o f DOS during the boot process
t o load the Boot I proqra. but
are used by DOS 3 . J aa a data
buffer and disk code translate
table. Pr.auaably, this
change waa ude to prov ide
acre aeaory for the fir at
boota trap loader (ac re on this
later) . The vecto r table
itaelf atart. at $JDO .

, tV
DOS

VEClOOS

001 VECTOR TABLE (5300-53FF)
ADOR USAGE
300 A JMP (ju.p or GOTO) instruction to the DOS war.start

routine. This routine reenter a DOS but doea not
discard the current BASIC program and does not reset
MAXPILES or other 005 variables.

3Dl "JMp to the DOS cold.tart routine. Thi. routine
reinitialite. DOS as It it wa s rebooted, clearing the
cu rrent BASIC tile and rese tting RIMEM.

3D6 "JMP to the DOS tile manager subroutine to allow a
user written asseably language prograa to call it.

lD9 "JHP to the DOS Read/Write Track/Sector (RWTS)
routine to allow user written asseably language
prograaa to call it.

30e A s hort sub routine whi c h locates the input parameter
list tor the tile .. nager to allow a user written
program to set up input para.eters betore calling the
tile u nager.

3E3 " ahort aubr outine which locates the input parameter
list for RWTS to allow a user wrirten program to set
up input para .. ters before callrng RWTS.

3EA A JHp to the DOS subroutine which -reconnects- the DOS
intercepts to the keyboard and screen data streams.

3EF "JMP to the routine which will handle a BRK machine
language instruction. This vector is only suppor ted by
the " UTOSTART ROM. Noraally the vector contains the
address of the -anitor ROM subroutine which diaplays
the registers.

3F2 LO/ HI address of routine which will handle RESET for
the "UTOSTART ROM. Noraally the DOS restart address ts
stored here but the user uy change it if he wiahes to
handle RESET hiaself.

3Ft Power-up byte. Containa a -funny complement- of the
RESET addre •• with a $0\5. Thia ache.e ia used to
deter.ine if the .achine wa a just powered up o r if
RESET wa a pre.aed. If a power-up occured, the
AUTOSTART ROM ignore. the address at 1F2 (since it ha s
never been initialiZed) and attempts to boot a
diskette. TO prevent this fro. happening when you
c hange $lP2 to handle your own RESET. , EOR (exclusive
OR) the new value at $ly3 with a $A5 and store the
result in the power-up byte.

3Y5 A JMP to a aachine language routine wh ich is to be
called when the ',' feature ia uaed in APPLESOPT.

lY8 A JMP to a Machine language routine which ia to be
called when a control-Y is entered the monitor.

lPB "JMp to a aacbine language routine which is to be
called when a non-aaskable interrupt occurs.

lYE LO/HI address of a routine which is to be called whe n
a .. sk_ble interrupt occu rs.

5-5

WHAT flAPPENS DURING BOOTING

When an APPLE is powered on its memory is essentially devoid
of any programs. In order to get DOS running, a diskette I.
-booted-. The term -boot- refers to the process of boot.trlp
loading DOS into RAM. Bootstrap loading involves a serie.
of steps which load successively bigge r pieces of a progr ••
until all of the , program is in memory and is running . tn the
case of DOS, bootst rapping occu r s in four stages . The
location of these stages on the diskette and a memory map
are given in Figure 5.2 and a description of the bootstrap
process follows .

The first boot stage (let ' s call it Boot 0) is the execution
of the ROM on the disk controller card . When the user type.
PR'6 or C600G o r 6(ctrllP, for instance, control is

I)ISIllTTI "'1"'011'

FIGURE 5.2 · BOOTSTRA P PROCESS

5-6

tunafered to the disk
controller ROM on the card in
Blot 6 . This ROM is a machine
lanquage program of about 256
byte. 1n len9th . When
executed , it -recalibrates ·
the diak arm by pulling it
back to track 0 (the
· c lacketty-clack- noise that
'S heard) and then reads
sec tor 0 froa track 0 into RAM
•• -cry at location $800 (DOS
1 .1. Earlier versions used
$100). Once this sector is
read, the f i rat stage boot
JUMPS (GOTO'a) $800 which is
the second stage boot (Boot
11.
Boot 1, also about 256 bytes
long, uses part of the Boot 0
ROM aa a subroutine and , in a
loop, reads the next nine
aec tors on track 0 (sectors 1
through 9) into RAM . Taken
together, these sectors
contain the next stage of the
bootatrap process, Boot 2.
Boot 2 is loaded in one of two
positions in Mmory, depending
upon whether a slave or a
.aster diskette ia being
booted . If the di s kette is a
a lave diskette, Boot 2 will be
loaded 9 pages (256 bytes per
pag e) be low the end of the DOS
under which the slave waa
INITed. Thus, if the slave vas
c re ated on a 32K DOS, Boot 2
will be loaded in the RAM froll
$7700 to $8000 . If a master
dhkette is being booted , Boot
2 viII be loaded in the same
place as for a 16K slave
($3700 to $4000) . In the
prOCeSS of loading Boot 2,
Boot 1 is loaded a second time
'n the page in NlIIOry right
below Boot 2 ($1600 for a
••• ter diskette) . This is so
that , ahould a nev diskette be
lNIT.d , a copy of Boot I will
ba available in memory to be
written to ita track 0 seetor
O. When Boot 1 ts finished
lo.ding Boot 2 , it jumps there
o begin execution of the next

stage of the bootstrap.

DOS

T
BO T

PROCE55

5-7

Boot 2 consists of two parts : a loader -main program-,
the RWTS subroutine package . Up to this point there hal be.n
no need to move the disk arm since all of the nece •• ary
sectors have been on track O. NOW , however , more sector.
must be loaded , requiring arm movement to access additional
tracks . Since thi s complicates the disk access , RWTS tl
called by the Boot 2 loader to move the arm and read tho
sectors it needs to load the last part of the bootstrap, {>OIl
itself. Boot 2 now locates track 2 sector 4 and reads ttl
contents into RAM just below the image of Boot 1 (thi.
be at $]500 for 8 master diskette) . In a loop, Boot 2 r ••
26 more sectors into memory . each one 256 bytes before ths
last . The last sector {t rack 0 sector A} is read into $lUOO
for a master diskette . The 27 sectors which were read ar.
the image of the DOS main routines and the file managor.
with the loading of these routines, all of DOS has been
loaded into memory. At this point . the bootstrap proc ••• tor
a slave diskette is complete and a jump is taken to the DOS
coldstart address . If the diskette is a master, the
of DOS is only valid if the machine is a 16K APPLE fl. ,t
more memory is present , the D05 image must be relocaled into
the possible RAM present in the machine . To do
this, the master ve r sion of Boot 2 jumps to a special
relocation program at $lB03. This relocator is 512 byte. In
length and was automatically loaded as the two lowest pag,.
of the DOS image. (In the case of a slave diskette , theae
pages contain binary zeros.) The telocator determines the
size of the machine by systematically storing and loading on
high RAM memory pages until it finds the last valid page. It
then moves the DOS image from $1000 to its final location
($9DOO for 48K) and , using tables built into the program, It
modifies the machine language code so that it will execute
properly at its new home . The releeator then jumps to the
high memory copy of D05 and the old image is forgotten.

The DOS boot is completed by the OOS coldstart routine . Thi.
code initializes DOS, making space for the file buffers ,
settin9 HIHEH, building the page 3 vector table , and running
the HELLO program .

Previous versions of DOS were somewhat more complicated in
the Implementation of the bootstrap . In these versions, Boot
I was loaded at $300 and it , in turn , loaded Boot 2 at
$3600, as does version 3 . 3. Unlike 3 . 3, however , 27 sector.
of D05 were not always loaded . If the diskette wa s a slave
diskette, only 25 sectors were loaded , and , on 13 sector
diskettes, this meant the D05 image ended either with sector
8 or sector A of track 2 depending upon whether the diskette
was a slave or master. In addition, Boot 1 had a different
form of nibbilization (see chapter 3) than any other sector
on the diskette , making its raw appearance in memory at
$3600

The various stages of the bootstrap process will be covered
again in greater detail in Chapter 8, DOS PROGRAM LOGIC .

5-8

r
[,
I
[
[,
I ,
[
• I ,
I ,
k

CHAPTER 6
USING DOS FROM ASSEMBLY LANGUAGE

CAVEAT

Thl. chapter is aimed at the advanced a ssembly language
ptQ9ra .. er who wiahes to access the disk without resorting
to the PRINT statement scheme used with BASIC. Accordingly ,
th" topics covered here may be beyond the comprehension lat
le.st for the present) of a progranmer who has never us ed
•••• ably langu8ge .

DIRECT USE OF DISK DRIVE

It is of ten de s irable o r neces.ary to acces s the Apple ' s
disk drives directly from assembly language, without the use
of DOS . This ia done using a sec ti o n of 16 addresses that
are latched t0991ea . interfacing directly t o the hardvare.
There are eigh t two byte toggles that essentially represent
pu lling a TTL line high or low . Applications which could
uae direct disk acee •• range from a user written operating
ays t eN to DOS-independent utility programs. The device
addreas a ssignments are given in Figure 6 . 1.

THIS CHAPTER IS RlR A
6-1

ADDRESS LABEL DESCRIPTION
--.. SCOSO

SCOSl
SCOS2
$C09)
scose
SCOSS
SCOS6
SC081
SCOS8
scon
SCOSA
SCOSB scose
SCOSD
SC08E
SCOSF

PHASEOFF
PHASEON
PHASE10FF
PHA.SEION
PHASE20FF
PHASE20N
PHASE30FF
PHASE30N
MOTOROFF
MOTORON
DRVOEN
DRV1EN
06L
06.
07L
07.

Stepper motor phase 0 off.
Stepper motor phase 0 on.
Stepper motor phase 1 off.
Stepper motor phase 1 on .
Stepper motor phase 2 off.
Stepper motor phase 2 on.
Stepper motor phase 3 off.
Stepper motor phase 3 on .
Turn motor off.
Turn 1IIOtor on .
Engage drive l.
Engage drive 2 .
Strobe Data Latch for I / O.
Load Data Latch .
Prepare latch for input .
Prepare latch for output .

Q1L with Q6L • Read
Q7L with Q6H Sense Write Protect
Q1H with Q6L • Write
Q1H with Q6H • Load Write Latch

FIGURE 6.' - DOS HARDWA RE ADDRESSES

The addresses are slot dependent and the offsets are
computed by multiplying the slot number by 16 . In
hexadecimal this works out nicely and we can add the value
Ss O (where s is the slot number) to the base address . If w.
wanted to engage disk drive number 1 in slot number 6 , tor
example, we would add S60 to SCOSA (device address
aSSignment for engaging drive 1) for a result of SCOEA .
However, since it is generally desirable to wr ite code that
is not slot dependent, one would normally use SCOSA , X (where
the X register contains the value $sO) .

In general, the above addresses need only be accessed with
any valid 6502 inst r uction . However , in the case of reading
and writing bytes, care must be taken to insu r e t ha t the
data will be in an app rop r iate register . All of the
following would engage drive numbe r 1 . (Assume slot number
6)

LDA $COEA
BI T $COSA , X (where X- r eg contains $60)
CMP $COSA,X (where X- r eg contains $60)

Below t ypical examples demons t rating t he use of the
device address assig nme nt s . Fo r mor e examples , see APPENDIX
A. Slot 6 is assumed and the X- r egis t e r contains $60 .

6-2

•

STEPPER PHASE OFF/ON:

8a.ically. each of the four phases (O-J) Must be turned on
and then off again . Done in ascending order, this moves the
ar. inward . In descending o rder, this moves the
outward . The timing between accesses to these locations is
critica l, making this a non-trivial eKercise. It is
eecommended that the SEEK command in RWTS be used to move
the ae. . See the section on using RWTS immediately
following.

MOTOR OFF/ON:

LOA $C088 , X TUen IIOtor off.

LOA SC089 ,X TUen motoe on .

NOTE: A sufficient delay should be peovi1ed t o allow the
IIOtor ti.e to come up to speed . Shugart recommends one
second, but DOS i s able to reduce this delay by watching the
r •• d latch until data starts to change .

ENGAGE DRIVE 112:

LOA SC08A,X

LOA $C088 ,X

READ A BYTE:

READ LOA $C08C,X
BPL REAO

Engage drive 1-

Engage drive 2.

NOTE; lC08E , X already have been accessed to aAsuce Read
-ade . The loop i. necessary t o assure that the accu_ulator
will contain valid data. If the data latch does not yet
contain valid data the high bit will be zero.

SeNSE WRITE PROTECT:

LDA $C080,X
LOA $C08E.X
8MI ERROR

Sense write protect.
If high bit set, pro tected.

WRITE LOAD AND WRITE A BYTE:

LDA MTA
STA $C080,X
ORA $C08C ,X

wri te load.
Write byte .

NOTE ; $C08P ,X mu . t already have been accessed to insure
Write mode and a 100 microsecond should be inVOked
before writing .

6-3

Due to hardware con.traint., data bytes .ust be written In
32 cycle loops . Below is an exaaple for an l.-ediate load
of the accu.ulator. followed by a write . TiMing i. so
critical that different routi nes .. y be neceasary , depending
on how the data is to be acce.sed, and code can not cro ••
MeMOry page boundariea without an adjust.ent .

LOA 1$05
JSR WRITE9
LOA t$M
JSR WRITE9

(2 cycl ••)
(6)
(2)
(6)

WJUTZ9 CLC (2)
WRITB7 PKA Il)

PLA (4)
WRITB STA $C08D,X (5)

ORA $C08C,X (4)
RTS (6)

CAWNQ READIWAtTE TAACKISECTOA (AWTS)

Read/Write Track/Sector (RWTS) e xiats in every veraion of
DOS aa a collection of subroutine., occupying roughly the
top third of the DOS prograM . The interface to RWTS I.
standardized and thoroughly docu.ented by Apple and .. y be
called by a prograM running outside of DOS.

There are two subroutines which Muat be called or who ••
function .ust be perfor.ed .

JSR $3E3 - When this subroutine I. called, the Y and A
reglstera a.re loaded with the addrea. of the Input/Output
control 8lock (108) used by DOS when acce.aing RWTS. Th.
low order part of the addreaa i. in Y and the high ord.r
part in A. This aubroutine ahould be called to locate the
J08 and the re.ult ... y be atored in two zero page locationa
to allow atoring value a in the J08 and retrieving output
values after a call to RWTS. Of course , you asy aet up your
own JOB aa long a. the Y and A registera point to your lOB
upon calling RNTS.

JSR $3D9 - Thia i. the asin entry to t he RWTS routine.
Prior to aski ng this call , the Y and A regi.tera Muat be
loaded with the &ddre .. of an 108 describing the operation
to be Thia May be done by firat calling $lBl a.
described above. The JOB .uat contain appropriate
Infor.atlon aa defined in the li.t on the faCing page
(offset. are given in hexadeci .. l) I

•
•

•

•

•
•

•

•
•

•

•
•

•

BYTE
00
01
02
OJ
04
0'
06-07
08-09

OA
DB
DC

00

DE
OF
10

BYTE
00
01
02-0)

INPUT/OUTPUT CONTROL BLOCK - GENERAL FORMAT

DESCRIPTION
Table type . must be $01
Slot number times 16 (sO: a_slot. Example: 560)
Dr ive number (Sal or S02)
Volume number expected (SOD any volume)
Track number (SOD through 522)
Sector number ($00 through SOP)
Address (LO/ HI) of the Device Characteristics Table
Address (LO/ HI) of the 256 byte buffer for
READ/ WRITE
Not used
Byte count for
COll\llland code

partial sector
$00 - SEEK
SOl. READ
S02 • WRITE
504 - FORMAT

($00 for 256 bytes)

Return code - The processor CARRY flag is set upon
return from RWTS if there is a
non-zero return code:

sao - No errots
S08 - Error during initialization
SID - Write protec t error
$20 - Volume mismatch error
$40 - Drive ercor
S80 - Read error (obsolete)

Volume number of last acceaa (must be initialized)
Slot number of last access · 16 (must be initialized)
Drive nuaber of last access (must be initialized)

DEVICE CHARACTERISTICS TABLE

OESeRJ PTION
Device type (should be $00 for DISK II)
Phaaes per track (should be $01 for DISK III
Motor on time count (should be $EfDB for DISK I I I

NOTE: RWTS uses zero-page location $48 , which is alao USed
by the APPLE monitor to hold the P-register value . Location
$48 should be set to zero after each call to RWTS.

6-5

RWTS lOB BY CALL TYPE

SEEK Move disk arm to desired track

Input : Byte 00
01
02
04
06/ 07
DC
OF
10

- Table type (SOl)
Slot number * 16 (sO: s-s lot)

- Drive number (SOL or S02)
- Track number (S OO through S22)
- Pointer to the OCT
- Command code for SEEK (SOO)
- Slot number o f la s t access * 16
- Drive number of last access

Output: Byte 00
OF
10

- Return code (See previous definition)
- Current Slot number * 16
- Cu rrent Drive number

READ

Input :

Read a sec t o r into a speci fied buffer

Byte 00
01
02
03
04
05
06/ 07
08/ 09
O.
DC
DE
OF
10

Table type (Sal)
- Slot number * 16 (sa : s-slot)
- Drive number (Sal or S02)
- volume number (Sa O matches any
- Track number (SaO through S22)

Sector number (Sa O through SOF)
- Pointer to the OCT

Pointer to 256 byte user data butter
- Byte count per sec tor (SaO)
- Command code for READ (SOL)

Volume number of last access
Slot number of last access * 16
Drive number o f la s t access

Output : Byte 00
DE
OF
10

Return code (See previous definition)
Current Volume number
Current Slot number ' 16
Current Drive number

WRITE Write a sec t o r from a speci fied buffer

Input: Byte 00 - Table type (SOL)
01 Slot number ' 16 (sO : s-slot)
02 Drive numbe r (SOL o r S02)
0) - Volume number (SOO matches any
04 - Track number ($ 00 through $22)
05 - Sector number ($00 through $OF)
06/ 07 - Pointer to the OCT
08/ 09 - Poin ter to 256 byte user data bulCer
OB Byte count per sector ($00)
OC Command code for WRITE (S02)
OE Volume number of access
OF S l ot number of last access ' 16
10 Drive number of last access

Ou tput : Byte 00
DE
OF
10

Return code (See previous definition)
Current Volume number
Cur rent Slot number * 16
Current Drive number

•

•

FORMAT Initialize the diskette (does not put bos on disk ,
c r ea t e a VTOC/CATALOG , or s t ore HELLO program)

Input : Byte 00
01
02
03
06/07
OC
OE
OF
10

Output : Byte 00
OE
OF
10

Table type (Sal)
Slot number • 16 (sO : s·slot)
Dr ive number (SOl Or S02)
Volume number ($00 will default

- Pointe r to the OCT
Command code fo r FORMAT (S0 4)
Volume numbe r of last access
Slot number of last access • 16
Drive number of last access

to 25 4)

Return code (See previous definition)
Current volume number
Current Slot number - 16
Curre nt Dr ive number

CALLING THE DOS FILE MANAGER

The DOS file manager exists in every version of OOS as a
collection of subroutines occupying app roximately the
central third of the OOS program . The interface to these
routines is generalized in such a way that they may be
called by a program running outside of DOS. The definition
of this interface has never bee n published by APPLE (or
anyone else , for that manner) but since the calls can be
made through fixed vectors , and, the format of the parame t e r
lists passed have not changed in all the versions of DOS ,
these routines may be relied upon as -safe-. Indeed , the new
FlO utility program uses these routi nes to process files on
the diskette .

There are two subroutines which must be called in order to
access the file manager .

JSR S3DC - When this subroutine is called , the Y and A
registers ar@ loaded with the address of th@ file manager

• parameter list. The low order part of the address is in Y
and the high order part in A. This subroutine must be called
at least once to locate this paramete r list and the results
may be stored in two zero page locations to allow the
prQ9rammer to set input values in the parameter list and to
locate output values there after file manage r calls .

•

JSR S3D6 - This is the main entry t o t he file manager . Prior
to making this call the paramete r list , located using t he
call described above , must be completed app ropriate l y ,
depending upon t he type of call , and the X register must be
set to eithe r zero or non - zero as fo l lows:

x • 0 - If file is not found , allocate it
X I 0 - If file is no t found , do not allocate one

Normally , X should be ze r o on an OPEN call for a new file
and non-zero for all othe r call types.

6-7

Three buf fer s mus t be provided to the file manager by the
programmer, allocated by him in his memory. These buffers,
together, occupy 557 bytes of RAM, and must be passed to the
file manager each time t hei r associated file is used. A
separate set o f these buffers mus t be maintained for each
open file . DOS maintains buffers for this purpose, as
described in earlier chapters , in high RAM. These buffers
may be - bo rrowed- from DOS if care is taken t o let DOS know
about it . A method for dOing thi s will be outlined later.

A chart giving the required inputs for each call type to lhe
file manager i s given in Figure 6.2. The general format 0'
the file manager parameter list is as follows:

FILE MANAGER PARAMETER LIST - GENERAL FORMAT

BYTE DESCRIPTION
00 Call type: Ol-OPEN OS-DELETE 09-RENAME

02-CLOSE 06-CATALOG OA-POSITION
D)-READ 07-LOCK OB-INIT
D.- WRITE OS-UNLOCK OC-VERIFY

01 Sub-call type for RtAD or WRITE:
DO- No operation (igno re call entirely)
Ol-READ or WRITE one byte
02-READ or WRITE a range of by te s
D)-POSITION then READ o r WRITE one byte
04-POSITION then READ/WRITE a range

02-09 Parameters spec ifi c to the call type used. See
FILE MANAGER PARAMETER LIST BY CALL TYPE below.

OA Return code (note: not all return codes can occur

DB Not used

for any call type). The processor CARRY
flag is se t upon return from the file
manager if ther e 1s a non-zero r etu rn code,
DO-No errors
Ol-Not used (-LANGUAGE NOT AVAILABLE-)
02-Bad call type
OJ-Bad sub- call type (grea ter than four)
D.-WRITE PROTECTED
OS-END OF DATA
06-FILE NOT FOUND (was allocated if X-D)
07-VOLUME MISMATCH
OS-D ISK I /O ERROR
09-DISK FULL
OA-FILE LOCKED

DC-DO Address of a 45 byte buffer which wi ll be used by the
file manager to save its status between calls . This
area is called the file manager workarea and need not
be initialized by the caller but the space must be
provided and this two byte address field initialized .
(addresses are in low/ high order format)

DE-OF Address of a 256 byte buffer which will be used by the
file manager to maintain the curr ent Track / Sector List
sector fOr the open file. Buffer itself need not be
initialized by the cal l e r.

10-11 Address of a 256 byte buffer which will be used by the
file manager t o maintain the data sector buffer .
Buffer need not be initialized by the caller .

• -8

• • - • - •
• - • • • i _. • • •

• • • - • -- • .- • - --- --- •

•

/ I

. , . • • • • . , . - • . , . - _. -- • • • --- - -I r-
I-.- - r-- -- I-I • • • - ---- r- -• • I -I- -! ... • • • r--, • • _.
r-_. • • • - .- I-- -, '-

• • •
". c-• • • --

FIGURE 5.2 - FILE MANAGER PARAMETER LIST
REOUIRED INPUT

" "
c c -
" "

Q " -
c C

C C C

CALLING -mE RLE MANAGffi

., . • I "
I

-.- ... -... ... -

'. .0, -
• ... <JOT ... U_ - --

"

"

6-9

FilE MANAGER PARAMETER LIST BY CAll TYPE

OPEN Locates or creates a file . A call to POSITION
follow every OPEN.

Input: Byte 00 01
02/ 0) - Fixed record length or 0000 if
04 - Volume number or 00 for any volu ••
as - Drive number to be used (01 or 02)
06 - Slot number to be used (01-07)
07 - File type (used only for new file.,

$00 - TEXT
$01 INTEGER BASIC
$02 APPLESOFT BASIC
$04 BINARY
$08 - RELOCATABLE
$10 • S TYPE FILE
$20 A TYPE FILE
$40 - B TYPE FILE

08/ 09 Address of file ()O charactera)
(Low/ high forMat)

DC/ DO - Addres. of file manager workar.a butl r
DE/ OF - Addre s s of T/ S List aector buffer
10/ 11 Address of data sector buffer

Byte 07
OA

File type of file which was OPENed
- Return code (see previous definltlona.

CLOSE Write out final sectors, update the Catalog.
A CLOSE call is required eventually for every OPf.N

Byte 00 - 02
DC/ DO - Addres s o f file manager workarea hurl,
DE/ OF - Address of T/ S List sector buffer
10/ 11 - Address of data sector buffer

Output: Byte OA Return code

READ
WRITE

Input:

Read one or a range of bytes the file to
Write one or a range of bytes from .e.ary to the rll

Byte 00
01

02/ 0)
04/05
06/ 07

0) (READ) 04 (WRITE)
- Subcode:

00 - No operation
01 • READ or WRITE one byte only
02 • READ or WRITE a range of byt ••
0) - POSITION then READ/WRIT! one
04 • POSITI ON then READ/ WRIT!
(Subcodes 0) or 04) Record number
(Subcode a 0) or 04) Byte off.et
(Subcodes 02 or 04) Number of byte. In
range to be read or written . (No., tOt
WRITE , thia length muat be one Ie'.
than the ac tual lenqth to be written)

[
[

•

•

•

•

•

•

•

08/ 09

••
OC/ OO
OE/ OF
10/ 11

02 or 04) of range of
bytes to be written or address of
buffer to which bytes are to be read.
(WRITE , Subcodes 01 or 03) single byte
to be wd tten .
Address of file manager workarea buffer

- of T I S List sector buffer
Address of data sector buffer

Output : Byte 02/ 03 - Record number of current file position
04/ 05 Byte offset of current file position-
08 - (READ, Subcodes 01 or 03) Byte read
OA Return code

-The current file position is updated to point t o the byte
f ollowing the data read or written .

DELETE Locate and delete a file , freeing its sectors.

Input : Byte 00 - 05
are the same as with OPEN call type)

Output : Byte OA - Return code

CATALOG Produce a catalog listing on the output device .

Input: Byte 00 ., .,
OC/ OD

Output: Byte OA

.,
Slot
AddresS of file manager workarea buffer

- Return code

LOCK Lock a

Input: Byte 00 07
are the saNe as with OPEN call type)

Output: Byte Oil. - Return code

UNLOCK Unlock a file.

Input: 00 - 08
(remainder are the same as with OPEN call type)

Output: Byte OA - Return code

RENAME Rename a file.

Input : Byte 00 - 09
02/ 03 - Address of file name (30 bytes)
(remainder are the same .s with OPEN call type)

Output: Byte OA - Return code

POSITION Calculate the location of a record and/ or byte
offset in the file. Position such that next READ or
WRITE will be at that location in the file . A call
to POSITION (either explicitly or implictly u.lnq
subcodes of READ or WRITE) is required prior to lh.
first READ or WRITE . 8ytes 02 through as .hould be
set to zeros for a normal position to the beginnlnQ
of the file .

Input: Byte 00
02/ 0) -

04 / 05 -

DC/ DO

OA
Relative record number for files with.
fixed length record size or zero . ,itll
record of file is record 0000.
Relative byte offset into record or ot
entire file if record number i. zero.
Address of file manager workarea butt.r.

Output: Byte OA Return code

INIT Initialize a slave diskette . This function formats.
diskette and writes 4 copy of DOS onto tracks 0-2.
A VTOC and Catalog are also created. A HELLO
is not stored , however ,

Input: Byte 00 DB
01 Pirst page of DOS image to be copied to

the diskette. Normally $90 for a 48K
machine.

04 - VolUme nuaber of new diskette.
as - Drive nuaber (01 or 02)
06 - Slot number (01-07)
OC/ OD - Address of file manager workarea buft.r.

Output: Byte OA - Return code

VERIFY Verify that there are no bad sector. in a fila by
reading every sector.

Input: Byte 00 - oc
(remainder are the same as the OPEN call type)

Output : Byte OA - Return code

6-12

-
< r • r • •
[

• r
• r • r • r •
1 • r • • [· , I •
[

• •

DOS BUFFERS

Usually it is desirable to use one of COS's buffers when
calling the file manager to save meMOry . OOS buffers consist
of each of the three buffers used by the file manager
Nanagee workarea, TIs List sector, and data sector) as well
.s a 30 byte file name buffer and some link pointers . All
together a DOS buffer occupies S95 bytes of memory. The
address of the first DOS buffer is stored in the first two
bytes of DOS (59DOO on a 48K APPLE Ill. The address of the
next buffer is stored in the first and so on in a chain of
linked ele.ent8. The link address to the next buffer in the
last buffer is zeros . If the buffer is not being used by
OOS , the first byte of the file name field is a hex 00 .
Otherwise, it contains the first characte r of the name of
the open file . The language programmer should
follow these conventions to avoid having 005 reuse the
buffer while he is using it. This means that the name of the
file should be stored in the buffer to reserve it for
exclusive use (or at least a non-zero byte stored on the
first character) and later, when the user is thrOugh with
the buffer , a 00 should be stored on the file name to return
it to DOS ' s use. If the later is not done , DOS will
eventually run out of available buffers and will refuse even
to do a CATALOG command . A of the 005 buffers for
HAXFILE5 3 is given in Figure 6 . 3 and the format of a OOS
buffer is given below .

arT.
OOO/ OFF
100/ IFF
200/22C
22D/ 24A

24B / 24C
240/ 24£
24P!250
251 / 252

DOS BUFFER FORMAT

DESCRIPTION
Data sector buffer (256 bytes in lengthl
T/S List secto r buffer (256 bytes in length)
File .anager workarea buffer (45 bytes in length)
File name buffer (30 bytes in length)
First byte indicates whether thi s DOS buffer is
being used . If hex DO, buffer is free for use.
Address (Lo/ Highl of file Manager workarea buffer
Address of T/ S List sector buffer
Address of data sector buffer
Address of the file field of the next buffer on
the chain of buffers. If this is the last buffer on
the chain then this field contai ns zeros.

6-13

BUFFER . ,

6- 14

DDS

BUFFER .,

BUFFER .,

POINTERS

FILE NAME BUFFER

FILE N ... GER WORKAAE ... 8UFFEA ------ - - --- -
TIS LIST SECTOR BUFFER

DATA SECTOR BUFFER

•

L....·f------- ---- ----I __ HIMEM

FIGURE 63 - DOS FILE BUFFERS

•

•
•

•

•

, .
, ..

, .

r
r
I

•

•

•

THE FILE MANAGER WORKAAEA

The file manager workarea contains the variables which,
taken together , constitute all of the information the file
manage r needs to deal with an open file. Each time t he file
manager finishes processing a call , it copies all of its
important va r iables into the file manager workarea buffe r
provided by the caller. Each subsequent time the file
manager is called , the first thing it does is to copy the
contents of the file manager workarea buffer back into its
variables so that it may resume processing fo r the file
where it left off on the pr evious call . ordinarily , the
pr09rammer will have no need to worry about the contents of
this workarea , since most of the useful information is
present in the parameter list anyway . Occasionally, it is
handy to know more about the open file. For these cases , the
format of the file manager workarea is given below :

BYTE
00 / 01
02 / 03 O.

05/ 06
07 O.
09 / 0A
OS/ OC
OO/ OE
OF/ lO
11/ 12
13/ 14

" 16
17 / 18
19/ 1A
lS/ lC
lO/ lE
1F
20
21/24
2S
26
27
28
29
2A/ 2C

FILE MANAGER WORKAREA FORMAT

DESCRIPTION
Track / Sector o[first T/ S List for file
Track / Sector of current T/ S List [or file
Flags:

SO-TI s List buffer changed and needs writing
40 - 0ata buffer has been changed and needs writing
02-Volume freespace map changed and needs writing

Track/ Sector oC current data sector
Sector offset into catalog to entry for this file
Byte offset into catalog sector to entry for file
Maximum data sectors represented by one T/ S List
Offset o[first sector in current T/ S List
Offset of last sector in current T/ S List
Relative sector number last read
Sector size in bytes (256)
Current poSition in sectors (relative)
Current byte offset in this sector
Not used
Fixed record length
Current record number
Byte offset into current record
Length of file in sectors
Next sector to allocate on this track
Current track being allocated
Sit map of available sectors on this track (rotated)
File type (BO-Iocked) 0 , 1,2 , 4-T,I,A , B
Slot number times 16 (example: $60-slot 6)
Drive number (01 or 02)
volume number (complemented)
Track
Not used

6-15

COMMON ALGORITHMS

Given below are several pieces of code which are used when
working with DOS:

LOCA TE A FREE DOS BUFFER

The following sub routine may be used to locate an
unallocated DOS buffer for USe with the DOS file manager.

FBUPF LOA $302 LOC.\TE DOS LOAD POINT
STA Sl
LOY 10
STY $0

0

GBUFO LOA (SO) • Y LOCATE NEXT 005 BUFFER
PHA
'NY
LOA (SOI .Y
STA Sl
PLA
STA $.
BNE GBUP GOT ONE
LOA Sl
BEQ NBUP NO BUFFERS FREE

0

GBUF LOY 10 GET FILENAME
LOA (SO) • Y
BEQ GOTBUF 'TS PREE
LOY ". ITS NOT FREE
B.E GBUPO GO GET NEXT BUFFER

0

GOTBUP CLe INDI CATE-GOT A PREE BUFFER
RTS RETURN TO CALLER

NBUF SEC INDI CATE-NO FREE BUFFERS
RTS RETURN TO CALLER

WHICH VERSION OF DOS IS ACTI VE?

In case the has version dependent code, a check of
the DOS version may be required:

CLe
LOA 10 ADD Sl6BE TO DOS LOAD POINT
AOC I$BE
STA $0
LDA $302
AOC 1$16
STA $1
LOY 10
LDA ($0) tY GET DOS VERSION NUMBER (2 OR J)

•

IS DOS IN THE MACHINE?

The follawinq series of instructions should be used prior to
attemptinq to call RWTS or the file manager to insure that
OOS is present on this machine.

LOA
CMP
BNE

S)OO
'S4C
NOOOS

GET VECTOR JMP
IS IT A JUMP?
NO , 005 NOT LOADED

WHICH BASIC IS SELECTED?

Soae depend upon either the INTEGER BASIC ROM or
the APPLESOFT ROM . To find out whi ch is active and select
the one desired , the following sub routine can be called .
Pirat the A reqister is loaded with a code t o indicate which
BASIC is deaired . S20 is used for INTEGER BASIC and S 4C is
uaed for APPLESOFT . To aet up for APPLESOFT , for example :

LOA 'S4C CODE FOR APPLESOFT
JSR SETBSC CALL SUBROUTINE
BNE ERROR LANGUAGE NOT AVAILABLE

SETBSC CMP SEOOO CORRECT BASIC ALREADY THERE?
BEQ RTS VES
STA scoao NO , SELECT ROM CARD
CMP SEOOO NOW 00 WE HAVE IT?
BEQ RTS VES
STA SCOal NO, TRY ROM CARD OUT
CMP SEOOO COT IT NOW?

RTS RTS IN ANY CASE , EXIT TO CALLER

SEE IF A BASIC PROGRAM IS IN EXECUTION

TO deter.ine if there is a BASIC prcgra. runninq or if BASIC
ia in i .. ediate coaaand -ade , use the followinq statements:

• . IF INTEGER
LOA
8MI
BPL

BASI C IS '0' EXEC
NOEXEC

ACTIVE • . .

PROGRAM EXECUTING
PROGRAM NOT EXECUTING

• . IF APPLESOP'T
LOX

BASIC IS ACTIVE • ••

INX
BEQ
LOX
CPX
BEQ
BN!

S76 GET LINE NUMBER

NOEXEC
$33
ISOO
NOEXEC
EXEC

PROGRAM NOT EXECUTING
GE'I' PROMPT CHARACTER
PROMPT IS A -)- ?
YES , NOT EXECUTING
ELSE, PROGRAM IS EXECUTING

6·17

,

•
•

•

•

•

CHAPTER 7
CUSTOMIZING DOS

Although DOS usually provides most of the functionality
needed by the BASIC or assembly language programmer, at
times a custom change is required . Making changes to your
copy of DOS should only be undertaken when absolutely
necessary, since new versions of OOS are released from time
to tiMe , and the job of moving several patches to a new
version of DOS every few months can become a burden . In
addition, wholesale modification of DOS without a clear
understanding of the full implications of each change can
result in an unreliable system .

SLAVE VS MASTER PATCHING

The usual procedure for making changes to OOS involves
·patching- the object or .achine language code in DOS. Once
a desired change 1s identified, a few instructions are
stored over other instructions within OOS to modify the
program . There are three levels at which changes to DOS may
be applied.

1 - A patch can be made to the DOS in memory. If this is
done, a later reboot will cause the change to -fallout- or
be re.aved.

2 - A patch of the first type can be Made permanent by
Initializing a diskette while running the patched DOS. This
procedure creates a slave diskette with a copy of OOS on
tracks 0, I , and 2 which contains the patch . Each time this
newly created diskette is booted the patched version of OOS
will be loaded . Also, any slave diskettes created by that
diskette will also contain the patched version of OOS.

) - The patch is applied directly to a master diskette . This
Is ao.ewhat more co.plicated . Either the patch may be made
to the i.age of DOS on the first three tracks of a master
diskette using a zap program , or MASTER CREATE may be used
to write the changed copy of DOS to a new diskette . The
follOWing procedure may be followed to do this :

BLOAD MASTER CREATE
Get into the monitor (CALL -151)
Store a $4C at location $800 (80D : 4C)
Execute MASTER CREATE {BOOGI

7-1

When MASTER CREATE finishes loading the DOS
it will exit. You may use the monitor to make
changes in the image . MASTER CREATE loads DOS
into memory at $1200 such that Boot 2 (RWTS) i.
loaded first, followed by the main part oC DOS
starting at SICOO .

When all patches have been made , reenter MASTER CRF.ATr.
at location S820 (S2DG).

Complete the MASTER CREATE update normally. The
resulting diskette will have the patches applied.

This procedure will work for versions 3.2 , 3.2.1 , and l,' n(
DOS.

CUSTQMIZJNG DOS

AVOIDING RElOAD OF LANGUAGE CARD

A rather annoying addition to DOS 3 , 3 was a patch to the
Boot 2 code to store a binary zero in the first byte ot the
Language Card , forcing DOS to reload BASIC (either INTECER
or APPLESOPT) for every boot , whether or not the Machine w ••
just powered up . When the Machine is first powered up this
patch is not necessary, since the first byte of the Langu.qe
Card does not appear to OOS to be either BASIC , and it will
reload the card anyway , On subsequent reboots, more often
than not , a good oopy of BASIC already resides in the
Language Card and this patch results in a LANGUAGE NOT
AVAILABLE error message after booting a slave diskette.
Presumably the patch was added for version 3 . 3 to allow tor
the eventual possibility that a language like PASCAL who ••
fIrst byte of code just happens to match one of the BAStCs
would cause strange results in OOS . If the user always
powers the machine off and on between using 005 and any
other the patch may be removed as follows .

7-2

At SBPO) 148K) is a STA instruction which s t ores a zero on
the Language Ca rd. This instruction must be made into three
no-operation inst r uctions :

BPO) : EA EA EA
A slave diskette then be INITed using this modified
veraion of DOS and that diskette will have the patch in i t s
DOS . The address of the sto r e inst r uction for a)2K DOS is
7FO) and for a 16K DOS is)P01 .

INSERTING A PROGRAM BETWEEN OOS AND ITS BUFFERS

Once in a while it is useful to find a ·safe· place to load
a machine language program la printer driver , pe rhaps) whe r e
BASIC and DOS can never walk over it , even if DOS ia
coldstarted . If the program is less than 200 byte. long,
S)OO is a good choice . For larger programs , it is usually
better to -tuck- the program in between DOS and ita buffera
(aaau.lng the program ia relocatable and will run at that
location) . To do this , load the program into low RAM, copy
it to high RAM right below S9DOO (for a 48K machine) r over
the top of DOS's buffers, change the first buffer address at
$9000 to point below your ptQgt'OID , (temembet' to ollow 38

• extta bytes fot the filename and link fields) and J"'P to
$303 (DOS COLDSTART). This will cause OOS to rebuild its
buffel s below your progtam and about the memory
yout program occupies until the next time 005 is booted . Of
course . BASIC can not get at that memory either , since its
KIHEM is below the DOS buffers.

BRUN OR EXEC THE HELLO FILE

Ordinarily, when 005 finishes booting into memory , it
perfor.a a RUN command on the HELLO file in its file name
buffer (left there by the IN IT command which wrote DOS to
the diskette) . To change the RUN command to a 8RUN o r an
EXEC , apply the following patch to DOS (48K):

9£42:34 (for BRUN)
.. or • .
9E42:14 (for EXEC)

REMOVING THE PAUSE DURING A LONG CATALOG

Nor.ally , when a CATALOG command is done on a disk with many
filea , OOS will paUSe every time the screen fills with namea
to allow the user time to see the_ all . By preSSing any key
the CATALOG continues. If this pause is undesirable, apply
the following patch to DOS (UK):

AE34:60

7-3

1

CHAPTER 8
DOS PROGRAM LOGIC

This chapte r will take a detailed look at the ope r At ion of
the DOS program itself to aid the APPLE user in
understanding it and to help him to make intelligent use of
its facilities. Each subroutine and group of variables or
constants will be covered separately by storage address , The
enterprising programmer may wish to create a disassembly of
DOS on his printer and transfer the annotations given here
directly to such a listing. Addresses used will be fOr DOS
3 .3 and for a 4BK master diskette version of OOS . Slot 6 is
assumed. Unless specifically indicated by a $ character ,
lengths are given in decimal. addresses in hexadecimal (base
16) •

DISK II CONTROLLER CARD ROM - BOOT 0

ADDRESS

C600- C6SB This routine is the first code executed when a disk
is to be booted . It receives control via PRI6 or
C600G or 6 control-Po
Dynamically build a translate table (or converting
disk codes to six bit hex at location SJ56-SlFF.
Call an RTS instruction in the monitor ROM and
extract the return address from the stack to find out
the address of this controller card ROM.
Use this address to determine the slot number of this
drive by shifting $Csxx .
Save the slot number times 16 (S50)
Clear disk I/O latches , set read mode, select drive
I, turn disk dr ive on.
Pull disk arm back over 80 Lracks to recalibrate the
arm to track zero.
Set up parms to read sector zero on track zero to
location $800 .
Execution faUs throu9h into a general secto r read
subrou tine at C65C.

C65C-C6FA This subroutine reads the sector number stored at
$)0 on the track indicated by $ 41 to the address
stored at $26,$27.
Look for DS/AA/96 sector address header on the disk.
If 05/AA/AO is found and sector data was wanted, go
to C61\6 .

8-1

8·2

A DETAILED LOOK AT DOS

C68) Handle a sector addre •• block.
Read three double bytes from the disk and eombine
the. to obtain the voJu_. track, and sector nu.bet
of the aector being read fro. the dhk at this tillle.
Store the track at $40 .
Co .. the sector found to the sector wanted and the
track found to the track wanted.
If no _t.ch. go back to C6SC .
Othe r wise. if aector 18 correct , go to C650 to find
the aector dau itllelf .

C6A6 Handle sector data block.
Read the 85 byte. of secondary deta to $JOO-$355 .
Read 256 byte. of pti.ary data to the .ddrea. atored
at $26 , $27.
verify that the data checkaulII is vaUd.
If not . start. over at C6SC .
-NibbUhe- the prillary and secondary data t0gether
into the primary data buffer ($26 , $27) .
lncre.ant $27 (addr ••• p.ge of read data' and $30
(aector nuaber to be read) and check againat S800
to see if additional aector. need to be read .
If so , reload slot ' 16 and 90 back to C65C to read
next aector. (This feature La not uaed when loading
DOS but ill used when loading fro. a BASICS diskette .)
Otherwise, 90 to saOL to begin executin9 the lIecond
stage of the bootatup .

•

•

•

..

FIRST RAM BOOTSTRAP LOAOER - BOOT 1

AODRESS

0801-084C This routine loads the second RAM loader, Boot 2,
includin9 RWI'S , into memory and jumps to it .
If this is not the first entry to Boot 1 , go to $81F.
Get slot - 16 and shift down to slot number.
Create the address of the ROM sector read subroutine
(C6SC in our case) and store it at $3E,$3F .
pick up the first memory page in which to read Boot 2
from location $8FE , add the length of Boot 2 in
sectors from $8FF , and set that value as t he first
address to which to read (read last page first) .

081F Get sector to read, if ze r o, go to $839.
Translate theoretical sector number into physical
sector number by indexing into skewing table at $8 40.
Dec r ement theoretical sector number (8FF) for next
ite r ation th r ough.
Set up parameters for ROM subroutine (C6SC) and
jump to it . It will return to $801 when the sector
has been read.

08)9 AdjUst page number at 8rE to locate entry point of
Boot 2 .
Perform a PRIO and INIO by calling the monitor .
Initialize the monitor (TEXT mode, standard window,
etc .)
Get slot - 16 again and go to Boot 2 ($3700 for a
master disk, $B700 in ita final relocated location).

DOS 3.3 MAIN ROUTINES

ADDRESS

9000-900F Reloeatable address constants
9000 Address of first DOS buffer at ita file name field.
9002 Address of the 005 keyboard intercept routine.
9004 Address of the DOS video intercept routine .
9006 Address of the primary file name buffe r .
9D08 A.ddress of the secondary (RENAME) file name bUffer.
900A Address of the r ange length parameter used for LOAD.
9DOC Address of the 005 load add r ess ($9000).
9DOE Address of the file manager parameter list .

9010-901C 005 video (CSWL) intercept's state handler address
table . States are used to drive the handli ng of DOS
cOll\lllands as they appear as output of PRINT statelflents
and this table contains the address of the routine
whieh handles each state from state 0 to state 6 .

'-3

901E-90SS Com.and handler entry point table. This table
contain. the address of a command h.ndler .ubroutin.
for each OOS cOlMland in the following standard orda "

IN IT AS4F
LOAD M13
SAVE 1.)97
RUN MDI
CHAIN FO
DELETE 1.263
LOCK A211
UNLOCK A275
CLOSE A2EA.
READ AS18
EXEC A5C6
WRITE ASI0
POSITION ASOO
OPEN A2A3
APPEND A298
RENAME A28l
CATALOO AS6E
MOH A233
NOMOO A2)0
PR' A229
tN' A22E
KAXFILES A2Sl
FP AS7"
HIT "59E
8SAVE A3Jl
BLOAO 1.350
BRUN 1.38£
VERIFY A270

9056-9061 Active 8ASIC entry point vector table . The addr •••••
stored here are INintained by OOS such that th.y
apply to the current version of BASIC runninIJ.

9056 Addres. of CHAIN entry point to BASIC.
9058 Address of RUN .
90SA Addres. of error handler.
90SC Address of BASIC coldstart .
905! Address of BASIC war •• tart .
9060 Addre •• of BASIC relocate 'APPLESOFT only).

9062-906B Image of the entry point vector for INTEGER BASIC.
This i_g_ is copied to 9056 if INTEGER BASIC is .. d.
active.

906C-9077 ll11age of the entry point vector for the ROM version
of APPLESDFT.

9078-9083 taage of the entry point vector for the RAM version
of APPLESDFT .

9084-90BE OOS coldstart entry routine.

8-4

Get the slot and drive numbers and atore as defaull
values for command keywords.
Copy APPLESDFT ROM or INTeGER SASIC entry point
vector into current BASIC entry point vector .
Relllelllber which BASIC is active .
Go to 9001 .

E

•

9DSP-90E9 DOS war.start ent ry r outine .
Get the r eaelRbe r ed BASIC type and ee t the ROM card
as necessary (cal l s 11.582) .

9001 Reaeaber whether entr y is cold.tart o r war .etart
Call 11.851 to replace DOS keyboard and video
intercepts,
Set NOMaN C, I,O.
Set video intercept handler atate to O.
Coldstart or war.start the current BASIC DOS).
(OOS will next gain control when BASIC print. ita
input prOMpt cha racte r)

9DEA-9E50 Firat entry processing for OOS . This routine is
called by the keyboard intercep t handler when the
first keyboard input request 18 by BAS I C after
• DOS coldstart.
If RAM APPLESOFT 18 active , copy Ita entry point
vector to the active BASIC entry point vector and
blank out the pel •• ry file name buffer so that no
HELLO file will be run.
Set MAXFILES to 3 by detAult.
CAll 10104 to build the DOS file bufters.
If an EXEC active, close the EXEC file
Set the vh.'leo intercept state to 0 And indicate
war.start status by CAlling A75S.
If the lAst ca.-and executed VAS not INIT (this DOS
was not just booted) , go to 9E45 .
Otherwise , copy An image of the OOS vector to
$300-$lFf' .
POint $lF2,$]F] to DOS war.start routine .
Set the AUTOSTART ROM power-up byte since the RESet
handler address was changed.
Set the COCIland index for RUN (to r un the HELLO file)
and go t o 10180 t o execute i t.

9E 45 See if there is a pending
It so , go to 10180 to execute it. Otherwi se , return
to ca lle r .

9E5t-9E7f' An i.age of t he DOS page 1 JUMP vector which the
above routine copies t o $lOO-$lFF . See Chapt e r 5 for
a description of ita contents.

9E81-9E89 OOS keyboard in t e rcept r ou tine .
Call 9EOl to SAve the registers at entry t o POS.
It not colds tarting or reading a disk file,
go to 9E9£.
Get value in II register at en try and echo it on the
screen (erases tlashing cursor).
I f in read state (r eading a tile) go to 106 26 to get

_ next byte ho. diak file .
Otherw1Be , call !JOEl. to do fir s t entry proces. ing .
Put cu r sor on ac ceen in next position .

9£9E If EXECing. call A682 to get the next byte trOll! the
EXEC fUe.
Set the video intercept s tate to 1 (input echo) .
Call 9FSA to re s tore the regi.ters at entry to
Call the true keyboard input routine .
SAve the inpu t charActer so that it will be restored
with the reg1Bte r s in the A register .
00 the SAllie with the new X register value .
Exit DOS via 9F83.

8·5

9EBA-9EBC A to the true KSWL handler routine .

9ESD-gEDO DOS video intercept routine .
C.ll 9EOl to •• ve the regi.ters at entry to DOS.
Get the video intercept state and, using it aa an
index into the s t ate handler table (9010) , go to
the proper handler routine, passing 1 t the character
being printed.

9£Dl-9£2A Co-=on intercept save regi8ters routi ne .
Save the A, X, Y , and S registers at AAS9-AASC.
While in DOS , restore the true I / O handlers (XSWL and
CSWL) to $J6-$J9 .
Return to caller.

9EES-9FII State 0 output handler. --start of line--
If a RUN cOlllllland was interrupted (by loading RAM
APPLESOF'T) go to 9F78 to complete it.
If read nag is on (file being read) and output II a
-1- character (BASIC INPUT) , go to state 6 to Skip
It .
If read nag is on and output is prODipt character
UJJ) go to atate 2 to ignore the line.
Set state to 2 (ignore non-DOS ca.aand) juat In caae.
If output character 1a not a control-D , go to
.tate 2.
Otherwiae , aet atate to 1 (collect posaible DOS
cOlUlandl, set line index to and fall through
to 8tate 1.

9F12-9F22 State 1 output handler. --collect DOS co.naand--
Uaing line index, store character in input buffer at
$200 .

line index.
If character la not a carriage return , exit DOS
via 9F9S (echo character on acreen if MON 1).
Otherwise , go to command scanner at 9FCD.

9P2J-9P2£ State 2 output handler , --non-DOS coemand ignore--
If the character ia not a carriage re t urn , exit DOS
via 9f'A4 (echo char..acter on sc r een).
Otherwiae , set atate back to 0 and exit DOS via
9PM.

9p2P-9 PSl State J output handler . - -tNPUT s t atement handler--
Set atate to 0 in caae tNPUT enda.

9PS2-9f' 60

...

tf character ia not a carriage return, echo it on
acreen •• long .a EXEC is not in effect with I
but exit DOS in any case . (KSWL will set atate-JI
Other wise , call to aee if SASIC ia executing.
pr09r •• or is in i_ediate MOde. If EX!C is running

.. or if BAStC is in i_ediate .ode, go to sute 1 to
collect the pos.ible DOS co.a.nd.
Otherwiae , exit DOS , echoing the chacacter as
appr opr iate .

State 4 output handler. --WRITE data to a fi l e--
I f t he characte r ia a carriage r eturn , .et stat. to
5 (sta r t of write data line,.
Call A60E to write the byte to the diak file.
Exit DOS with echo on acreen if HON O .

•

9F61-9F70 State 5 output handler. --Start of WRITE data line--
If the character is a control-D, go to state 0 t o
immediatelY exit write mode .
If the characte r is a line feed , write it and exit ,
staying in s tate 5 .
Otherwise, set the state to 4 and go to sta tt: 4.

9P7l -9P77 State 6 output handler. --Skip prompt characte r--
Set state to O.
Exit DOS via 9P9D (echo if MON I) .

9P78-9P82 Pin ish RUN command , interrupted by APPLESOFT RAM LOAD
Reset the -RUN interrupted- flag.
Call A85l to replace the DOS CSWL/ KSWL intercepts.
Go to A40C to complete the RUN command .

9P8l-9P94 DOS command scanner exit to BASIC routine.
If first character of command line is control-O,
go to echo exit (9F95).
Otherwise, set things up so BASIC won ' t see the DOS
command by passing II :tero length I tne (only a
carriage return). Flill through to echo exit.

9F95-9FSO Echo character on screen (conditionally) and exit DOS
9P9S Echo only if HON C set, otherwise, go to 9FSl.
9P99 EchO only if MON 0 set , other wi se , go to 9FBl.
9F9D Echo only if MON t set, otherwise , go to 9PBl.
9PA4 Always echo character .

Call 9FBA to restore registers at entry to DOS .
Call 9FCS to echo cha racter on screen.
Save contents of the registers after echoing.
Fall through to DOS exit routine .

9P8l-9PC4 DOS exit routine and register restore.
C.ll A8 S1 to put back DOS KSWL/CSWL intercepts .
Restore S (s tack) register frolll en try to DOS.

9FBA DOS regi ster restore subr outine.
Restore registers from first entry to DOS and teturn
to caller.

9FCS-9PC7 A jump to the true CSWL routine.

9PC8-9PCC Skip a line on the screen.
Load a carriage return into the A register and
call 9FCS to print it .

9PCD-A179 DOS command parse routine .
Set the cOllUlland index to -1 (none).
Reset the pending command flag (none pending).

9PD6 Add one to cOllUlland index.
If first cha rcater is a control-D, skip it.
Plush to a non-blank (call AIA4).
COCfIpa re cOJUlland to cOlMland nallle in comma nd name table
at A884 for the current command index .
If it doesn't _tch and if there are more entries
left to check, go back to 9P06.
If it does fIlatch, go to MIB.

8-7

Otherwise, if COlllllland waa not found in the table ,
check to see if the firat character was a control-O .
If so , go to A6C 4 to print -SYNTAX ERROR - .
Otherwise . call A75B to reset the state and
flag and go to 9F95 to echo the command and
(the COIMIand be: for BASIC, not DOS)

AOIB Co_pute an index into the operand table for the
command which waa entered.
Call 1.65£ to see if a BASIC progra. is executing.
If not , and the com.and is not a direct type command.
(according to the operand table) go to A6D2 to print
-NOT DIRECT COKMANO-.
Otherwise . if the command is RUN , make the prompt
character (S3)) non-printing.
Check the operand table to see if a first
lo a legal operand for this conulland.
If not, go to AOAO.
Otherwise . clear the filena.e buHer (call 1.095).
Flush to the next non-blank (cal1 Al.A.4) alld copy
the fllena_ operand to the firat filena_ buCfer.
Skip forward to a cOlDl!la if one waa not found yet.
I[a second filenallt'! ia legal [or th is co.mand, u ••
the code above to copy it into the second filename
buffer.
Check bot.h filena_a to see if they are blank.
If one waa required by the commnnd but not given .
give a syntax error or pass it through to BASIC .
(As in the caae of LOAD with no operands)
If all is _11, go t o AODI to continue.

1.095 A subroutine to blank both filenallt'! buffera .
AOAO Indicat. no filenallle paraed.

Check operand table to aee if a positional operand
ia
tf not, go to AODl to continue .
Othe r wi.e , call AIB9 to convert the nu.eric operand.
If o.itted, give syntax error .
If number converted exceed. l6 , give - RANGE ERROR-
IC nuaber i •• uppo.ed to be a alot nu.ber . give
-RANGE ERROR- if it 7 .
If nu.ber i. not a alot number , give -RANGE ERROR- Ir
it. is zero. (MAXPILES 0 ia a no-nol

AODl Set default. for the keyword operand. (V-O . L-O . S-O)
AOEt Get the Une oU.et index and flu.h to the next

non-blank , akipping any commas found.
If we are not yet to the end of the line , go to AIOC.
Check to .ee if any keyword. were given which were
nOl allowed Cor this co_and.
If go to 1.171. to proce •• the com.and .

AlOC Lookup the keyword found on the COIIIIIand line in the
table of valid keyword. (1.9411 .

8-8

If in table , give -SYNTAX ERROR- age.
Get. it. bit position in the keywords-given flag .
If r;he keyword does not have an operand value , go to
1.164.
Otherwise . indicate keyword found in flag.
Convert the nUllleric value aa.ociated with keyword .
Give -SYNTAX ERROR- me •• age it invalid .
Check to see if the nUlllber ia wir;hin the .cceptable
range •• given in the keyword valid range table at
M55 .

Save the value of the keyword in the keyword values
table starting at AA66.
Go parse the next keyword. go to AOES.

A164 Indicate C , I, or 0 keywords were parsed.
Update the "ON value in the keyword value table
appropr iately .
Go parse the next keyword. go to AOES.

AI7A-A11F Call ALSO to process the command , then exit via echo
at 9FSJ .

AlSO-A192 Do com.and .
Reset the video intercept sute to %ero.
Clear the file unager parameter list .
Using the CODIIIIand index , get the address of the
command handling routine from the cOlMland handler
routine table at 901E and go to it.
Ca.mand handler will exit to caller of this routine .

AI9J-ALAJ Get next character on cOlMland line and check to see
if it ts a carriage return or a cOl!lll'la.

AIA.-AIAD Flush oo..and line characters until a non-blank is
found.

AlAE-AI8S Clear the file manager parameter list at SSBS to
zeros .

AI89-AID5 Convert nuaeric operand froa line . Call
either AI06 (deciaal convert) or A20) (hex convert)
dependin9 upon the presence or lack thereof ot a
dollar si9n ($).

AID6-A202 Deci.al convert subroutine.

A20J-A228 Hexadeciaal convert subroutine.

A229-A220 Pain handler.
the parled nUllleric value and exit via PE9S in

the .onitor ROM .

A22E-A2J2 INln co.-and handler.
Load the parsed numeric value and exit via FESB in
the ..,nitor ROM.

A2))-A2JC HON co..and hand ler .
Add new MON fla9s to old in M5E and exit .

A2JD-A250 NOMON command handler.
If C was 9iven. put out a carriage return since this
line was echoed but its CR was not.
Turn off the proper bi ta in ""5E and exi t.

A251-A262 MAXFILES ca..and handler.
Turn off any EXEC tl1e which ia active .
Close all open files (call AJl6).
Set the new nullber at ""51 .
Go to A104 to rebuild the OOS file buffers and exit.

8·9

11.26]-11.270 OELETE command handler.
Load the delete file manager opeode (05) .
Call the file manager open driver (A2M) to perforM
the delete .
Find the file buffer used t o do the delete and freo
it (call 11.764).
E)(it to caller.

11.271-11.274 LOCK command handler.
Load the lock file manager opcode (07) and go to
11.277 .

A275-A27C UNLOCK command handler.
Load the unlock file manager opcode (0 8) .

11.27 7 Call the file manager open driver (A2AAj to perforM
the desired function .
Exit t o the caller via close (A2EA) .

A270-A280 VERIFY command handler.
Load the verify fUe manager opcode (OC) and go to
11.277 t o perforlll function.

M!81-A297 RENAME command handler .
Store address of second flle name in file manager
parameter Hst .
Load the rename fUe manager opcode (09).
Call the file manager driver at A2C8 .
Exit via close (A2EA) .

11.298-11.211.2 AFPENO command handler .
Call A2A] to OPEN the file.
Read the file byte by byte until a zero is found.
I f append flag is on . add one to record number
and turn flag off.
E)(it via a call to POSITION.

11.211.]-11.211.7 OPEN command handler .
Set file type as TEXT .
Go to A]05 to open file.

A2A8-A2E9 Command handler common file management code.
Set opcode to OPEN .

A2M If no L value was given on the command , use 0001 lind
store record length value in file manager parllllhL.

A2C8 Close file if already open.
Is there an available file buffer?
If not, issue FILE BUFFERS message.
Point $40.$41 at the free fUe buffer.
Copy filename t o file buffer (allocates the buffer)
(A14]) .
Copy buffer pointers t o file manager parmlist (A74I'lI.
Finish filling in the fUe manager parlllliat (A11A).
Set operation code in parmlist .
Exit through the file lIIanager driver .

A2EA-A2PS CLOSE command handler .
If no filename was given aa part of com.and,
go to A316 to cloae all files .
Otherwise, find the open file buffer for filen3111e
(A764) .
If no such file open, exit to caller.
Otherwise, close file and free buffer (A2FC) .
Go back through CLOSE co-and handler to .. ake Bure
there are not .are open buffers for the same file .

1'12rC-I'I31S Close a file and free its file buffer.
Find out if this buffer is EXEC's (I'I71'1P).
If so, turn EXEC flag off.
Release the buffer by ator ing a $00 on its filename
field .
Copy file buffer pointers to the file manager
par.list.
Set fUe manager opcode to CLOSE .
Exit through the file manager driver routine.

1'1316-A330 Close all open filea .
Point to firat file buffer (A792).
Go to A320.

I'IllB Point to next fUe buffer on ehain (1'1791'11 .
If at end of chain, exit to caller .

A320 la this file buffer EXEC'a?
If 50, akip it and go to AllB.
la it not in use (open)?
If 50, skip it and go to AllB.
Otherwise , cloae it and free it (I'I2FC).
Go to A316 to atart .. 11 OYer .

A331-A35C BSAVE cos.and h .. ndler.
Inaure that the A .. nd L keywords were preaent on the
ca..and.
If not, iaaue ·SYNTAX ERROR- meaaage .
Open and verify a B type file (A30S) .
Write the A keyword value as the first two bytes of
the file.
Write the L keyword value aa the next two bytes ot
the tile.
Uae the 1'1 value to exit by riting a range of bytes
trOll _JIOry to the file.

A3S0-A380 BLOAO command handler.
Open the tile, 19nor lng ita type.
Inaure the type is B.
If not, i.aue -FILE TYPE MISMATCH- Deasage.
Otherwiae , open B type tile and test file type (A30S)
Read the 1'1 value fro. the firat two byte. of flle .
If A keyword waa not given, use the value just read.
Read L value aa next two by tea in file.
Go to 1'1471 to read range of bytes to memory frOIl! fUe

1'138£-1'1396 BRUN command handler.
Call BLOAD command handler to load file into memory.
Repleee OOS intercepts.
Bxit DOS by jUIIPing to the II addreaa value to begin
execution of the binary progralD.

10]91-10304 SAVE co.-and handler.
Cet the active BASIC type (AAB6) .
If INTECER , 90 to .I,]BC .
tf APPLESOf"l', test $06 flag to see if progu_ ls
protected.
If 110 , ilillue ·PROCRAM TOO LARCE- lIIesliage.
Otherwise , open and test f o r A type file (A]OS).
Ca.pute progra. length (PCM£NO-LOMEMI .
Write this two byte length to file.
Exit by writing program image frolll LOHEM as a rang.
of by tea (A]FF).

A]ec Open and teat for I type file (10]05) .
Co.pute progu. length (HIMEH-PCMSTART).
Write this two byte length to file.
Exit by writing program image PGMSTART as a
range of bytes (A]FF) .

A]OS-AlOP Open and teat file type .
Set file type wanted in file Nnager par_Ust.
Call A2A8 to open fi Ie .
Co to A1C4 to check Cile type.

A]EO-AlPE Write a 2 byte value to the open file.
Store value to be written in file .anager par.llst.
Set write one byte opcodea.
Call file manager driver.
Call it again to write second byte and exit to caller

A]FF-A40r Read/ write a range of bytes.
Set the address of the range in fUe IUnager par .. 1 lat
Set subcode to read or write a range of byte •.
Call the file -anager driver.
Close the file .
Exit through the VERIFY command handler to Insur.
data was written ok.

10410-10412 tssue -PILE TYPE MISMATCH- .esssge .

A4l]-A419 LOAO command handler.

8-12

Clos. all filea (A]16) .
Open the fill! in question .
Is it an A or 1 type file?
If not , issue -f'ILE TYPE HISMA-TCn- mesaage.
Which BASIC i s active?
If INTECER, 90 to AHO.
Select APPLESOf"l' BASIC (A4BI) . This call could r •• ult
In DOS losing control if the RAM veraion must be
run .
Read firat two bytes of file as length of prOCJr ••.
Add length to LOMEM (program sUrt) to COlllput.
progra .. end.
Is progu .• end beyond HtHEM?
If so , close Cile and i.sue ·PROGRAM TOO LARGE-.
Set program end and start of variables pointers .
Read program as range of bytes to progralll s tart.
Replace DOS intercepts (10951).
CO to BAStC's relocation routine to convert. RAM
APPL2S0f"l' program to ROM and vice veraa a. needed.

•

•

•

110450 Select INTEGER BASIC (A4Bll.
Read leng th of progra. (fi rst two bytes in file) .
Ca.pute progra. sta rt (HlMEM-LENGTH I .
If zero or less than LOMEH . i.sue ·PROGRAM TOO LARGE -
message and close file .
Set proqraa s t art pointers.
Read prograa into _mary as a range of bytes.
Exit to caller .

A47A-A4M Read two bytes froa fUe (Address o r Length) .
Set up paralist to read two bytes to range length
field (M60) .
Call file .. nager driver.
Store value read as range length in file manage r
pa udht just in esse it wa s a length.

A4A8-A4BO Close file and issue ·PROGRAM TOO LARGE- .essage .

A4BI-A4DO Select desired BASIC .
If de.ired BASIC is already active, exit to caller .
Save current oo-aand index in case we .ust RUN
APPLESOP'T .
If INTEGER, go to A59E to selec t it .
Otherwise. copy priaary file naae to secondary
buffer to save it in ca.e RAM APPLESOP'T is needed.
Go to A57A to set APPLESOP'T.

A4DI-A4E4 RUN conaand handler.
If APPLESOP'T is active . set RUN intercepted flag so
that RUN can complete after APPLESOrT is loaded .
Call LOAD ca..and handler to load the proqraa .
Sk ip aline on the acreen .
Put DOS intercepts back .
Go to the RUN entry point in the current BAS IC.

A4E5-A4EP INTEGER BASIC RUN entry point intercept.
Delete all variables (CLR equivalent) .
Go to the CHAIN entry point in INTEGER BASIC.

A4PO-A4PB CHAIN command handler .
Call the LOAD co_and handler to load the program.
Skip a line.
Replace DOS intercepts.
Go to current BASIC ' s CIIAIN entry point.

A4FC-A505 APPLESOPT ROM RUN entry point Intercept .
Call APPLESOPT to clear variables.
Reset ONERR .
Go to RUN entry point .

A506-A50D APPLESOFT RAM RUN entry point intercept.
Call APPLESOFT to clear variables .
Reset ONERR .
Go to RUN entry point.

A510-A51A WRITE handler.
Call REAO/WRITE eo.on code ("526).
Set CSWL sUte to 5 (WRITE mode line start).
ElCi t OOS (9'83).

8·13

A51B-A525 READ handler .
Call READ/ WRITE common code (A526) .
Set READ JDode flag in sta tus flags (AA5l) .
Exit DOS (9F8)) .

AS26-AS4E READ/WRITE common code .
Locate the open file buffer for this file (A164).
If not open , open it.
Copy file buffer addresses to file manager parmll.t.
If R or B given on command, copy to parllli.t
and issue a POSITION call to file manager.
Exit to calle r .

A54F-A56D INIT command handler.
Tf V given, use it. use 254 .
Store first page number of DDS in file manager
parllliist.
Call file manager driver to INIT diskette.
Exit through SAVE to store greeting program on dl.k.

A56E-A519 CATALOG cOlllllland handler.
Call file manager CATALOC opcode .
Set new V value as default for future commands.
Ex! t to caller .

A57A-AS90 FP command handler.
Set ROM card , if any, for APPLESOFT (A5B2).
If successful , coldstart DOS (908 4).
Otherwise, set status flag to indicate INTECER SAS l e
is active.
Set primary filename buffer to -APPLESOFT-.
Set flags to indicate RAM APPLESOFT anCl coldstll rt.
Co to RUN command handler .

A59E-ASBl INT command handler.
Set ROM card , if any , for INTEGER BASIC (A5B2).
If not successful , issue -LANCUACE NOT AVAILABLE-.
Otherwise , clea r RUN intercepted flag .
Coldstart DOS (908 4).

ASB2-ASCS Set ROM to desired BASIC .
(This routine is passed III $4C for APPLESOFT or a $20
for INTEGER, since these bytes appear at $EOOO In
these BASICs . It will work regardless of which
BASIC 1s onboard)
If desired BASTC is already available , exit .
Try selec ting ROM card .
If desired BASIC is now available , edt.
Try selec ting onboard ROM .
If desired BASIC is now available , exit.
Otherwise , exit with error return code.

ASC6-ASOC EXEC command handler.

8-14

Open the file (A2A)).
Copy file buffer addreas to EXEC ' III buffe r pointer at
MB4 , MBS .
Set EXEC active flag (AABl).
Jump into POSITION command handler to skip R linea.

A5DD-A60D POSITION command handler .
Locate the open file buffer (A764).
I f not found. open one as a TEXT file.
Copy buffer pointers to file lllanager parmlist.
If R was not given on co.-and. exit.

115f'2 Otherwise, test R value for zero and exit 1£ so .
DeereJtent R value by one.
Read file byte by byte until a earriage return (end
of line - SID) is reaehed .
If at end of file. issue -END OF FILE- message .
Otherwise, go to A5P2 to skip next record.

A60E-A625 Write one data byte to file .
Insure that 8ASIC is running a prograa (A6S£).
If not, close file and war.start OOS .
Set up file .anager par_list to write the data byte
to the open fUe.
Call rile aanager and exit.

A626-A6S8 Read one daU byte fro. file.
tnsure that BAStC is running a progrll. (A6SE).
If not, close file and warmstart DOS.
Set CSWL intereept state to 6 (skip prompt eharaeter)

A630 Read next file byte (A6SC).
If not at end of file. go to A644.
Otherwise , elose file .
If atate is not J (EXEC) issue -END OP DATA- me.sage .
Exit to ealler.

A644 If data byte is lower ease eharaeter. turn Its most
I' signifieant bit off to fool GETIN routine in IIIOnitor.

•

Store data byte in A register saved at entry to DOS.
Using line index. turn high bit baek on in previous
data byte nored at $200 (input line buffer) to IIIllke
it lower ease it neeessary.
Exit DOS (9r8J).

A65E-A678 Test to see if BASIC is running a program or is in
i_ed iate eo-and .ode.
If active BASIC is INTEGER . go to A672 .
II line nulaber is greater than 65280 and prompt is
-)- then APPLESOPT ts in i .. ediate mode.
Otherwise. it i. executing a progra ••
Exit to caller with appropriate return code.

A672 Check $09 to determine whether BAStC is executing a
progra. and exit with proper return code .

A679-A68l Close current file and war.stllrt DOS.

A682-A688 EXEC read one byte frQl file.
Select EXEC ftle buffer.
Copy fUe buffer sddresaes to fUe 118nager par.Ust.
Set state to J (input echo).
Go to A620 to read a fUe byte.

A68C-AUC Read next text flle byte .
Set up file .. nager par.list to read one byte.
Call file aanager driver.
Return to caller with the data byte .

8-15

A69O-A6A7 Set $40,$41 to point to EXEC file buffer .

MAB-MCl

A6C4-A6D4
A6C4
MeB
AOCC
MDO

A6D5-A70l

A6EF

"'02-10719

File .anager driver routine .
Call the file manager itself (AB06) .
If no errora, exit to caller .
Otherwiae, point $40,$41 at file buffer.
If found, release it by storing a zero on the Ul.
na_ field .
If error was not -2ND OF DATA-, print error _.saq •.
Otherwise, pretend a SOO was read and return to
caller .

Miscellaneous error mes.agea .
-COMMAND SYNTAX ERROR-
-NO FILE BUFFERS AVAILABLE-
-PROGRAM TOO U.RG2-
-FILE TYPE MISMATCH-

£rror handler.
Set warmstart flag and clear status (BPE6).
If "PPLESOFT ON2RR i . active, go to A6EF .
Otherwise, print RETURN BELL RETURN.
Print text of error message (10702) .
Print another RETURN .
Replace OOS intercepts.
If a BASIC progra" i s in pass error cod.
to BASI C's error handler.
Otherwise, war.start BASIC.

Print text of error message.
Using the error nu.ber as an index, print the me •• sq.
text froll the me.uge table (10911) byte by byte .
Last character has .ost significant bit on .

107110-10742 Co-plete file .. nager par3meter list.
Copy volu-e valUe t o par.list.
Copy Drive value to par"list.
Copy Slot value to par"list ,
Copy addre.s of primary filename buffer to par.lisl.
Save rile buffer 3ddress in 540 , 541.
Return t o caller .

1014)-10740 Copy prillaty filena .. to file buffer filename field,

1014£-107510 Copy current buffer pointers to file unager parlllhl
Copy file aanager buffer pointer .
Copy T/ 5 Lht sector buffer pointer .
Copy data sector buffer sddress .
Copy next file buffer addres ••
Return to C3ller .

A15B-A763 Reset state to ° and aet warmstart flag.

10164- 10191 Locate sn open or free file buffer.
A.au .. there are no free file buffer. by zeroing $45.
Point $40,$41 at firat buffer on chain .
Go to 10773 .

11.76£ Point $40 , $41 at next buffer on chain .
8.16 If st end of chsin, exit with file not open code .

A77) Get flut byte of filename field.
If zero (file bufler free) , lIave file buffer addrells
at $44,$45 as lin available buffer and go to A76£.
Otherwise, aee if name in pri.ary filename buffer
.atches the na_ in this file buffer.
If not, 9'0 to ",7fiE to get next buffer.
If &0, return to caller with open file found code.

A792-A799 POint $40,$41 at firat file buffer on chain .

A79A-A7A9 Point $40,$41 at next file buffer on chain .

A7AA-A7AE Get first byte of file name in file buffer .

A7A.F-A7C) See if current buffer belongs to EXEC.
Is EXEC active?
If not , exit.
If &0, does current buffer address .. tch EXEC's?
Return to caller with appropriate code.

A7C4-A70) Check file type .
Does file type of open file IlAtch desired file type?
If &0, exit .
Otherwise, turn lock bit off and test again.
If ok, exit.
Otherwise. close file and illsue TYPE MISMATCH-.

A704-A850 Initialize (build) DOS file buffer chain.
Set $40,$41 to point to tint buffer .
Set counter to value .

A7£5 Store zero on filename field to .ark as free .
Set up link pointers in buffer to point to file
.anager workarea (45 bytes prior to filename field).
Set up link pointer to T/ S List sector buffer (-256
byte. frO/ll file III.II.nager workarea buffer) .
Set up link pointer to data sector buffer 256 bytes
before that.
Decrement counter .
lf zero, go to A820 to set IIlMEM.
Otherwise , set link to next file buffer 118)8 bytes
prior to data sector buffer.
Go to A7E5 to set up next buffer.

A820 Set link of la.t buffer to $0000.
If INTEGER SASIC ill active, go to A846.
Otherwise , aet APPLESO..,"s IIlMEM and STRING START
pointer. In zeropage to point just below the last
buffer .
Exit to caller .

A846 Set INTEGER SASIC'. "IMEM and PROGRAM START pointer.
to point just below the last buffer.
Exit to caller .

A851-A88) Replace OOS keyboard/ video intercept vectors .
III OOS keyboard (KSWL) vector still lIet?
If 10, go to ,,86".
Otherwille, save current KSWL vector ($)8 , $)9) at
AA55,AA56 and replace with DOS intercept routine ' s
add rea • .

A86A Is DOS video (CSNLJ vector still set?
If 80 , exit to caller.
Otherwise, save current CSWL vector (5]6,5]7) at
AAS],AA54 and replace with DOS intercept routine's
atldre ...
Exit to caller .

A884-A908 OOS co-aand naae text table .
Thb table conalsts of the ASCI I naae for each 001
co .. and in ortler of ca..antl index values, with the
last character ot each indicated by the MSB being
on . Comaanda in order are:

INIT,LOAO ,SAVE , RUN ,CHAIN,OELETE , LOCK , UNLOCK,CL08B,
REAO , EXEC,WRITE,POSITION , OPEN , APPEND , RENAHB,
CATALOG , MON , NOMON , PR"IN' ,MAXPILES , PP , lNT , BSAVB,
BLOAO,8RUN,VERIPY .

Exa.ple: INIT b 549 $4! $49 $04 (I N 1 TJ

A909-A940 Ca.mand valid keywords table .

8-18

This table fa uaed to which keywords are
required or _y be given for any DOS co.aand.
Each co..and has a two byte entry with 16 flags,
indicating which keywords may be given. The flag
bit settings are as follows :
8IT MEANING

Pilenaae legal but optional
1 Ca.-and has no positional operand
2 11 expected
] Pilename 12 expected
4 Slot number positional operand expected
S MAXPILES value expected as positional operand
6 CotIIIand aay only be hsued trOll within a progra ..
7 COIIIIIIand may create a new file if tile not found
8 C, I, 0 keywords legal
9 v keyword legal

lO 0 keyword legal
11 S keyword legal
l2 L keyword legal
l] R keyword legal
l4 8 keyword legal
15 A keyword legal
Thus, for a typical ca..and , OPEN, where the value
is $2]78 , bits 2, 6 , 7, 9, 10, II, anti 12 are set ao
the oo.nand has one filename operand , may only be
hsued frOll within a progra .. , May create a new Ule,
and the V, 0, S, and L keywords are legal.

•

The co.-.nd enttle. are:
INIT 2110
LOAD A070
SAVE A170
RUN "070
CHAIN 2070
DELETE 2070
LOCO 2070
UNLOCK 2070
CLOSE 6000
READ 2206
EXEC 2074
WRITE 2206
POSITION 2204
OPEN 2378
APPENO 2270
RENAME 3070
CATALOG 4070
MON 4080
NOMON 4080
PR, 0800
IN' 0800
MAXFILES 0400
PP 4070
INT 4000
aSAVE 2179
BLOAD 2071
BRUN 2071
VERIFY 2070

"941-A94'\ Keyword name table.
Thh table contain. all the ASCII na_ a of the DOS
keywords In standard order. Each keyword n •••
occupies one by tel

V,D,S,L,R,B,A,C,l.0

.\948-A9 54 Keyword flag bit position. table ,
Thi a table give. the bit po.ition. for each keyword
into the second byte of the cOIIlJIIand valid keyYord
table abovQ and 1n the flag (AA65) which indicate.
which keyword. were present on the co_and line .
The bit position. arel

V " D 20
S 10
L 08
R - 04
B 02
• OI
C CO
I - AD not ulled in valid keyword uble
o - 90

8· 19

I

A,955-"970 Keyword value valid range table.
Thia table indicates the range any keyword value
•• Y legally have. each keyword ha. II four byte entry.
two byte. of value, and two byte. of
value . ValUes _tel

KEYWORD MIN MAX
V ,.-- III
D 1 2
S 1 7
L 1 32767
R 0 12767
B 0 32767
A 0 65535

C, I. and 0 do not appear I.n this table since they
do not have numer Ie values.

A971-AAJe Error _ • • age text table .
This table contain. the text for each error code In
order of error code
NUMBER TEXT o l£!I!IUJtN BELL RETURN

1 -LANGUAGE NOT
2 "RANGE ERROR" (Bod fUe manager opc:ode,
J "RANGE ERROR." (Bad lUe .. nager aubcodel
4 "WRITE PROTECTEO·
5 "END Of' OAT""
6 "PILE NOT FOUNO"
7 "VOLUME MiSMATCH "
8 .. I / O ERROR."
9 "DISK FULL"

10 "FILE LOCKED "
11 ·SYNTAX ERROR"
12 "NO BUFFERS AVAILABLE"
13 "FILE TYPE MISMATCH"
14 ·PROGRAM TOO LARGE"
15 ·NOT DIRECT COMMAND·

AA3P-AA4F Error message text off.et index table.
Thh table contains the ottsat in byte. to the text
of any given error age in the table above.
Entries are one byte each for each e r ror code

AA4F-AA65 OOS main routine. variables.

8-20

AA4V Current tile buffer add res. (2 byte.) .
AA51 Status flags: SOl-READ state, SOO-War.surt ,

S80-Coldstart , S40-APPLESOPT RAM
.u.52 DOS CSWL intercept state nullber .
.u.53 Addres. ot true CSWI. handler (2 byte.) .
"A55 Address of true KSWL handler (2 bytes) •
.u.57 HAXFILES value .
"A59 Save area for S , X, Y, and A registers when DOS I.

entered {4 bytes} .
AA50 Co_and line index value (ofhet into line) .
AA5E HON flags I (C-S 40, I-S20, O-SlO)
AA5F Index of last co.aand time. 2.
AA60 Range length fot LOAD and 8LOAO (2 bytes, .
AA62 Index of pending command , it any.
AA63 Scratch variable (counter, .essage index, etc.)
AA64 Index ot current keyvord .
AA65 Keywords present on co..and line tlags .

,

•

AA66-AA74 Keyword values parsed from command and defaulted.
AA66 volume (2 bytes)
AA68 Drive (2 bytes)
M6A Slot (2 bytes)
M6C Length (2 bytes)
AA6E ReCord (2 bytes)
M70 Syte (2 bytes)
M72 Addresa (2 bytf!8)
MH HOH value (one byte)

M15-M92 Pri.ary file name buffer

M9J-AABO Secondary (RENAKE) file name buffer

AAB1-AACO DOS .ain routines constants and variables.
AASI MAXFILES default ($Ol).
MS2 Control-D ($84).
MSl EXEC file active flag ($OO-not active) .
MS4 EXEC file buffer address (2 bytes).
MS6 Active SASIC [lag : $OO-INTEGER , $40-APPLESOFT ROM,

$BO-... PPL£SOFT RAM
MS7 RUN intercepted flag.
MSS -APPLESOFT- characters in ASCII (9 bytes)

MCI-Mca File .. nager constants .
A ... Cl ... ddress of RWTS paramter list fS7E8).
MC] Address of VTOC sector buffer (B]BB) .
AACS ... ddress of directory sector buffer (S4SS).
MC1 ... ddre .. of last byte of DOS plus one. (COOO)

AAC9-AAE4 VUe manager function routine entry point table.
This table contains a two byte function handler
routine address for each of the 14 file
opcodes in opcode order.

ME5-MVO Pile manager read subcode handler entry point table .
This table contains a two byte function handler
routine address for each of the 6 read subcodes.

AAF1-AAFC File manager write subcode handler entry point table.
This table contains a two byte function hancHer
routine address for each of the 6 write subcodes •

...... FD-... SOS Pile _nager external entry point (from $)06) .
ts X register zer01
If SCI, allow new fil •• by sl.ulating an INIT COlMl4nd
index .
Otherwise, require ol.d file by si.ulating a LOAD
cOflllland index.
Pall through to .. In fil.e manager entry point.

AS06-ABlE Pile .. nager .. in entry .
Save S register at B39B .
Reetore file .. nager workarea from file buffer (A£6A)
Make aure opcode doe. not exceed ll.
It it does, return with code-Z (invalid opcode) .
Use opeode as index into flle .. nager function
routine entry point table and go to proper handler
via RTS.

8-21

ABIF-A821 Return with return code-2 (bad opcode) .

. AB22-A827 OPeN function handler.
Call ca..on open code (AB28).
Exit file .anager .

AB28·ABDB COCMOn open routine .
Initialize file .. nager workarea by resetting
variables to their defaults (A8DCI.
Set sector length to 256.
Insure record length is non-zero. If zero, use 1.
Store record length in file .anager workarea.
I.ocate or allocate a directo ry entry for the fil e
(BIC9) .
If file already exists, go to ABA6.
Otherwise, save directory index f o r free entry.
Using last index and valid keywords table,
determine whether current command may c reate a new
file.
If so, go to A864.
Othe rwi se , if runnin9 *APPLESOfT*, se t return code
t o *LANGUAGE NOT AVAILABLE* and exit .
If running *APPLESOPT- set return code to -FILE
NOT FOUNO* and exit.

AB64 Set sector count in directory entl"y to 1 (there will
only be a T/ S List sector initially).
Allocate a sec tor for a T/ S List (B244) .
Stor:e secto r number o f thi s sector in directory
entry and i n first and current T/ S List sector
in file manager workarea.
Store track number in both places also.
Move file type desired to directory entry.
Write directo ry sector back t o catalog (B037).
Select T/ S List buffer IAPGe).
Zero it IB706).
And write it back (AFlA) .
Set return code to 6 (*PILE NOT FOUNO*) .

ABA6 Place track/ sector of T/ S List in directory entry in
first T/ S List variable in file manager workarea.
Copy file type frolll directory to parllllist to pa .. It
back t o caller and to file manager workarea.
Co py number ot sectors io file to workarea .
Save directory o ffset to entry in workarea .
Set end o f data pointer to *infinity*.
Set number of data bytes represented by one T/S Li s t
sector t o 122- 256 (lO.SK) in workarea .
Go read first T/ S Liet secto r (APSE).

ABDC-ACOS Initialize file manager workarea.

8-22

Zero entire 45 bytes of workarea.
Save complemented volume number in workarea.
Save drive number in workarea .
Save slot - 16 in workarea .
Set track number to $11 (catalog track) .
Return to ca ller .

AC06-AC]9 CLOSE function h",ndler.
• Checkpoint d",t", buffer to disk if needed (AFIOI.

Checkpoint T/ S List buffer if needed (AP1 4).
Rele",s. any sectors which were preallocated but not
used (8lCl).
If V'fOC does not need to be re-re",d, edt .
Otherwise, re-read VTOC aector (AFF7).
Flus!! throuqh directory sectors in the cat",loq until
we reach the one which containa the entry for thia
file .
Get the index to the entry.
Update the sector count in the entry to reflect the
new tile'. lenqth.
Checkpoint the directory sector back to the disk.
Exit file .anager .

AC1A-AC57 RENAME function handler.
Call ca..on code to locate/ open the file .
If file is locked, exit with ·FILE LOCIUm- return
code .
Set $42,$41 to point to new name.
Copy new name to directory entry.
Mrite back directory sector to diak .
Exit file .anager .

ACS8-AC69 READ function h",ndler .
Insure .ubcode does not exceed S. If so, exit with
return code-l.
Use subc:ode .s index into READ subc:ode handler entry
point uble.
Go to proper h",ndler of 8ubc:ode .

AC6A-AC6C Return code • 1, 8ubcode bad

AC'D-AC6F -FILE LOCKED- error return

AC70-Act6 WRITE function handler.
If til. is locked, exit with ·FILE LOCKED- error .
Insure aubcode does not exceed 5 . If so, exit with
return code-l.
Use subcode aa index into WRITE subcode handler entry
point table .
Go to proper ""'ndler of subcode .

ACI7-ACI9 POSITION AND READ ONE BYTE 8ubcode handler
Call poaition routine.
Pall through to next 8ubcode handler.

ACIA-AC92 READ ONE BYTE 8ubcode handLer .
Read next file byte (loCAl) .
Store in par.list for paas back to caller.
Exit the file .anager.

AC91-AC95 POSITION AND READ A RANCE OP BYTES aubcode handler .
Call position routin ••
raIL throuqh to next subcode handler.

AC96-ACA7 READ A RANGE OF BYTES subcode handler.
Decrement and check leng th (BIBS) .
Read a byte (ACA8) .
Point $42 , $43 at range address and add one to add, •••
Store byte read at address .
Loop back to AC96 . (length check will exit tUe
manager when length is 2:ero.)

ACAB-ACBA Read a data byte.
Read next data sector if necessary (BOB6).
If at end of file , exit with OF error.
Otherwi se , load data byte from data sec tor buffer.
Increment record number / byte offset into file (Bl'B).
Increment file position offset (B19 4).
Return with data byte read.

ACBB-ACBD POSITION AND WRITE ONE BYTE subcode handler.
Call position routine.
Fall through to next subcode handler.

ACBE-ACC6 WRITE ONE BYTE subcode handler.
Find data byte to be writte n.
Write it to file (ACDA) .
Exit file manager.

ACC7-ACC9 POSITION AND WRITE A RANGE OF BYTES subcode handler.
Call position routine.
Fall through to next subcode handler.

MCA-ACD9 WRITE A flANGE OP BYTES subcode handler .
Copy and advance range address pointer .
Get next byte to write.
Write it to file (ACDA) .
Teat and decrement length (BIBS) .
Loop back to ""CA.

ACDA-ACEE Write a data byte .
Read the proper data secto r (if necessary) (B086).
Store datA byte to be written in sector buffer.
11ag data sector buffer as requiring rewclte.
tncrement record number/ byte offset into fIle (9\50).
Exit via file position offset increment routine
(B194) •

ACEF-ACFS LOCK function handler .
Set mask byte to $BO (lock).
Go t o common code (ACFB).

ACP6-ACFA UNLOCK function handler.
Set mask byte to $00 (unlock) .
FAll through to common code.

ACPB-ADll LOCK/UNLOCK common code.

8-24

Locate/ open file (AB2BI .
Get index i nto directo r y to entry.
Upda te file type byte to lock ($BX) or unlock ($OX).
Write directory secto r back to disk.
Exit file manager.

•

•
• •

"

AD12-AD17 POSITION function handler .
Call position routine .
Exit file manager.

ADI8-AD2#. VERIF'! function handler .
LOCate/ open file (AB28) .

ADIS Read next data sector .
If at end of file, exit file manager.
Otherwise , increment secto r position.
And loop back to 10018.

AD2B-AC88 DELETE function handler .
Locate/Open file (10828).
Using directory index , determine if file is locked .
If so , exit with LOCKED - e r ro r code.
Copy TIS List sector's track number from directo r y to
workarea and to last character of file name in the
directory entry itself.
Store II $FY over TI S List sector ' s track number in
directory to mark file deleted.
Copy TI S List sector ' s sector number to workarea .
Write directory sector back to disk.

ADS4 Read TI S List sector (AFSE).
If no more exist , wrIte VTOC and exit file manager .
Otherwise, select TI S List buffer (AFOC).
Index to first TIs psir.

ADSE If track nUlllber is zero or minus , skip it .
Otherwise , free the data sector by updating the VTOC
bit _p (AD89).
Index to next TI S pair.
If more, go to ADSE .
Get TIS of next T IS List sector frolll this one .
Free this TI s List sector (AD89).
Go p[.ocess next one , if any (go to ADS") .
Otherwise, write VTOC and exit file manager .

AD89-AD97 Free a sector.
Call B20D to deallocate sector in VTOC bit map .
zero the sector allocation area of the worka r ea.

to caller .

AD98-AE2E CATALOG function handler.
Initialize file manager wo r karea (ABOC).
Set V value to zero (complimented-SFF).
Read the VTOC sector (APf'7) .
Set up a counter for 22 lines before wal ting for
the keyboard.
Skip 2 lines on the screen.
Print -DISK VOLUME -,
Convert Volulne number and print it (AE 42).
Skip 2 IIIOre lines.

AOCA Read next di r ectory sector.
If no more exist, exit file Inanager .
Set index to first ent r y.

ADD I Get track number.
If zero, exit file manager.
If minus , skip entry (delet.ed file) .
Print - . - if file is locked (check file type byte).
Use file type as index into file type name table at
B3A7 and print single characte r found there.

Pr int a blank .
Convert and print the number of sectors in tn. 'II.,
Print a blank .
In<'3ex to fUename.
Print file
Skip to next line.
Advance index to next directory entry .
I f there are -ore, go to ADDI .
If not , go to ADCA to read next <'3irectory aectOr.
Exit when finiahed .

ABZP-ABU Skip a line on CATALOG printout.
OUtput a carriage return.
Decreaent line counter .
If atill non&ero, exit .
Otherviae , vait for keyboard keypuah.
Then re.et counter to Zl line ••
And return to caller .

AE42-AE69 Convert the number .tored at $44 to a three charAnaf
printable number and print it.

AEU-AE7D Restore file .,n'ger workarea trOll [lIe bufhr.
Select file .. nager workarea buffer .
Set return code in par.list to zero inithllY.
Copy 45 byte .ave<'3 i.age of file _nager workare. Itl
file buffer to real file workerea .
Exit to caller .

AE1E-A£8D Save file manager workarea in file buffer .
Seleet file _nager workarea buffer.
Copy 45 byte workarea to fUe buffer .
Exit to caller.

AE8E-AP07 INIT function handler.

6-26

IniUalhe the file _nager workarea (ABDe).
Call RWr'S to for .. t the diskette (B058).
Copy V value to VTOC buffer.
Start track to allocate next value at Sll.
And direction of allocation aa $01 (forward) .
zero VTOC bit .ap (all aeetora in uae).
Skipping the first three tracks and track $11, copy
the 4 byte bit ... k (8)AO) to each track entry in
the VTOC bit _p to free the aectora . Thia leave. the
fir.t three tracks and the catalog track .arked in
u.e .
Zero the directory .ector buffer.
Point to directory .ector buffer.
Set track $11 in RWTS parmlht.
Set up link trOll thla directory aector to next ftrAc-1o
$11 , sector-II.
Call RWr'S to vrite directory aector.
Write each sector on track in this vay except for
aector zero .
On last aector (aector 1) zero link poinur .
Point RWTS par._ at DOS load point (B7C2).
Write OOS i.age onto tracka 0-2 {8HA} .
Exit file manager.

AF08-AFIC Select a buffee by setting $42 , $43 to point to it.
AFOe Select file _nagee woekaeea buffee in file buffeL
AFOC Select T/ S List sec toe buffee in file buffee .
AFIO Select data sec toe buffee in file buffee.

Exit to callee when $42,$43 ace set.

AFlo-AF]] Checkpoint weite data sectoe buffer to disk.
Test flag to see if buffer was changed since last
read/ vr i te.
If not, exit to calleL
Othervise, set up RWTS pointee (AFE4).
Call RWTS to weite sectoe.
Reset flag to indicate data sector no longee in need
of a checkpoint.
Exit to callee.

AF14-AF4A Checkpoint vrite T/ S List sector buffee to disk .
Test flag to see if buffee vas changed dnce last
eead/ vrite.
If not , exit to caller.
Otheewise, set up RWTS pointer IAF4B).
Call RWTS to vrite sector .
Reset flag to indicate T/ S List sector no longer in
need of checkpoint .
Exit to caller .

AF4B-AFSD Peepare for RWTS call with a T/ S List sector .
Copy address of T/ S List buffer to RWTS
Get track/ sector of .ector.
Exit to calleL

APSE-AFDB Read a T/ S List sector to fi Ie buffer.
(CARRY nag is set at entry to indicate vhether the
first T/ S List for the fUe is wanted IC-O) or the
next IC-lI.

csrey flag entry code.
Checkpoint current TI S List sector if necessary .
Set up for RWTS (AF48) .
Select T/ S List buffer (AFOC) .
Is first or next wanted?
If first, go to AFBS to continue .
Otherwise, get link to next T/ S List from this one.
If link is use it to find next one and go
to AF'BS.
Otherwise, we are out of T/ S Lists for this file .
If we are reading file, exit vith error code .
Otherwise, allceate • new sector IB244) .
Point old T/ S List sector to new one ' s track / sector.
Write old T/ S List sector back to disk.
Zero the buffer to for. new T/ S List sector.
Ca.pute and stoee the relative sector nu.ber of the
first sector listed in this sector at +5,+' into the
buffer .
Set RWTS opcode to write new T/S List sector to cHsk.

APBS Set RWTS opcode to read old T/ S List (unless we just
allocated it above) .
Set track and sector and call RWTS to read old list
or write new list .
Ca.pute relative aector number of last sector (plus
one) in this list and store in wo r karea .
Exit to caller with nor.al return code.

8-27

"POC-AFE] Read a data sector .
Set up for RWTS (APE4).
Set RIon'S READ opc:ode and 90 to RWTS driver to do It.

AF£4-AFF6 Prepare for RWTS yith data sector.
Copy address of data sector buffer to RWTS par.tlat,
Get its track/ sector ,
And exit to caller.

"pr7-BOIO Read/ v' i te t.he VTOC buffer .
APP7 R.ad VTOC entry. go to AFFD.
AFFB Write VTOC entry. tall through .
AFFD Ca..on code.

Copy VTOC secto r buffer addre •• to RWTS par.ll s t.
Get. ita track nu.ber and use sector $00 .
Exit through RWTS driver .

I
I
I
I
I
I
I

B0l1-8036 Read a directory sector.
(tt CARRY nag Is zero on entry, read firat directory I
a.ctor. If CARRY ia one, read next)

80)1-8044

8045-BOS1

80S2-8085

8058

8-28

He.ariz. entry code. I
Set butter pointera (B04S) .
Firlt Or next?
tf Urst. get track / sector of directory sector (rC)fII

VTOC at offset. +1,+2 .
Otherwise, get. track / sector from directory aector at
otfset +1,+2 . If track is zero, exit with error eM_
(end ot directory).
Call RWI"S to read sector.
Exit with normal return code.

write directory secto r .
Set buffer pointers.
Pind its track/ sector in workarea.
Exit thro ugh RWTS to wr ite it.

Prepare for RWTS for directory buffer.
Copy directory buffer address to RWTS par.ltst.
Exit to caller.

Read/Write Track/ Sector (RWTS) driver.
Set track / sector in RWTS par.list .
Set eo..and code (read , write,etc.)
If writing , set nag (85D5) .
Sat volu.e expected in par.list.
Set slot - 16 in par.list.
Set drive in par.list.
Set sector she in paralist .
Set lOB type in par.list (SOl).
Call RWTS , passing paralist pointer.
Copy true volu.e found to file .. nager par.list.
Reset volume expected field in RIon'S par.list .
If an error did not occur , exit to caller .
Other..,i.e , get return code.
Translate vol .hmatch to RC-1, wrt te protected to
RC-. and all other errors to RC-a (I/O error).
Exit tile ..anager no..,.

I

-

-

8086-813J

eOP J

8114

8120
812C

81J4-815A

8158-B19J

Read next dan sector (if necellsary) .
Is the current file pollition in the current data
sector now in IlelllOry?
If so, go to BIX.
Otherwille, checkpoint data sector buffer,
III the current file pollition prior to or after thh
T/ S List ' a do.ain?
If not, go t o BOP].
Otherwise, read each T/ S List for the tile, atarting
with the firat, until the proper one ill found .
If it ia never found, exit with error (ran otf end of
file reading).
Data ill in this T/ S List aector.
COilpute the dl.aplace_nt to the proper entry in thia
T I S List sector .
Select the T/ S List buffer .
Get the track of the data aector wanted.
If non-zero, go to 8114.
Otherwise, if not wr iting. exit with error (no data
t o read there) .
If writing, allocate a new aector and store Its
track / aector location in the Uat at this point
(8134) •
Go to 8120.
Read old data sector, using the track / sector tound
in the TI S Liat entry .
Save nuaber of sector laat read in workarea.
Select data butter .
Get byte o ffset and exit noraally to caller.

Add a new data sector to file.
Allocate a see tor (8244).
Put track / sector In TI S List entry.
Seleet data buffer and zero It.
Set flags to indicate that the TI S List sector
the data sector buffer require checkpointa.
Exit to caller.

an.

record nu.ber and byte offset into file.
Copy current record number and byte offllet to file
.anager para.eter li a t to pass back to caller .
Incre.ent byte offaet in workarea.
I(byte offset equals record length, aet byte offaet
back to zero and increment record nUlllber.
Return to caller.

B194-8lAl Incre.ant file poaitlon offset.
Incre.ant byte offset into current sector by one.
If at end of sector. increlllent sector nUliber by one .
Return to caller.

8LA2-8184 Copy and advance range addre •• .
Copy range address tro. tile .. nager parlilist to 542.
IncreMent range addre •• in parlllilat for next time
through.
Return to caller.

8-29

•

BIBS-8IC8 Decrement range length .
Decrement range length in file .. nager par.list by
one .
If zero, exit HIe .. nager.
Otherwise, exit to caller.

BIC9-BlIB Locate or allocate a directory entry in the catalog.
Read the VTOC sector (AFP7).
Set $42,$4) to point to file naae we are looking for.
Set pass nullber to one (locate filel.

8108 Initialhe directory sector offset (Hrst sectorl.
BIEI Increment sector offset.

Read directory aector.
If at end of directory, go to B2)".
Set entry index to first file entry.

BlEB Get track.
It deleted, akip entry, go to 8217.
If empty , end of directory, go to B212.
"dvance index to filename in directory.
Compare againat
If they .atch , return entry index and exit.

820B If not, advance index to next entry in aector and
loop back to BIE8.
If at end of lIector , go to BIEI to get next aector .

8212 If paslI number h one, go to BID8 to ata rt aaeond
palla .

B217 If pallll nUlllber h one, go to 820B to akip entry.
If second pasa, fall through to allocate entry.

B2IC-B12P Copy file na.e to directory entry .
"dvance index to file name fleld in directory entry.
Copy)0 byte filename to directory entry .
Reload directory index and return to caller.

B2)0-B2)9 "dvance index to next directory entry in sector .
"dd 3S (length of entry) to index.
Teat for end of sector and return to caller.

B2)"-B24) Switch to aecond pan in directory scan.
If on pailS one. s witch to pas8 2 and go to 8108 .
If on pailS two, exit file .. nager with -DISK FULL-
error.

B244-B2C2 "llocate a diak aector.

8-30

Ia there a track currently allocated to thia file?
If not, go to B26" t o Hnd a track with free aec tora.

8249 Otherwise, decrement aec tor number to get next
posa1ble tree sector number.
If there are no IIOre aectora on thia track, go to
8265 to find a new track .
Otherwhe, rotate the track bit .. ak by one poaltion
and get the bi t for this aector .
It the sector is 1n use , loop back to B249.
Otherwiae, add one to fUe ' s sector count .
fa sa back aector number (track number 1. at 85'1).
"nd return to caller.

B265 Indicate no track 1a being at preaent.
B26'\ Reaet allocation flag to allow at leaat one co.plet.

aearch of all tracka for mo.e spac • •
Read VTOC aector.

•

B272 Get: laat track allocated fraa and add direction value
to get next track to IIlulllllne (+1 or -1).
Are we back to track 01
If so , go to 8284.
Otherwise, lire we tuck 341
If 80 , reverse direction and go to 828E .

8284 III this the second tiJlle we have cOIIle to track 0 1
(check allocation nllq) .
If so , exit with ·OISK FULL- error.
Otherwise, set allocation flag to remeaber thill,
Set direction to forward (+1) .

828E Begin at directory track 111 + or - 1) .
Coepute bit aap index (trllcknumber*4).
Copy track bit VTOC to works,,,. , watching
to lIet! it all four bytes are zero (track is full).
In any ca.e. Bet all four byte. in VTOC to zero
(allocate all Bectora) .
If no free sector. in the track, go to B272 to try
next. track.
Otherwise , write VTOC t.o diak to insure fUe ' 8
integrity.
Set sector nullber to last sector 1n track .
Go to 8249 to allocate one of ite free sectors. to
the file.

82C3-82OC Release pre-allocated sectors in current track and
checkpoint the VTOC.
Has a track been allocated to the file?
If not, exit to caller .
Otherwise, read VTOC .
Get next sector which could have been used (number
of times track .ap was shifted durinq allocation) .
Call 8200 to shift track bit up back and _rqe it
back into the VTOC bit .. p.
Indicate no track ha. been allocated.
Exit to caller .

8200-82FP Free one or IIOre sectors by shiftinq .. sk in fUe
.anaq.r's allocation area back into VTOC bit .. p.
(If CARRY is set, current is freed alto)
Rotate entire. byte track bit _sk once.
Repeat for as IMny sectors as were allocated .
COIIIpute index. into VTOC for this track ' s I114p .
If 'Zero, exit .
Merqe ,-OR-) file manager's bits with those already
in VTOC, freeinq aectors which were never used by
the< file .
Return to caller .

8JOO-B35E Calculate file position.
Set record nu.o.r pas.ed in file _nager par.liat
in varkarea and in sector offseta.
Clear sector offset high part .
Perfor. a bit aultlply as followa:
J byte tile position. record nuaber tlaes record
length.
Add the byte offaet fro. the par.Hat into the three
byte flle position value
Return to caller .

8·31

83SF-B37D Brror exits.
B3SF RC-l -LANGUAGE NOT AVAILABLE-
B36l RC-2 -RANGE ERROR- lb"d opcode)
B367 RC-3 -RANGE ERROR- (b"d subcode)
B368 RC-4 ·WRITE PROTECTED-
B36F RC-S -END OF DATA-
B37l RC-6 -FILE NOT POUND-
B377 RC-9 -DISK FULL- (,,11 files closed)
B378 RC-A -FILE LOCKED-

B37F-B396 Exit file manager.
B37P' Exit with no errors .

Get return code of
Clear carry flag and go to B386.

Bl8S Set carry flag to indicate error.
B386 Save return code in parmlist.

Clear .onitor status register {$48} after RWTS has
probably tromped on it .
S"ve file mOlInager work"rea to file buffer (AE7E).
Restore processor status lInd st"ck register.
Exit to origina l c "ller of file man"ger .

8397-B3Al Pile .an"ger scratch space .
B397 Track / secto r of current directory sector (2 bytes) .
B398 S register save area.
B39C Directory index .
B39D Catalog line counter/ Directory lookup flag / Etc.
839£ LOCK/UNLOCK .ask/ Allocation flag / Etc .
B3AO Four byte m"s k used by IN IT to free an entire track

in the VTOC bit map.

B3A4-83A6 Deci.al conversion table (1,10,100).

83A7-B3A£ Pile type n"me table used by CATALOG.
Pile types are: T,I,A,B,S,R.A,B, corresponding to
hex v"lues: $00, $01, $02, $04, $08, $10, $20, lInd
$40 respectively.

S3AP-83BA ASCII text -DISK VOLUME· backwards. Used by CATALOG.

B3B8-84BA VTOC sector buffer.

8-32

BlBC Track/ sector of first directory sector.
BlBE OOS release nUlllber (l . 2, or 3) .
8lCl Volu.e nUlllber of diskette.
BlE2 Null\ber of entries in each TI S List sector.
8l£8 Tr"ck to allocate next.
BlEC Direction of track allocation {+l or -IJ
el£P Number of tracks on a disk.
8lPO NUlllber of sectors on " disk.
8lPl Sector size in bytes (2 bytes)
BlFl Track 0 bit .ap
elP7 Track I bit map

etc.
B478 Track l4 bit MaP

-

8488-85BA DIRECTORY sector buffer .
84BC Track / sector of next directory sector.
84C6 First directory entry and

Track of T/ S List
84C7 Sector of T/ S Liat
B4CS File type and lock bit
84C9 Filename field (30 bytes)
84£7 Size of file in sectors (including T/ S List (s)).

8588-8500 File manager parameter list.
B58B Opcode
Bsse Subcode
Bs8D Eight bytes of variable parameters depending on

opcode.
BSC5 Return code .
8SC7 Address of file manager workarea buffer .
BSC9 Address of T/ S Liat sector buffer.
BSCB Address of data aector buffer .
8SCD Address of next DOS buffer on chain (not used) .

BSDl-8SFD File manager workarea .
8501 1st T/ S List sector ' s track/ sector.
8503 Current TI S List sector ' s track/ sector.
8505 Flags : SO-TI S Liat need. checkpoint

40-Data sector need. checkpoint
20-vroc sector needs checkpoint
02-Last operation was write

B506 Current data sector ' strack/sector.
8sDS Directory sector index for file entry .
BsD9 Index into directory sector to directory entry for

file.
BsDA Nuaber of sectors described by one T/ S List .
8sDC Relative sector nuaber of first sector in list.
850£ Relative sector number +1 of last sector in list.
B5£0 Relative sector number of l.st sector read.
85E2 Sector length in bytes .
B5E4 File position (3 bytes) sector offset, byte offset

into that sector .
B5£S Record length from OPEN.
B5EA Record number .
B5£C 8yte offset into record .
85££ Number of sectors in file.
8sFO Sector allocation area (6 bytes).

Next sector to allocate ,shift count)
Track being allocated
Four byte bit _p of track being allocated , rotated
to next sector to allocate.

8sF6 Pile type.
85P7 Slot nu.ber ti.ell 16.
85PS Drive nu.ber .
BSF9 Volullle nulllber (c::o"ple.ented) .
85FA Track nu",ber .

B5F£-BSPP Not used .

8·33

8600-86FP Start of Boot 2/RWTS i_age.
8600 BOOt I i_age which can be written to IN I Ted diaka

on track 0 , aector O.
8650 DOS 3 . 3 patch area .
8650 APPEND patch nag.
865E APPEND patch . Coee here when file .. nager driver

gets an error other than end of data .
Locate lind free the fUe buffer.
Clear the APPEND flag.
Get the error number and go pr int error (A602) .

8671 APPEND patch . Come here from APPENO ccm.and handler
to record number if APPEND flag is aet and
to clear the flag. Exit through POSIT ION.

8686 VERIFY patch . COllie here fro. I/O a range of bytes
routine to exit through VERIPY after SAVE or 8SAVE.

8692 APPEND patch . Co.e here frea file .. nager driver if
return code was END OF
Teat the file poaition for zero .
If IlOn-zero , aet APPEND flag on and return to caller.
If zero (at atart of file), copy record nullber and
byte offaet to fUe _nager and return a
zero data byte to caller.

86P!'; Pagll addreas of licat page in Boot 2 .
86PP' Number of aectora (pagea) in Boot 2 .

8700-8749 OOS 2nd atage boot loader .
Set RNTS to read DOS from diak.
Call Read/Write group of pagea (S8793) .
Create new atack.
Call SeTVID ($PE93) and SETKSD ($PES9).
Exit to DOS coldatart ($9DS4) .

874A-B78C Put DOS on tracka 0-2 .
Set RNTS par.liat to write DOS to diak.
Call Read/Write group of pagea ($8793) .
Exit to caller.

8780-8792 Unuaed .

B793-B7B4 Read/Wtite a group of pages .
call RWTS through external entry point ($B1B5).
Exit to caller.

8785-87CI Disable interrupta and call RWTS.

87C2-81D5 Set RWTS para .. tera for writing DOS.

8706-870£ Zero current bufter .
zero 256 bytes pointed to by $42,$43 .
Exit to caller.

87DF-87E7 OOS 2nd atage boot loader

8-34

S7DP Unuaed.
87EO Nuaber of pagea in 2nd 005 load.
81El Number of aectora to read/ write .
81£2 Nuaber of pagea in lat DOS load .
87E3 IN IT DOS page counter .
87E4 Pointer to RWTS par.liat 12 by tea).
87E6 Pointer to lat atage boot location 12 byte.) .

87£8-87P8 RWTS par.list.
87£8 Table type. Must be SOl .
87!':9 Slot ti.es 16 .
87EA Drive number ($01 or $02).
87£8 (0 any volume) •
B7!C Track nuaber (SOD to S22) .
B7ED Sector ($00 to SO,) .
B7Er: Pointer to Device Characteristics Table (2 bytes) .
87'0 Pointer to user data buffer for REAO/WRlTE (2 bytes) .
B7P2 Unused.
B7F3 8yte count for partial sec tor (use SOO for 256) .
87F4 Command code: O_SEEK , I_READ , 2-WRITE , 4-FORMAT.
87FS Error code: (valid if carry set) SIO-Write protect ,

S20-Voluae .is .. tch, S40-0rive error, SOS-INIT error .
B7F6 Volu.e found .
S7'7 Slot nuaber found.
87F8 Drive nuaber found.

87F9-87FA Unused.

87F8-B7FE Device Characteriatics Table (OCT) .
87FB Device type (should be $00).
87FC Phases per track (should be SOl).
B7FO Motor on tl.e count (2 bytes - should be SEF, $08).

87FF Unused.

8800-8829 PRENI8BLE routine.
Conve rts 256 IS bit) bytes to 342 (6 bit) -nibbles-
of the for. ooxxxxxx.
Pointer to paqe to convert sto red at S3E . S3F.
Data s t ored at and seconda ry buffers.
On ent ry : S3E . S3F con tain pointer to user data.
On A-reqlunknown

X-req I SFF
Y-req : SFF
Carry set

to caller.

88lA-S887 WRITE routine.
Writes data fro. prl.ary and secondary
buffers to disk .
Call. write a byte subroutine .
Writes 5 bytes autosync , startinq data -ark.
(SD5/ SAA/ SADJ, 342 byte. data , one byte checkaulI, and
cloaing data marka ($OE/ $AA/ SEB) .
Uses Write Translate Table (S81029).
On entry: X-req:Slot nuMber ti.e. 16
On Carry set if error

If no error z
A-reqlunknown
X-req:unchanqed
Y-req:SOO
Carry clear
Uses $26 . $27 , $678

bit. t.o caller.

BBB8-88CI Write a byte aub routine .
Ti.inq critical code uaed
intervals.

to write bytes at 32 cycle

Ed t to caller. 8·35

aBC2-B8DB POSTNIBBLE routine.
Converts 342 (6 bit) - nibbles· of the fo r m OOXXXXXX
to 256 (B bit) bytes.
Nibbles stored at pdmary and secondary buffer • .
Pointer to data page stored at $3E , S3P .
On entry: X-reg:Slot number times 16

$JE.S3P:pointer to user data
$26:byte count in secondary buffer ($00)

On exit: A-reg:unknown
X-reg:unkn01ofn
Y- reg:byte count in secondary buffer
Carry set

Exi t to caller.

88DC - B943 READ routine .
;teed a sector of data from disk and store it at
primary and secondary buffers. (First uses secondary
buffer high to 1010f , then prhlary low to high)
On entry : X-reg:Slot times 16

Read mode (Q6L ,Q7L)
on exit: Carry set if error .

If no error:
A-reg: $AA
X-reg:unchanged
Y-reg : SOO
Carry clear
Uses S26

Exit to caller .

B944-899F ROAOR routine.
Read an Address Field.
Reads starting address marks (SD5/SAA/S96) , addr •• ,
information (volume/track/sector/checksum), and
closing address marks (SDE/$AA).
On entry: X-reg :Slot number times 16

Read mode (Q6L,Q7L)
On exit : Carry set if error.

If no error:
A-reg: SAA
x-req:unohanged
Y- reg:$OO
Carry clear
S2F: Volume number found
$2&: Track number found
S20: Sector numbel:: found
52C: Checksum found
Uses $26 , 527

exit to calle r .

89AO-B9PF SEEKABS routine .

8-36

Move disk arm to desired track.
CallS arm IIIOve delay subroutine (SBAOO) .
On entry : X-reg:Slot number times 16

A-reg:Desired track (half track for single
phase disk) .

S47B :Current track .

On exit :
X-reg : unchanged
Y-reg : unknovn
$21. and $478:Pinal track
$27:Prior track (if seek needed)
Uses: $26.$27 . $2A , $2B

Exit to caller.

BAOO-BAIO Ara .ave delay subroutine.
Delays a specified nUMber of 100 us.c intervals.
On entry: A-reg : nuMber of 100 Usec intervals .

$46 , $47:Should contain motor on time count
($EP.$D8) frOM Device Characteristics Table
$478 :Current track .

On exit: A-reg:$OO
X-reg: $00
Y-reg:unchanged
Carry set

Exit to caller .

BAll-BA21 Ara .ave delay table .
Contains values of 100 Usec intervals used during
Phase-on and phase-oft ot stepper .otor .

BA29-BA61 Write Translate Table .
Containa 6 bit *nibbles· used to convert I bit bytes.
Values range trOlD $96 to $FF.
Code. with .are than one pair of adjacent or
with no adjacent ones are excluded.

BA69-8A9S Unused.

8M6-BAFF Read Translate Table.
Contain. I bit bytes uaed to convert 6 bit ·nibbl •• •.
Values range fra. $96 to $FF.
Codes with .are than one pair of adjacent or
with no adjacent ones are excluded.

8aOO-BBFF Pri.ary Buffer.
BCOO-BeSS Secondary Butter.

8C56-8CC3 Write Address Field during
Calls Write double byte aubroutine.
Writes nuaber of autosync bytes contained in Y-reg •
• tarting addr •• s marks ($05/ $""/ $96), addr.s.
inforaation (volume/ track / sector/ checksua) . closing
address marks ($Oe/ $AA/ $EB).
On entry: X-reg:Slot nu.ber tilDes 16

Y-reg:nu.oer of autosync to write
$32: $""
$3F: sector nuaber
$411 volu .. nuaber
$U: track nuaber

On exit : A-reg:unknovn
X-reg : unchanged
Y-reg : $00
Carry set

exit to caller .

8·37

8CC4-BCOE Wr ite double byte subroutine.
Tilling critical c:ode that encodes address infor _ t ion
i nto even and odd bits and writes it at 32 cycle
i n tervals.
Ex it to caller.

BCOP-BCPP Unused.

BOOO-BOI8 Hain entry to RWTS.
Upon entry , store . Y-reg and A-reg at $48 , $49 as
pointers to the lOB .
Initialize maxiNuM number of recals at 1 and seeks
at 4.
Check if the slot. number has changed. If not ,
branch to SAKES LOT at $803 4 .

8019-8033 Update slot number in 108 and wait for old drive
to turn off.

8034-8053 SAKESLOT
Enter read mode and read with delays to see if disk
is spinning .
Save reSult of test and turn on motor just in caae .

BD5 4-B073 Move pointers in lOB to zero page for future use.
Device Characteristics Table pointer at S3C , $30
and data buffer pointer at $3E , $3f" .
Set up $47 (.otor on time) with $08 from OCT.
Check if the drive number has changed . If not ,
branch to $B074 .
If 80, change test results to show drive off.

8D7 4-BOBP Select approprhte drive and save drive being used
as high bit of $35 . I-drive 1, O-drive 2 .
Get test results . If drive was on, bra nch to $8090.
Wait for capacitor to discharge using HSWAIT
subroutine at $81'.00.

8090-8DAA Get destination track and go to it using MYSEEK
subroutine at $BE5A .
Check test result again and .if drive was on ,
branch to TRYTRK at $BDAB.
Delay for motor to come -up to speed .

BOAB-BOBB TRYTRK
Get command code .
If null, exit through ALLDONE at $BE46 , turning drive
off and returning to caller.
I f - 4, branch to PORM OSK at $BEOO.
Other wise , move low bit into carry (set-read ,
clear-write) and save value on status reg.
If write operation, data is prenlbbilized via a call
to PRENIBl6 at $B800 .

BOBC- BDEC I ni t ialize .aximuN retries at 48 and read an
Addres. Pield via ROAORl6 $B944 .

8-38

If read was good, branch to .RDRIGKT at $BOEO .
I f bad read , decrement retr ies , and , if still some
l ef t try again. Else , prepare to recalibrate .
Decrement recal coun t . If. no more , t hen indicate
drive e rror via ORVERR at $BE0 4 .
Ot he rw ise , reinitialize reseeka at 4 and recalibrate
atl. . MOve to desi r ed track and t r y again.

t

t

,
I

I

BDED-BEOl RDRIGBT
Verify on correct t.rack. If so br.nch to RTTRJ[
at $BElO .
If not, .et correct tr.ck via SETl'RK subroutine at
$BE9S .nd decreaent reseek count .
If not zero then reseek track . If zero , then reeal.

BE04-BEOA ORVERR
Clean up atack and atatus rei] .
Load A-r.g with $40 (d rive error)
Gato HNDLERR at $8£41.

BEOB-BBOC Used to branch to ALLDOHE at $8E46.
BEOD- 8YOY FORKOSK

Juap to OSKPORM at $B£AF.
BEIO-8E2S RTTRK

Check yolume nuaber found against Yolume number
wanted.
If no yolu .. was .pecified, then no error .
If apecified volu .. doesn ' t .. teh, load A-req with
$20 Ivoluae aia.atch error) and exit via HNDLERR
at $BEU .

BE26-BE4S CRCTYOL
Check to .ee if .. ector i. correct.
U.e ILEAV table at $BPB8 for software .ector
interluving.
If wr ong .ector, try again by branching I»ck to
TRUOR at $BOCt.
If sector correct , find out what operation to do.
If write, branch to WRIT at $8ESt.
Dtherwh., read d.ta via READ16 1$8BOC).
If read i. good, then postnibble d.ta via PDSTN816
($HBC2) and return to caller with no error .

8E46-BE47 ALLDON£
Skip over .et ca rry instruction in HNOL£RR .

BBU-SESO HNOLERR
Set carry.
Store A-reg in 108 .a return code .
Turn off .:;Itor.
Return to caller .

BESl-8E59 WRITE
Write a sec t o r using WRITE16 1$882A).
If the writ. w •• good, exit via ALLDONE {SBE46} .
If bad write, load A-reg with $10 (write protect
error) and exit via HNDLERR ($8E48).

BE5A-8E80 MYSBEK
Provide . nece.s.ry hou.ekeeping before going to
SEEKABS routine.
Deterain.s nuaber of ph •••• per track and .tore.
track in .ppropriate .lot dependent
location •

BEBE-BB94 XTOY routine.
Put slot in Y-reg by tnnsferc.1ng X-reg divided
by l6 into Y-reg .

BE95-BEAE Set tr.ck nuaber.

8-39

BEAF- BPOC IN IT command handler
Provides setup for initializing a disk.
Get the desi red volume number from the lOB .
Zero both the primary and secondary buffers.
Recalibrate the disk arm to track O.
Set the number of sync bytes to be written between
sectors to S28 (40.).
Call TRACK WRITE routine for the actual fonllatting .
Allow 48 retries during initialization .
Double check that the first sector found is zero
after calling TRACK WRITE .
Increment the track number after successfully
formatting a track.
Loop back until 35 tracks are done .

BPOD-8F61 TRACK WRITE routine.
Start with sector zero .
Preceed it with 128 self-sync bytes .
Pollow them with sectors 0 through 15 in sequence.
Set retry count for verifying the track at 4B .
Pill the sector initilization map with positive
numbers.
LOOP through a delay per ied to bypass most of the
initial self-sync bytes .
Read the first Address Field found.
If the read is good and sector zero was found,
enter the VERIFY TRACK routine.
Oecrement the sync count by 2 (until it reaches 16 _
at which time it is decremented by 1).
If sync count is greater than or equal to 5 , exit
via SBP7!.
If not, set carry and return to caller.

BF62-BFB7 VERIFY TRACK rout! ne.
This routine reads all 16 sectors from the track
was just formatted.
If an error occurs during the read of either the
Address Pield or the Data Field, the number of
retries is decremented.
The routine continues reading until retries is zero .
Calls Sector Hap routine (SBPB8).

BFSS-BFA7 Sector Map routine .
This routine .arks the sector initialization map as
each sector is verified.
If an error occurs , the routine exits through S8P6C ,
which decrements the number of retries and continues
If that value is greater than zero .
Upon completion of track zero, the sync count is
decremented by two if it is at least 16 .

SPAS-BPS7 Sector Initialization Hap used to mark sectors as
they are initialized.
Contains a S30 prior to initialization of a track.
Value changed to SPP as each sector is completed.

BFBB-BPC7 Sector Translate Table
Sector interleaving done with software.

8FC8-BFD8 Patch area starts here.
Patch from $B74l to zero language card durin9 boot .
Call SETVIO ($F£9]) .
Unprotect Language Card (if present).
Store $00 at $EOOO .
Exit through SETKBD ($P£89) and DOS eoldstart .

BF09-BFDB Unused .

BPDC-8PES Patch called fro- $AOE2 .
Set three additional defaults (Byte offset-O) .
Return to caller .

8PE6-BPEC Patch called fro- $A6DS .
Call $A75B to reset .tate and set war.start flag .
Hark RUN not interrupted .
Return to caller .

BPED-BFFF Patch called fro- $B]77 .
Call $AE7E to save file manager workarea.
Restore stack .
Close all open filea ($A]16) .
Save stack again .
Exit thrOugh $8385 (-DISK FULL ERROR-, .

DOS ZERO PAGE USAGE

BYTE ,.
26,27

28 , 29
2A

2B

2C
20
2E
2P
33
35
36,37
38,39
3C

3D

3E , 3'

40,41 ..
42,43
44,45
46,47
48,49
4A , 4B

4C ,40
67,68
69,6A
6F , 70
73,14
76
AF,BO
CA , CD
CC , CD O.
08,09

8-42

USE
Cursor horizontal (DOS)
Sector read buffer address (ROM)
Scratch space (RWTS)
BASL/ BASH (DOS)

merge counter {ROM ,BOOT)
Scratch space (RWTS)
BOOT s l o t *l6 (ROM)
Scratch space (RWTS)
Checksum froll sector header (RWTS)
Sector nuJaber from sector header (RWTS)
Track number from sector header (RI'n'S)
volume number from sector header (RWTS)
Prompt character (DOS)
Drive number in high bit (RWTS)
CSWL , CSWH (DOS)
KSWL,KSWH (DOS)
WOrkbyte (ROM)
Merge vorkbyte (BOOT)
Device characteristics table address (RWTS)
Sector nulllber (ROM)
Device characteristics table addresa (RWTS)
Address of ROM sector-read subroutine (BOOT)
Buffer address (RWTS)
DOS iaage address (BOOT)
Pile buffer address (DOS)
For.at track counter (RWTS)
Buffer address (DOS)
Nuaer ic operand (005)
Scratch space (RWTS)
lOB address (RWTS)
INTEGER BASIC LOMEM address (OOS)
F'orllat diskette workspace {RWTS}
INTEGER BASIC HtHEM address COOS)
APPLESOP'T BASIC PROGRAM START (DOS)
APPLESOFT BASIC VARIABLES START (005)
APPLESOFT BASIC STRING START (OOS)
APPl.ESOf'T BAS IC HIHEM address (DOS)
APPLESOFT BASIC line number high (005)
APPLESOf'T BASIC PROGRAM END (DOS)
INTEGER BASIC PROGRAM START (005)
INTEGER BASIC VARIABLES END (005)
APPLESOP'T BASIC PROGRAM protection flag (OOS)
INTEGER BASIC line number (005)
APPLESOP'T BASIC ONERR (OOS)

I
I
I

I
I

I
I

."
I:

..

APPENDIX A
EXAMPLE PROGRAMS

This section is intended to supply the reader with utility
prograMs which can be used to examine and repair diskettes .
These programs are provided in their source form to serve as
examples of the programming necessary to interface practical
programs to DOS . The reader who does not know assembly
languAge may also benefit from these programs by entering
them from the monitor in their binary form and saving them
to disk fOr later use. It should be pointed out that the
use of 16 sector diskettes is assumed . although most of the
programs can be easily modified to work under any version of
OOS . It is recommended that, until the reader is completely
familiar with the operation of these programs, he would be
well advised to use them only on an -expendable- diskette.
None of the programs can physically damage a diskette, but
they can, if used improperly, destroy the data on a
diskette , requiring it to be [e-INITialized .

Five programs are provided:

DUMP TRACK DUMP UTILITY

This is an example of how to directly access the
disk drive through its I /O s elect addresses . DUMP
may be used to dump any given track in ita raw ,
p[enibbilized form, to memory for examination. This
can be useful both to understand how di s ks are
formatted and in diagnOSing clobbered diskettes.

ZAP DISK UPDATE UTILITY

This program is the backbone of any attempt to patch
a diskette directory back together . It is also
useful in examining the structure of files stored on
disk and in applying patches to files o[DOS
directly . allows its user to read, and
optionally write , any sector on a diskette. As
such , it serves as a good example of a program which
calls Read/Write T[ack/Secto[(RWTS).

A- l

r

INIT REPORMAT A SINGLE TRACK

This program will initialize a single track on a
diskette . Any volume number (SOO-SPP) may be
specified . INIT is useful in restoring a track who ••
sectoring haa been damaged without [einitializing
the entire diskette . OOS 3 , 3 and 48K is •• sumed.

PTS PIND TI s LISTS UTILITY

COpy

PTS aay be used vhen the directory for a diskette
has been destroyed. It searches every sector on a
diskette for what appear to be Track / Sector List.,
printing the track and sector location of each it
finds . Knowing the locations of the TI S Lists can
help the user patch together a new catalog using
ZAP.

CONVERT PILES

COPY ia provided .s an example of direct use of the
DOS Pile Manager from assembly language .
The program will read an input B-type file and copy
its contents to an output T-type file . Although it
could be used . for example . to convert files used by
the Programma PIE editor for use by the Apple
Toolkit assembler, it is not included as a utility
program but rather as an example of the programming
necessary to access the File Manager .

STORING THE PROGRAMS ON DISKETTE

The enterprising programmer may wish to type the source code
for each program into an assembler and assemble the proqr •••
onto disk . The Apple Toolkit assembler was used to produce
the listings presented here, and interested programaers
should consult the docuaentation for that assembler for .ore
infor.ation on the pseudo-opcodes used. For the

language programmer , the binary object code or
each progra ... y be entered from the monitor using the
following procedure.

The assembly language listings consist of colUmns of
information as follows :

A-2

The address of some object code
The object code which should be stored there
The statement number
The statement itself

•

•

Por exaaple . ..

0600:20 CC 0) 112 COpy JSR LOCPPL FIND PARMLIST

indicates that the binary code -20CCO)- should be stored at
0600 and that this is stateaent 112 . To enter a program in
the .anitor, the reader must type in each address and its
corresponding object code . The follOWing is an example of
how to enter the DUMP program :

CALL -151
0600:20 E) 0)

00
0605:85 01
0807 :"5 02

. .. etc ...

0819:85)F
087B: 4C 83 FD
8SAVE DUMP,A$800 , L$1E

(Enter the .ani tor from BASIC)

(Save program to disk)

Note that if a line (such as line 4 in DUMP) has no object
.. bytes associated with it, it may be ignored . When the

program is to be run . ..

(Load program)
(Get lnto IIIOnitor) • •

BLOAD DUMP
CI\LL -151
02:11 N 800G (Sto re track to dump, run program)

(The aSAVE commands which must be used with the other
progra •• are :

aSAVE ZAP ,A$900 , L$6C
aSAVE INIT,ABOO , L89
BSAVE FTS , A$900,L$OC

r ' BSAVE COPY ,A$800 , L$lEC

• [
•

A diskette containing these five programs i. available at a
reasonable cost directly from Quality Software , 6660 Reseda
Blvd . , Reseda, CA or telephone (213) 344 -6599 .

A130 available rrom Quality Software is an expanded version
of these utilities called BENEATH APPLE DOS ' BAG OF TRICKS.
See the page racing 1- 1 ror more detatls.

A-3

DUMP - TRACK DUMP UTILITY

The DUMP progra. will dUllp any track on a diskette in it.
raw, pre-nibbiliaed foraat, allOwing the user to exa.ine the
sector addre .. and data fields and the for_tting of the
track. This allowa the curioua reader to exaaine his own
diskettes to better understand the concepta presented In the
preceeding chapters . DUMP m.ay al.o be used to exalline lIIOat
protected disk a to see how they differ fro. noraal one. and
to diagno.e di.kettes with clobbered aector addresa or data
field. with the intention of recovering fro. disk I /O
error • . The DUMP progra. ae rves aa an exallple of direct uae
of the DISK II hardware assembly language, with little
or no uae of COS.

To u_ DUMP, fir.t store the nuaber of the track you wish
duaped at location $02 , then begin execution at $800. DUMP
will return to the .onitor after displaying the fir at part
of the track in hexadecimal on the screen . The entire track
i.age ta stored, ata rting at $1000 . Po r exallple :

CALL -HI
BLOAD DUMP

(Get into the -anitor trOll BASIC)
(Load the DUMP

• . . Now insert the
02:11 N 800G

diskette to be ...

The output .ight look

1000- D5 AA .. AA ..
1008- AA O. M
1010- •• FF FF •• FF
1018- • 0 .. B' '0 AC
... etc . . .

(Store a 11 (track 17, the catalog
track) in $02, N ter.inatea the ato r e
COlUland, go to location $800}

like this . ..

AA (Start of aector addu ..) .8 CO •• PF 05 AA (Start of sector data) (Sector datal

Quite often , a sector with an 1/0 error . will have only one
bit which i. in error, either in the addreaa or data header
or In the actual data itself. A. particularly patient
progra .. er can, using DUMP and perhaps a half hour of hand
-nibbl1ialnq- deteraine the location of the er r or and record
the data on paper for later entry via ZAP. A thorough
underatanding of Chapter 1 i. neceaaa ry to accoapli.h thi s
feat.

I

I

1
r •

•

DIDO,

DIDO'
DIDO.
DIDO.
DIDO.
DIDO,
(1100,
0100,
DIDO.
DIDO.
DIDO.
DIDO'
DIDO.
DIDO.
DIDO,

DIDO,

0000.
0002.
DOle.
DOlE.
OOU,

0100,

1000,
O}&) ,
O)Dt ,
rDEO,
'Dill,

0100,

COlO,
con.
COI2,
con,
cou,
cou,
CO" ,
con,
con,
COU.
COlA'
CO .. ,
cOle.
COlO'
COli.
COl',

DIDO.

0000,
0000,
0001 ,
0002.
0001 ,
000.,
0005 ,
000' ,
0001,
0001.,
OOOC ,
0000,
0001 ,
0002 ,
000.,
0000,
0010,
0020 I
0040 I
DOlO,

, OIIG noD
4 ,
, DUItP.TtlIS ,!lOG""" "ILL ALt.OIoI ITS USER TO DUM' AIf ENTIItZ
7 TRACI III ITS Uti rOM IJn'O K£MORY rolt EXAMINATIOII • • , l"pUT. 102 TRACII TO IIIE READ

" 11 OUT,UT,SlOOO" ADOUSS or TAACII IMAGE

" 1) EHTIY PeIItT, nOD ..
15 r!lOGlWUU!!lt, DON 0 VOItTII 2/19/ 11

" 17 .. .

lPAGE OEPINITIOIIS

21 PTII
22 TRACI
21 AIL
]I AlL
25 ,MC

" OTlIEIt AOOR£SSU

2t IlUP1'U EQtJ
)0 LOCItPL EQU
)1 R'tH EQtJ
l2 ccxrr EQ(I
Jl lWt EOll

SlOOO
IlU
Slot
$rDED
$Poal

VOIUI; POIIfTER
TRACI TO BE UAO/WItITTEIi
MONITOR POIIfTEIt
MONITOR POINTEIt
",*ITOIt STAniS lEClSTEIt

TRACI IMAGE AREA
LOCATE IIWT"S ,AJtMLIST SUall'nl
IIWTS SuaJlOUTINE
PRINT OIIE CRAIt SUI ROUTINE
MON I TOIl HU OU.tP SUI",",

" DISI I/O SELECTS

37 DJlVSMO EOU
11 0JtV5M1 EQO
19 DavaM2 EQO
40 DJ:VSII) EOU
41 01tVSM, EOU
U DIIVSM5 EQ(I
n DJIVSrI' EOU
44 DRVSMl EQtJ
4 5 DJIVOpr EQO
U DIIVON EQtJ
47 ORVILI EOU
41 DIIVSL2 EOO
4t DItYIlD EOU
50 DIMfIt EOtI
51 oJIVKDM EOO
52 OItWItM EOU

KOla
KOIL
Kon
$COil
ICOI4
KOI5
$COI,
Icon
Icon
$COU
ICOIA
KOI.
ICOIC
KOID
SCOla:
ICOlr

STZ, MOTOII POSITIOIIS

TU RN ORIVI'.: orr AP'I'EII , UVS
TURN ORIW ON
IEt.a:T ORIW 1
SEt.a:T DRIVE 2
II&AI) DATA U.'l"CH
WIl ITE DATA U.TeIi
lIT UAb MODE
SIT WIIITE MODE

" wrs PAIIML I IT OCrINlTI Oli

" 51 ULloa
5' U[JILT
Sf ULO
'0 ULVOL
U ItPLTD
52 1lJI[JI1C
Il IlJILOCT '4 ItPLaUF
15 ULiU
" IlJILCMD n ItPLCtIL
" ItPLCIIfI
" ULCtlIt
70 IlJILCrM
11 ItPLJlCO
12 ULItW'
1) ItPLItVtI
If ULItDI
15 ULItM

OS"" " , "" , .. , .. , .. ,
". , '" , ". ,
". ,
". ,
EOU SOD
EOU SOl
!OU S02
!OU SO, " ,
EQU UO
EOU no
EQtJ 1411
EQtJ 510

101 TY PE {lOll
SLOf ' U
OIUV&

,'-'C,
"'" .. " ADOUSI or OCT
ADOaUS or lIIJf"U
IEIC'f'OR SUE
COMMAN D COOE

NULL CCIMMANO
UAO COMMAIIO
WRITE C(iMMAIiD
POltKAT COlMAND

UTUIIN COOl'.
WIlI TE ,ItOfECTEO
VOLIME MlSAATeIi
ORI W D.JI)R

. -s

nnnE " IlPLTVL " , TittlE YOLtnU:
noor " ULI'SL " , 'UV1OUS SLOT
nOlO " IlPL'DII. " , PREVIOUS DRIVE
0100 " ''''''
aiDa, " usa RW'fS TO POSITION TIl! AR.II TO 'fItE orsIUD 'l'AACII

0100,20 " " " '" """" LOCIoTE IIWf'S 'MKLIST
010),14 ", "' AIID SAVI! POINTER
OIo!.,n " " '" PTII..1

OIOl,A!> " " "'" '''''' on TRACR TO 1t£Al)/lfIUTE
0109,AO " .. '" 'RPLTIIR STORE IN IIWTS LIST
0IDI,91 " .. ftA (PTRI ,'I'

OIOD,A' " " "'" fRl'LC1I L NULL OPERATIOM
OIO',AO " " ,m"<o AND STOU IN LIBT
nl1l,n " " ftA {PTRI ,"

Dill'''' " .. "'" 10 ANY YOWltI! WILL DO
0115,1.0 " " IIU'LVOL
0117 191 " " ... , (PTRI,Y
0119:20 " " .. '" """" IU!LOAD POINTS!!. TO PAJIMS
OllC,lO .. " .. , .. - CALL IIWfS
OU',A' " 10. "'" 10
0121,15 " '" nA ."" • lit P R£G so IX» IS KAPPY

012), '" PItZPAIU! TO DUMP TRACR TO MEMOItY

Oln,AQ " 10. IRPLSLT GET SLOT' 16
0125,11 " 10' "'" (PTIII,"
OU7:M '" '" Oln,aI) " co 'oo "'" DRVOM,X R P DRIVE ON
OUI,IID '1 CO 10' "'" DJNRrM,X I NSUIU! II.!tAD NODI!

onE,,,, " '" "'" polin AT OATA
OUO:U " '" ." "' OU2,A, " '" CI'A felU •• ER
01l4,IS " ". '" PTROl
OU6,AO " " ,
OU': '" ITART txMP11tG AT nlE IECIHNIJIG or A SICTOR ADO
OU" ,,, PlELD 011. A lECTOR OATA 'IELD

0111,110 .C<. no "'" DRVRD,X WAtT POR NU'l' ,"',
Dill: 10 " '" '"
OllD'C' " m "" IS" AUTOSYHC?
OU',DD " '" NO, DON'T STAJtT IN '" DOLI
OUl,1Ill K" '" " "'" DRVRO,X WAIT FOR NUT 1I'tT1
0144,10 " '" '" " OU6,C9 " '" "" '''' 'nfO AUTOBYMCS7
OIU,DD .. m ON' "'" ,n
0I4A'1Ill OC C. m" "'" DJtVIlD,X
0140,10 ... no '" " 0I4PIC9 " DO "" '''' STILL AIJTOSYNCS?
0151,'0 " '" " YES, W" IT POR Oo\T" 1I'tT1
OUl,DO .. m ON. ELSE, START STORING OAT"

0155: '" CliCI II.LICNED, IIDGIN COJI't1HC TIIII TRACR TO MEMOIIl'.
on!.. '" COPT AT UAn TWICE IT'S tntG11I TO INIUg VB arr IT
0155, no "LL.

0155,10 oc C • DO "'" DIVItO. X WAIT roll NI.IC'I' Oo\TA .m
0151,10 " '" '"
OISA'91 " '" OTA (PTII) ." STORE IN MI'!IIOIIY
OIsc,a, " '" '''' "' BU", POIHTall.
015!,00 .. ,n ON'
0160,!' " II] 'NC Jl'TRol
"IU,A!. " , .. "'" PTII·1
01U,C9 " ... " .. ,U O DONE AT LEA$T " TMCR?
01",'0 .. , .. ICC 1'10. COM'TI/llua
OU"aI) II CO '" "'" DRVOP. ,x TUIIN DII.IV! OF.

...

0161, ... W'" PlNlSK.lD. ""'" 5(»U!: or TRACK III K.lX 0tI seMP

0161,A9 " '" "" • >'upnll ""'" 100.1""
0161)015 X '" , .. m
016P,A' " '" • durnll

• O17ltl5 3D ... n • All .. · 1
011)."" MUPP.lIl·
01'$,15 l& '" , .. '" 01" ,A' 10 '" • ... upnllo,,,,,
01",15)r '" , .. A2Lol
Ol' •• tc I) " '" ",. ... "''' VIA Il£X DISPLAY

• •• IOCCI.SSPUL ASSEMlILY, ItO EIUIOU

' .,

ZAP - DISK UPDATE UTILITY

The next step up the ladder froe DUMP is to acceaa data on
the diskette lit the sector levd . The ZAP progralll allows
ita user to specify a track and sector to be read into
.e.ory. The programmer can then make changes In the of
the sector In _!lOry and subsequently use ZAP to W[jte the
lIIOdified i.aqe back over the sector on disk . ZAP is
particularly useful it is necessary t o patch up a
da.aged direc t ory . Its use In this regard will be covered
In .ore detail FTS ia explained.

To use ZAP, store the nua.ber of the track and sector you
wi ah to access in $02 and $03 respectively. Tracks ally
range from $00 to $22 lind sectors from $00 to $OF . For
example, the Volume Table of Contents (VTOCI for the
diskette may be examined by enterinq $11 for the track and
$00 for the sector. $04 should be Initialiled with either a
SOL to indicate that the sector is to be read into _!lOry,
or 502 to ask that _.ory be written out to the aector.
Other values for location 504 can produce damaqlng re su lts
($04 in location 504 will IN IT your diskette!). When thue
three memory locations have been set up, begIn execution at
5900. ZAP will read or write the sector into or from the
256 bytes starting at $800. For examp le:

CALL -151 (Get into the .anitor from SASIC)
SLOAD ZAP (Load the ZAP progra_)

.•. Now inaert the diskette to be zapped .. •
02:11 00 01 N 900G (Store s 11 (t rack 17, the catalog

track) in 502, a 00 laector 0) at SO),
and a 01 (read) at $04 . N ends the
store co.mand and 900G runa ZAP.)

The outpu t lIIigtTt look Uke this ..•

0800- 0< 11
0808- 00 00
0810- 00 00
0818- 00 00
.. . etc ...

OF 0) 00 00 01 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

(S tart of VTOCI

In the above ex.mple, if the byte at offset) (the version
o f DOS which INITed this diskette) is to be changed, the
following would be entered . ..

80):02 (Chanqe 0] to 02)
04:02 N 900G (Change ZAP to wr i te lIIOde and do i tl

Note that ZAP will remeaber the prevIous values In 502, SO],
and 504 .

A-a

I •
I •
I
I

If some thinq i s wrong wit h the sec tor to be r ead (an I /O
e rror, perhaps), ZAP will print an e rror message of the
t'orm:

A return cooe o f 10, in thi s case , means that the- diskette
WI. wr ite protected Ind a write ope ration loll S Itteillpted .
Othe r e rro r cooes are 20 - vol ume mismatch , 40 - drive
er r o r, and 80 - read error. Refer to the documentation on
RWTS given in Chlpter 6 f o r more inforlDation on these
erro r s .
Otaal , ORG $900

0'001 atoo.
Otoo.
Otao.
otao.
Otoo.
otoo.
Otoo.
otoa.
Otoo.
0900!
Otoo.
Otoo .
Otoo.
Otoo.
uoo.

4

0017.

0'00.

0000.
0002.
000)1
ooa. •
0001.
0002.
OOlC.
0031.
0041.

otoo.
0100. a).).
0)09 •
rOI:D.
rDO" •
rD.) •

0'00.

0000.
0000.
0001.
0002.
000).
aDa. •
aODS.
0006 .
0001.
000" •
DOOC •
DODD.

,
• ,
• • " u
" 1)
10

" " " u

UP, TRIS PIIOGAAM WILL ALLOW ITS USER TO READ/'IIRIU
INDIVII)tJAL SECTORS PIIOK/TO THI DISKETl'I

INPUT . $1l'2 TRACK TO II READ
SOl SECTOR TO II READ/'IIRITTEN
$04 " Sal - READ SECTOR

SOJ - WRITE SECTOR
noo " ADDRESS or S!CTOJI MTA BUrrER'

ENnty $900

PROGRAMME'''' DON 0 WORTH 2/15/11

" ...
" BELL ... '" IELL CHARAC:Tr:R

" ' PAGE DEPINITI ONS

" n' ... " WORK POINTaJi
21 TJlACIC ... " TItACK TO aE READ/WJIITTEN
2' SECTOJI ... " SECTOR TOSE UAD/WIUTTEN
21 OPER DPI:JlATIOti TO BIt PIIJ1PO""'-I:D
2' READ ... , READ OPEJlATIOti
JO WIUTI: ... , WJlITE
Jl AIL ... $lC MDltITOJI PO III'TER
)2 A2L ... '" i'tONlTOR POINTER
JJ PUG MONITOR STATUS RECLSTEII'

" OTHER ADDUSSES

" SUPPER "'" $100 "C.," MTA aurraR

" LOC IIP L ... SlEJ LOCATE !MfS PARMLIST SU IRTN
" JlW'l'S ",,, SlD' !MfS SUIROUT IN E

" ""'" "'" $rDSD PRINT ONE CHAR SUBROUTINE
41 PUYTE "'" """ PIiINT OtIS REX 8YTE SUSJIITH

" "'" $PDSJ MOItITOR HEX DUMP SU8 RTN .. !Mfa PARMLIST DEPINITION .. "''''' " RPL I OII " , 10. TV,. (Sal) .. RPLSLT '" , SLOT' a .. RPLDRV '" 1 DRIVE

" RPLVOL '" 1 ,.le
" RPLTRK '" 1 TMC.

" ''',"C '" 1 ''''''''' " '" , AOORUS
"" OOT " RPLiur os , ADDRESS or aurPU

" RPLSI1 '" , SECTOJil SIn:

" ."",,, '" 1 """""''' """' " DC"'" "'" "" NULL CClfIMAIiD

' ·9

0001, " ... '" "" '" 0002. " ... "' '" IiRJ TE COfIIUJfD
0004 , "" J'OIUVIT COVt1.ND
0000. " U,""" " , """M """ 0010. " "''''' ... '" WRIT!! PIIOT&CT£D
0020. " u,""" ... no VOLUMF. MISMATCH
004lh .. RPLROE" DRIY!! ERJIOR
00.0, .. RPIoII.RE ... '" II.£AD ERIIOR
OOOE, .. RPLTVL '" , TRUE VOLUME
0001', " ItPLPSL '" , PRr:VIOUS SLOT
0010. " Rl'LPDR '" , PIlEVIOUS DIlIV'E
0.00: .. ".,'"
0.00. " 1'11..1.. tN RW'I'S LtsT

0'00.20 " '" " u. '" u>c'" r..ocAn JIWI'S '''',,"LIST
0.0).14 " " OTT >T' S"'YS POIHTZR
0.05.15 " " .. " PTI· l

0'07:"'5- " " ,,,.,, GET TRACk TO READ/Iil'Iltt
0'0':1.0 " " "" IRPLTRII STORE 1M I!WTS LIST
(I.08 •• t " " ." ("Rj . Y

·OUD !> '" " '"""" CET SECTOI TO READ/WRITS
090"C. " " , .. m IIIGGO 11IA.M 16 IECTO,,1
0.11>.0 '" " "'" "" NO
O.lh"" " .. " 091S.1S '" " n. """" mI , "" " 'M" ,. 0'17,1.0 " "''' I RPLS&C
0.19 •• 1 " " '" '"RI.Y ''''''' " RW'J'S LIST

O,U, ... O " .. IRPLlIvr
0910 " " h'Vrr!:A "'". aurl'l!.R PTA IN LIST
0911'.91 " " '" ,PTA) .1
092l;C. " '" 0922, " " I <surl'SI
0'2'.91 " .. ." 'PTIlI . Y

0926,"'5 " .. OPEl ." COMMAMD COOE
0911''''0 " " IRP LCMD '"" ST01l& 1M LIST
0.:u..91 " " '" (PTRI.Y

092C.'" " '" " .. , VOt.UMJi! WI r...t. DO
092!:, ... 0 " '" I RI'LVOL
0910,'1 " '" ." ,PTR).T

o.n. '" NOW CALL IIWTI TO READ/ lnI.lTE THS lECTOR

09)2,20 I:l OJ '" '" LOCR'L IlELOAD PO INTE R TO , ... AttS
0915.20 .. " '" m "'" CALL RWTS
0.31, " '''' " o.lA.n .. ". ." , ... ,.1It , uc SO DOl 18 IIA,,...
09lC •• O " ". "" U" Ar...t. IS WELL

OUS, '" ERIIDR OCCU1l&D .1'Irr ''':_Illi'

ons • ..., " '" ISELL 8£EP THE 8PCAIlER
0940.20 '" rn US ". ''''' 0941,..., '" '" " . PRINT TH!: ',,:.'
0.U.20 '" rn '" '" """ 0.41 , " '" '" ou ... , 20 '" rn '" '" """ OUD "" .' . otll'.20 '" rn '" '" ''''' 0.52: ... 0 " '" I RPLRCD
0.5 1 .11 " '" 'PTRl . T en RWTI UTUIIN COD!:
0'56'20 rn '" '" PUYTE PRINT RETUIIN CODE IN m

A- 'O

OUg, '" plMISHED , -, """ OF SECT'OIt 1M HEX

OUg,,,,, " '" EXIT U,. h (lUPP!!!1t "'"'' 800.887

" '" ." m
OUD''''' '" "" "" I dWl'pER

'" '" "'IL' I
096 •. "" .. In

" '" '" 0965,,,,, '" ,,. "" I (BUrrCR.SM
0967 •• " m A2L·l
0969.44: .. '" no '"' """ U" VIA H&X DISPLAY ... SUCCESSI'UL AS.DUlLY , .. u.. ..

1

INIT - REFORMAT A SINGLE TRACK

Occasionally the sectoring information o n a diskette can
beco_ dallaged so that one or IIOre secto r s can no longer be
found by OOS . To this problem require s that the
sector addre8s and data fields be re-formatted for the
entire track thus affected. JNJT can be u8ed to 8electively
refor.at a single track . thus avoiding a total re-INtT of
the diskette. Before using INtT. the u.ser should first
attelilpt to write on the suspect sector (using ZAP). If RWTS
refuses to write to the sector (RC-40) . then tNtT IIIUSt be
run on the entire track. To avoid losing data. all other
8ectors on the track should be read and copied to another
diskette prior to reforllattinq. After IN IT i8 l-un they can
be copied back to the repaired diskette and data 'can be
written to the previously dalllaged sector .

To run INIT. first sto re the nuaber of the track you wi ah
reforllatted at location $02, the volume nulllber of the disk
at location SOl (the volume number Should llatch the volulle
nUliber of the other tracks,. and then begin execution at
$800 . INtT will r eturn to the monitor upon cOlllpletion . If
the track can not be forllatted for 80eIe reason (eg .
physical dallage or problems with the disk drive iteelf) a
return code is pr inted . For example:

CALL -151
BLOA.D INI'f'
.. • Nov insert the disk

02:11 FB N 80OC '

(Get into the monitor fl'Olll BASIC)
(Load the INIT program)
to be INIT-ed •••
{Store a 11 (track 17 , the catalog
track) in $02 , a volume number of
$FE (25 4) in $0) , N terllinat •• the
store co.IIand . go to location $800)

WARNING: OOS).) Must be loaded in the I118chine before
runn ing INIT and a 48K Apple is .ssulled. INIT not work
with other versions of DOS o r other memory silea .

A- 12

0100 ,

0.00,
0100.
0100.
0100.
0100.
0100.
0100.
0'000
0.000
0.00.
0'00.
0'00.
0100.
0100.

0100.

0000 .
0002.
0003.
0010.
OUt: •
0041, oo u ,
oou.
00".
0011.

UOO.

un.
OlDt,
OS7l,
"00,
KOO, ,.DC.
" U,
... OD.

""''' , ... ,
0100,

COlO,
call.
can,
call ,
C014 , cou,
CO",
COil ,
Call,
COlt ,
CO'A.
CO'I,

COIC.
CO.O,
CO'E. co.r.
0100.

0000.
0000.
0001 ,
0001,
000),
000 1 '
0005,
0006L
0001,
000110.

, OIIIC $100 · .. . • , nUT , TIl lS P IIiOC IWoI ifiLL ALLOII ITS USI!A TO Ui'lTIALII ... A
7 I UIGU 'fAACIl Wl1"11 All Y VOLUtlS NUMIII!:It Df:S I UO. • , INPur, Sal 'fM CIl TO I ! tNI'ftA.LU!O

" 1l to) VOLUK& NUttI!J.
U
11 DIT." POn",. $100 ..
15 PIIiOCaAMNi!: It: P I ETZA LECKN 2/1'/1' .. 17 .. .

"
21 " J. IOU ,0
22 TRAC It IOU $2
21 VOLtnli!: IOU $1
H SlCFHO IOU no
15 .u. 1(10 $1'"
U VOL IOU HI
27 TIlK IOU , U
11 snctn' IOU .u
U PUC IOU ' ")0 u IOU $17

oneEIt ADDUISI!:S

H LOCIlPL IOU
15 J.W1'S IOU
)6 ItTUOlT ICIQO
17 N J.Uf' 1 ICIQO
l' nun EOU
19 JtU.DU IOU
40 ItDADRU !too
41 DSIlF2 IOU
. 2 COUT IOU
41 PUYTE ECO

$1u
flO' un
SUOO
SlCOO ,UDC
,Bt U
'81'00
"OI!:D
'POIlA.

WOO PO I N'T!.
TRACI TO at: Rt:A.O/lfR I TTEN
VOLUME NUMB ... R
S.I!!CTOIt POUND ,,, ItMOltU
J.PIIGE CONS'fAHT POIt TIN I He
II'OLUMI!: USED I" WRADR1'
TRAeIL USED I" WRAOR16
S'tlIC COON'T US"'O IT DSItPl
MDM I TO. P UCIST ... 1t SAVl!:AItEA
ASCII 1.1.

LOCATE .wTS PARMLIST sualtT" RIoI'T'
UTIt" COIJNT POJ. 051 .. 2
PIiIMAJ.1' SECTOII IU"""'.
SECONDAR" SECTO. 8U EII
READ DATA .. IELD J.OUTI"'"
ItEAO ADDUSS PI ... LD RDlJTINI!:
POJW.T ON ... TRACI JIOUTtN'"
MDMITO. CHARACT",R OUTPUT
MON I TOR IIEX OUTPUT .. DI ll{ l I D LECTS

47 OIlVSMO EOIJ
., OIlVSM 1 IOU
., OllVSM2 IOU
50 OJIVSfU EOIJ
51 O SH. !OU
51 DRVSN5 I!:OU
U DaYSIII' IOU
5 4 DaYSM7 IOU
55 DIIVOrP IOU
56 DItVON I!:OU
57 DItVSLI EOO
5. DItVSLZ IOU

5' DItVItD IOU
60 OItVWIt IOU
61 DItVJtDM IOU n OItVWIII't IOU

SCOIO
SCOIl ,can
'COl)
SCOI4 scan
SCO" scan
'co ..
sCalf
$CO."
sco.a
oeooe
$COIO
scan
SCO, ..

ST..., MOf'OJ. POSITIONS

TUltN ORIVE or .. ""' ... R 6 avs
TUM DJ.IVE ON
SELECT DRIV ... 1
SELI!:CT DltlVZ 1

UAD MTA LATCN
WRtTt.: DATA LATCN
SET au.o MOD ...
SET Wltl'f'" IWO IIII1'S PAJHLU'f Df:PINtTION ..

n MLIO.
51 M!.SLT
" IlPLOIW
'0 RPLVOL
II "'L1'U
II IlP!.SEC
7J .PLDCT
H RPUIUP
75 .pun

"'" " , " , " , " , " , " , " , " , " ,

101 TYPE (SOli
SLOT' "
OltlVl!:
YO"'"" ,...c.
''''''' AOOREaS or OCT
ADDM:SI 0' auPPEIt
SECTO •• n. ...

000(•
DODO.
0001.
0002, •
0001.
0001),
0010,
OOlO.
0040,
0010,
oooa,
ooor,
0010,
0100.

71 UtcMD
n ULCHL
11 ULCAD
7t ULen
10 ULCnt
It ItPLIICD
n ULtnfP
I] kPUtVM
It ULaDZ
IS ULAU
" ULTVL n ULPSL
II ULPO'" ..

" , I!:QU $00
I!:QU $01
I!:QU $02
I!:QU $01 '" ,
U!U flO
IOtl UO
I!:QU $40
I!:QU $10 " , " , '" ,

CXJIoIIoIANO COOE
NULL eOHltMio
1lZA0 COMMANO
nlTI: CCtIMAND
PORMAT C<MW40

"RITIl PIIOTECTED
VOLUflIl l'(ISKATCII
DRIVE PJIOIt
ItEAO IlItIIOIt

TItUE VOLUMZ
PlUNlOUS 1ItD!'
PItEVIOUII OUVII

0100, .. US! IIWI'I TO POSITION THE ARM TO THE DZSIR!O TRACK

0100,20 U 01
0101,14 00
010$'15 01

OI01,A$ 02
OIO',AO O.
OIOa,tl GO

0100,,,, 00
Olor, AO 0(
Olll,tl GO

tl DUMP'
" ..
"
'" .. , .. ,

Ol1hA' GO 105
OI15,AO 01 106
Ol1l,tl GO 101
01U,20 U Ol 101
011e.20 D'I Ol 109
Ol1r,IO It eo 110

LOA TRACI
LoO" t ULTlll
srA 'PTItI."

LOA I JI'LCIIL
LoO,. ' ItPLCMO
ITA IPTItI."

LOA , 0
U)" ' RPLVOL
IT. 'PTItI."
.11" LOCItPL
Jilt ItN'tI
t.DA 01tVON ,I

LOCATZ """I 'AMLIST
MO SAVE POIIITr.:It

GET TUCI TO 1tEAO/WItITZ
STOltZ 1M IIWI'S LilT

NULL OI'EJU\TION
AMO STOltZ IN LIlT

AM,. VOLUMI WILL 00

a!.CIAo POIItTZIt TO 'AJIIMS
CJlLL MlTI
UlAVII 01t1Y! ON

0122,

0122,A5 02
OIHln ..

'" , .. UTAaLUIl POIt DSkpZ JtOU'I'INZ

0126,A5 01
OUI,n n
onA'.9
onc,n)I;
ona,A' u
Ollo,n n
01l2,AO "
OU ••• , 00
01l6," 1'T ..
ou" ..
OllA,OO ••
OIX." 00 all
our, ..
0"0,00 r.

'" no
m H.
Ilt

LIlA TRACk
sr. TItII"
CM ." ... ,
"" ." ...
"" ..,

"'"'''' "'"
U2I ."""" U5'
noo
NaU'PZ·l,T

IIIBU'l

'All TMCk TO DaIPl

.ut0 VOLUIU

S'TOU COIISTANT POR GE ••
T1MIIIG
STAIIT IIITH 40 SYNCI ••
1Ir:ntz1!:M SICTORS

IZIIO SICOfOIMRY BU'PPZR

MD 'UMARY aurnl

0142,

'" '" '" '" '" '" '" '" '" '"
III INITIALISE TRACI

0"2,20 00 ar Ul
0145 •• 9 01 ll4
01.,,110 U US

JI" DaKpZ
LIlA l UI
IICI ""OERR

POMAT TIAa MO VIUU"
IN CASE OP UIOI., ,
ZRIOR1

0149, ItBAD Szcroll IEIIO TO VIIIU" POItMATI'IIIIC

01."A9 30
01 411,'0 ,. 0$
O 'lI
o.u.a ,. 05
ouz .ro 0&
0154 ,20 .4 119
0157'10 '$
OI5',A$ 2D
015.,00 .1

In LDo\
140 STA
141 IIOGOOO IEC
141 DEC
141 litO
144 .1U
145 lICa
144 t.DA
147 .1:

n)o
IITIYCtfT

''''O.T ... "' .. ItDo\Olt16
IEC"'D

NO, OOUIILZ CKI!:CIt TItACIt
AI.,LC)III .. UTIUZI

COUWT Rl:TIlIU

UA.O AH ADOItZSS PI ELI)
ERROR, TAY ACAI"
IS THIS alCTOA 111101
ItO, TAT AGAI"

-

ouo 20 OC .. ". '" RUlD16 YES . READ MTA YIELD
0160 91) " ". .. U ALL IS WELL . DONE.
0162 AI) " '" HNDEkR 'RPLRCD ELSE . PHONEY UP A Re
01640 91 " '" OT' (PTRI • Y

0166: '" 8RIIOR OCCURED. PRINT 'Re_XX'

OU6.A9 " '" IBELL BEEP THE SPE.U.ER
0161.20 " rn m '" """ 016a,A9 " '" " , PRINT THE '1'1(:- '
0160,20 " .. '" '" ""'" 0170.A9 e, '" , ' e • 0172.20 " rn '" '" e,,",

[" '" ". 0877.20 " rn '" '" e,,",
• OIlA:AO " '" ,JtpLRCD , 017e.81 " , .. (PTRI . Y CET RIfTS RETURN CODE

on!!: 20 " " '" '" PR8rrE PRI N'!' RETURN CODE 11'1 '" • 0181. '" DONE , EXIT TO CALL.ER

I 0111.80 18 CO ". CO. DJIVOPP . X TURN DRIVE 0" 0'" ,M " "' 1$00
OIU . U .. '" "" ''''' CLEAR P RECISTER FOR "'" 0118"'0 '" : R£1'URN TO CALLER

A·15

FTS - FINO TIS LISTS UTILITY

Fro. time to one of your diskettes will develop an 1/ 0
error smack in the middle ot the catalog track. When this
occurs , any attempt to use the diskette will result in an
1/ 0 ERROR me • • age trom DOS . Generally, when this happens,
the data stored in the files on the diskette i. still
intact; only the pointers to the file. are gone . If the
data absolutely must be recovered , a knowledgeable Apple
user can reconstruct the catalog from scratch. Doing this
involves first finding the TI s Lists for each file, and then
using ZAP to patch a catalog entry into track 17 tor each
file which was found . FrS is a utility which will scan a
diskette for T/ S Lists . Although it may flag some sectors
which are not T/ S Lists as being such , it will never mi •• a
valid TI S List . Therefore, after running FTS the programmer
must use ZAP to examine each track / sector printed by FrS to
see if it is really a T/ S List . Additionally, PTS will find
every T/ S List ieage on the diskette , even so.e which were
for files which have since been deleted . Since it is
difficult to determine which files are valid and which are
old deleted files, it Is usually necessary to restore all
the file. and copy them to another diskette, and later
delete the duplicate or unwanted one • .

To run FrS, simply load the program and start execution at
$900. PTS will print the track and sector number of each
sector it finds which bears a resemblance to a TI S List.
For example:

CALL -151
8LOAD FTS

••• Now insert the disk
900G

(Get into the monitor from BASIC)
(Load the FTS program)
to be scanned •..
(Run the PTS program on this diskette

The output might look like thi • ...

T-12 S-OP
T-IJ S-OF
T-14 S-OD
T-14 S-OF
Rere, only four possible files were found. ZAP should now
be used to read track $12, sector SOF. At +$OC ia the track
and sector of the fir.t sector in the file . Thi. sector can
be read and exa.ined to try to identify the file and it.
type . Usually a BASIC program can be identified , even though
it is atored in tOkenized form, from the text stri ngs
contained in the PRINT .tatements . An ASCII conversion
chart (see 8 in the APPLE II REFERENCE MANUAL) can be
used to decode these character strings. Straight T-type
files will alao contain ASCII text, with each line .eparated
from the others with S8D (carriage returns). B-type tiles
are the hardest to identify, unle •• the address and length
stored in the first 4 bytes are recognizable . If you cannot
identify the file, a •• ume it is APPLESOFT BASIC . If this

I •
I •
I •
I •
I · I •
I •
I
•
I • I

assumption turns out to be incorrect, you can always go back
and ZAP the file type in the CATALOG to try something else .
Given below is an exalilple ZAP to the CATALOG t o create an
ent ry for the file whose TIS List is a t T-12 S-OF .

CALL -lSI
BLOAO ZAP

. .. insert disk to be
800:00 N 801<800.8F£M
80B: 12 OF 02
leI AO AO AD AD AO AO
lAO AO AO AO AO AO AO
lAO AO AO AO AO AO AO
lAO AO AO AO AO AO AO
:AO AO
02:11 OF 02 N 900C

ZAPped •• •
(Zero secto r IIrea of memory)
(Track 12 . Sec t or OP , Type-A)
(Name is R,,_,
(fill name out with 29 blanks)

(Write new sector image out a.
first (and only) catal09 sector)

The file should illlJllediately be copieCl to another diskette
and then the process r epeated for each TIs List found by PTS
until all of the files have been recovered. As each file is
recovered , it may be RENAMEd to its previous name. Once all
the files have been copied to anothe r disk , and successfully
tested , t he damaged disk may be
0900, 2 ORC noo
0900,
DIDO,
0100,
DtOO,
DIDO,
DtOO'
DtOO ,
0100,
0100,
0100,
0100,
0100,
0100,

OOlh
DOlO.

0100.

0000.
OOX,
003!:,
DOUr

0100,

0100,
OlE),
O)Dt,
PoaD,

DIDO,

0000,
0000,
0001,

000):
0004'

4 .. . • , ,
• • " " " 13

THIS 'ROCUM SCANS THE ENTIRE DIS ItETTE roR
AP'r.AR TO IE TRACIt/SECTOR LISTS AND 'RINTS
TRACIt MID SECTOR 01' v,cN CitlE IT FINDS.

INPlIT, NOtIE

tNTRY POINT. $900

" " " ...
11 II£LL £00 $"
19 RETURtI r:.ou flO

BELL CHARACTER
CARRIAGE II.I'!TUItli

" trAGE DEPIIHTI0ti5

PTIt
HAlL
25 AlL
16 PItIXl ,.

"" " "'" nc I'!OU $ lI'!
EOU UII

OTHER ADDRESSES

)0 IUF"ER I'!OU
)l LOCR'L I!QU
31 !MfS EOU
3l COOT EOU
) 4 PRInE I'!OU

.. oo
nEl
$309
SPDEO
'FOOl.

WORIt POIIfTER
MOfIITOII POINTER
MOIIITOII. POtrolTEII.
MON I TOR STATUS REGISTER

SECTOR llATA BUPFER
!,.OCATE !MfS PARMLIST SUIRT'tI
IIWTS SU8ROUTINE
PRINT (»IE CHAR SUBROUTINE
PRINT (»IE HEX IIYTE sualtTM

"
"

!MfS 'ARMLIST DEFUUTION

3t IIPLIOI
40 RPLSLT
41 IU'LDRY
42 IU'LVOL
43 IU'LTU
U IU'LSEC

"OCT '" . '" . " . " . " . " .
lOB TYPE (SOl)
St.OT· 16
ORIVI:
VOLUNE ,.,'" '''''''.

A- 17

DOD', " ... >.DOT , ADDRESS Of' DCT
0001 , " , ADDRESS 01' aul'"1t
ODOA, " ULaIi " , S&:CT01t SUE
OOOC, ""'" '" , Ci»lMAND CODE
DODO, """ .,. '" NULL CClMMAIiD
0001, " ""' .. .,. '" READ COKMAND
0002, " """'" .,. '" WRITe COMM.\IID
0004, " ""'"' "'" .. , Ft! Rl'tA T COfoIMA/II 0
0000, " IU'LJlCD " , """'" """" 0010, 50 "CO"" "'" no WRITE PROTIIICTED
0020' " "'CO"" "'" no VOLUl'eE MISM'fC1I
0040' " ""- "'" ... DUVE eJUI:Olt
DOlO, " ... CO '" UAD eltlllOlt
0001, " ... , TRUE VOWMl!
0001', " IU'LHL '" , PItEVIOUS lID!'
0010, " IU'LpDIt " , pJt£VlOUS DItIVE
0900, " "'"
0900, " START TRACJI/SI!:C1'OIt JUST PAST 008 (TRACIt lJ
0900 , 20 ., " .. "' '" LOCltpL t.OCATE flNTS 'AIUtLIIT
OIn,14 " .. "' AND SAVE POIIITIIt
0905 , 15 " " '" PTIt.t

0907 ,A9 " " 'UST --- T"'" no' ,AD " " ... " llU'LTRlI n<>" ,. - LIST
0908,91 " " n. (PTIt) • y

0I0D,AO " " '" lIU'LBU'
0I0"A9 " " STORJ: sul'nlt PTIt III LIST
OIU.91 " " ... (PTIt).y
OIn,c. " '" 0I14,A9 " n
091,,91 " " m (PTIt) . y

OIU,A' " " IIt'LeItD GET COMMAND CODIII POIt
O9lA,AO '" " , ... ""'" AHD STORE 1M LIST
091C,91 " " n. (PTItI .y

0911:,A9 " " ANY VOLUMZ WILL DO
0920,AO " " IIt'LYOL
09n,91 " .. "" (PTItI.y

0924 I .. , .. TRACK . START II!:C1'OR AT IEJtO

OIHIAO " " , ... " IIt,La&C
09U,A' " .. "" " nUll! " " "" (PTItI • y

09lA, .. """ CALL Wl'1 TO ItEAD THE SI!:C1'OIt

0I:u..,20 .. " .. IIIWSIC '" LOCltpL RELOAD POIIITEIt TO " 0920,20 .. " " '" -, CA.LL flNTS
09)0,A9 " " 0912,15 IT> "'" , IX I' It£G 80 00II IS HA,PY
0914,90 " '" "" OCM ALL IS WIILL

09)6, '" EJUID. OCCUltED. '.IIIT -JlCoU"

091,,20 a) 0' '" '" ,.,.,.. ,alllT
0919,A9 " ". IIELL IEIp TliE SPU,UII
0I3a,20 .. ,. '" ". """ 09lE,A9 ., '" , .. 'RIIiT THE "Reo"
0940,20 " ,. '" """ DU1,A' C) " 0
otU,2D .ED ,. '" '" """ Ott',M II) '" "" , ..
094A,20 " ,. '" '" """ 094D,AO " '" IIU'LJlCD
094,,1' " , !' (PTIt) . Y GET "'"'S ItETUIUt coos

A· 18

20 '" .. m '" PUnE PIlINT Rl:TUJIN COOS IN IU!I ... ' 10 ,un> ..
0'56,20 '" ". coo.
0'S!. 4C 11: 09 ... " .. NITIBC GO '"

O'$C , '" ItO EIUICUI, SEE IP SECTOR LOOI.S LIlli A 1'/ 1 LIST

01!oC ,A2 " '" ... , " " " '" SCLPO IWPPl:II, • MAU SUU ITS NOt ALL iliAC
OIU,DQ " '" D' 016), 11 '" , ..
09 64 '00 .. '" ... ICLPO
OIU ,PO " In ... , ".HEC IF IT IS , SUP IT

0I61 ,A2 " '" ",m ... , " ",.ft AT OPPSE'!' S
0I6A' III " " '10 ICLP! 8UJ"PEJI , •
0I6D,DQ " '" D. !lnsEC HEADEII or T/ S " UST .. """ 096r ,I:' m , ..
0970,1:0 " '" on '" "'1' TIll: T/ S PAlltS TET7
0112 , .0 " '" "" SCLPI 110, ItEEP CKECU Me

0974 , ao " " '" BUrPER , • <aT
09n,c, " '" a .. '" I'IUST Ill'. O-H
0979. 1 0 " 110 "'. .='" Ot71. EI '" '" 017C. IO " " '" BUrru . •• GaT S&CTOII
Ot7r ,c, " '" "" '" MUIT Ill'. 0-15
09111 10 " '" "'. NII1'S£C O9n,.., '" '" 0914 ,DO U , SCLP2

0916,20 n " '" '" ALL CONDITIONS ME'!'
09" ' " '" ' ''' ,un> ..
09 .. ,20 '10 '" ,-"II. '" - SK'rOJI .. IIMBEa oa TIUoCIt AND CONTINUE

Otll, "'O " In NUSEC ... " LSEC
Ot.o,11 " '" I rral .T GaT LAST SECTOR
0,n,1I '" <I.e
O'U," " '" "" " IWJIU' IT ONE
OtU,U " '" n . , rrll) .T AND Pin' IT IlACIt IN LilT
otn,Ct " '" "" '" 1'00 ll<O?
Ot",10 " '" "'. .=u
O'tl,4(: '" " '" ,., .""'" "', GO JtU.D IT

"9&, AO " '" ,=u ... , LTJtIt
0'''0111 DO 10' IPTltl. 1' GET LAST TRAe ..
".\l,1I '6) <I.e
DIAl,,, " ... "" " 1IUfU' IT ONE
O' ... 51tl DO ". . T> crrll) . T ""0 Pin' IT IlACIt lJI LIST "A7,C' " "'" U ll CATALOG TRACII:? """,PO " '" ,..TTJIl n;s . SUP 0\11: 11 TKAT "'. O, ,c, " '" "'" '" lI0II& ALL)5 TRACIa?
O'AD.IO " , .. "" . UT TU. t.l:AVZ O,Ar,4(: " " no " .. ''"'u "', '" rIIIST SJ!CTOR
"12,60 '" aUT "" o,a), m PJlTTI I PIIIM '1' • •• S · •• •

o,a) ,AI " '" , " paiNT '1"
"as , 20 " " '" '" COOT
"II ,AO " In ... , LTRIt
" BA IIl 00 '" ' ''' (PTIII • T
onc , 20 CC 09 '" '" '''''' pa iNT ' · XX

"IP, A' " U, " . '"'' '" Otel,20 to PD 'n '" ,-Otc4 ,AO " ,n ... , ,ULlE«:
Otc6,11 " U {PTa} • T
Otel,20 "" U. '" .. pa iNT - · X • •
O!tCI,60 , .. "'"

A· 1I1

OtcC.u ". ,,,.., '" O'CO,"" .. '" ...,... I ' •
O'C,.10 EO .. '" '" ",,,,
O'D2,U '" ''''' 090),20 DA .. '" '" "'"..
0906,,., AO >0, I '
O'DI,20 ao .. , .. '" '"'" 0'011, '0 In on
••• SUCC&SS'UL IISSEMIILY, 110 IlItROJI:S

COpy - CONVERT FilES

The COPY de.onstrates the use of the OOS Pile
Manager subroutine pack'ge from •••• mbly l.ngu.ge. COPY
will read a. input a Binary type fUe , stripping ott the
addre •• and length inforM.tlon . and write the data out a ••
newly created Text type file . The of the input file i.
as.u_d to be -INPUT- . although this could ju.t .s e.aUy
have been inputted the keyboard . and the name of the
output file ill · OUTPUT- . COPY is ••. Ingle drive operation ,
using the l.st drive which w.s referenced.

To run COpy . lo.d it and begin execution .t 5800:

CALL -151
BLOAD COPY

. . . Now insert the disk
8000

(eet into the monitor from BASIC)
(Load the COPY progr.m)
containing INPUT . . .
(Run the COPY

When COPY fini.hes , it will return to BASIC. If any errors
occur . the return code passed b.ck from the File M.nager
will be printed. Consult the documentation on the File
Manager paraaeter list in Chapter 6 [oe a list of the ••
return codes .

A-2O

r 0100. , 0 .. nOD • I 0.00, ••.•..•..•..•.......•.•.•.••.••..••.••••••••
DIDO, ,

• 0'00' • COP'11111 15 PROGIINI 'nit; OBI or TIll DOS riLl

1 01110 I , MHAGEI n COrYIHG A lIIMAltY PILE TO " TElT riLE.
DIDO, • 0'00, • IN'\1I', INPtIT I'lU NM£ IS 'INPUT'
0'00, " OUTPtl1' PlU NAME II 'OUTpUT' I 0100. 11
0.00, " """ POll"" $100

• 0'00, II

I DIDO. .. PJIOCIWII'Il!:'" DOe! 0 WOIl11l 2/1'/11
0100. " 0I0tlo•..•...............•..•....••..•••••..••.••••• •

I 00.7, " .. " ... '" BELL CHARACTER • , 0'00. " aPAGE DEFINITIONS

• DODO. " ... " WOU POIIlt'ZII , 0002. " ,W. "'" " BUPPEIt POINT!1t
0004. 24 ElITE
OO)C, 25 AlL "'" ne _ITOII POUlTER • DOli. 26 A2L ... '" **11'011 POIII1'IIk

U DIDO. " OI'IIER ADDRESSES

1000. " Bur'EII ... $1000 MT" surrElt
0300. " ""' nOD DOS
Olltl, " '"'''''' ... flU LlICATE II:WTS PAM!,.IIT lUI'"'"
OlDe. n !,.OCrPL noe LDCATI!: .ILI!: Melt 'AIIMLIIT sua
0)0', ""' ... " .. I'n •• MAHAGEIT atTlt'l POINT
'DeD, """"'" ... $PDED PUNT OIl! CHAit luallCXrl't1U:

36 PUJTI: ... ""'" PU,", Cltl: ax 8"1: IUIJmC

0100. " PILI: """ACEII PA""LIST DIIPIIUTION

0000.OCT
0000, "coo '" , OPBRATION COOl:
0001, "ce. ... '0' 0002, " '''0'''' ... '" e ' 000), .. • 00< '"
000 4, " """"'" ... SO. WltITZ
0005, .. _ '" 0'= 000', 47 n.occA ... ". CATIlUJG
0007. 41 ntOCLO" ,,,"" 0001, .. """"'"" ""'"'' Ooot. 50 ntOCU ... '" --OOOA, 51 PMCCpO ... SO • POIITlON
0001' 52 PMCCIM ... '" IMIT
OOIC. " """"'"OC VZUrY
0001, 54 PMIIICO '" , IUICOOZ
0000, " "" ... "'" '" ItO OPZRATION
0001. " ""- ... '" UAD/'IfItITZ ONB IYTIt
0002, " 'MBIIO. ... '" UMl/MUTB Ito\NGIt or on ..
OOOl. " , .. "'" '" POSI'tIDtl AltO DO OME 1"£
000 .. " ""1'11 POIITION AltO DO IWICZ
0002. " "', 0 IPI!CIPIC ''''lIAIUTlltS

OOOA, "
0002, " 0 .. """" 0002. .. "'''' " , ""'"'" ""." 0004, " "",0' " ,
0005, .. " , OIIVZ
000'. n PMIILT " ,
0007, " "'"PI

.,. 1 Tm
0000, ° no",
0001, " """" ... , IMTZCEIt
0002, " PMTTPA ... , A"lZSO"
0004, " PMT'I'PI "" • IIIIAII'I'
0001. " , ACOUII or PILI: NAMI

"'-21

00010 , " ItUID/VIIITIl Po\IItlS
0002, " "'" ""''''' 0002, " """"" '" , 1lEC0RD NUMIlEJI
0004, " ""'"' '" , IIYT!! OP'PSET r 000', " """'" " ,
0001, " , '" , IlAtiCE IoOOfWl5
0001 , " " ..., , DATA IIYTB ItUID/VJlITTDI

00010 , " IIDIAIlI P""ttS
0002,
0002, " """' .. " , ADDRESS or NEW NAME

0004, " IIiIT
0002, ,,'" 0001 , " ""''''', """" rll'lST "ACE or DOS .MCE

0002, " PAIIttS
00010 , " """ ",PIIMS_I
OOOA, " .. '" " , "'"
0000, .. """'" ..., , "" ,,-0002, 9!0 ""':'110 ... , ... """" It. 000l, " """'" ... , BAD
0004. n P'MIICWP ..., • WRITE PROn:CTED
OOO!h .. '""'" ..., , !HD 01' OATA
0001, n ntJIOlP ..., • PILE MOT 1"0I.III0
0007, 100 nulClIV ..., , BAD VOLUJU
0001, 101 nuclO "'" • I /O EIlIICIJI
0009, ", ... • DISK PULL
00010, "J .. "" .. "" " PILE LOCKED
00011, '" " , IIOT USED
OOOC, '" ," '" , FILE KIoNIoGEII. WOIl.XloII.r.Io ." OOOE, ". """ " , TIS LIST PTII.
0010, '" ntBurr " , DATA BU"EII PTII.
0100, ". ""
0100, '" "X,," .. """ ... LIST It
0100,10 DC " '" ron '" LOCrrL ,nlo '10""LIST
010],14 " Hl on '" ,a u, POINTE. TO IT t OI",n " ,,. ." PTII.- I

0101, no ,,",p 'NPUT PILE t
0101,100 .. '" "" , STOll'! IIiPUT PILE IlIoME
0109,109 " '" hiliAME PT. III LIST

(OIOIl,U " '" ... , (P1'II).Y
OlOo,el m '" 0101,10' " m '" ' (II1AME
0110,U " '" '" CPTII). Y
0112,100 " ". ,0< IPMTYrE 1I111,.II.Y 'ILE All IIiPUT
0114,,., .. '" "" IPMTYrIl
OU"U .. '" .. , CPTIII.Y
0111,,.2 " '" w. " OLD PILE EXPECTED
01110,20 " .. '" '" "p AHD OI'!H Ttl! PI LE
0110,10 " '" "" ,-Oil', tC '" .. '" '" EII.II011 A.M.Y EIUIOII IS ,,.T,.L t
0122,,115 ., '" ''''' "" "''' 0124,10 .. " '" IIIUPP SAVE OPEN PI LE IIUPPEII J 0127,'\$ OJ '" BU,,_l
OIU"O " " '" '" laur,q
one,20 " " '" '" IUNINO POSITION TO ST,.1tT or PILE

•
our. UO OPEN OUTPtrl' rILE

On,.,AO " , .. STOltZ CKn'PUT PILE N,ucz
OUt I,U " '" "" bOtiME PTIt III LIST
OUl.'l ,. '" .TA (PTIt' • Y
OU5 ,C. ,OJ '" 0116.'" " , .. "" . <ONAKE ou •• n " 'OS n. (PTIt, "
DllA,A' " ". '","PE TZU rlU: AS CKn'PI1T a.x,,,, ,. '" "" " '" m (PTltl , Y ,. '" " NEW P'LI!: IS Of:
0142.20 " " '" '" 0145,'0 .. '" ocr ""'" 0141.0\0 " '" , .. '"
OU,.al " '" ",. (PTIII.1'
0141,e9 .. '" "" tFttIliC!lP PILI: tIOT ""' .. , o14o.ro " '" .'" """" ,.., "" ALI.OCATED ..
O"!'I.e ooc " '" '"' n"",
0"2,1'05 " '" ""'" "'" BUPP SAVE OPEN OtrI'PUT f'fU; SUP'U
0.54 .'0 .. " '" 'TA OI!Iurr
0'51,1'05 " '" eo. BUr,_1
0.59.101:9 " '" OIWrp'l one,20 SA " '" '" REWIND POSIT ION TO START or rILl!:

o.,r. '" IlEAD MlDRJ:SS/ LDiOTK PROM 81I1A.1' rILE

• 0'5P,A' " ". "'" .. 4 IIYTES FIRST
"'bAD " '" U · ... ItALH
0"3,91 " ". ft. (PTIII .Y nn,,,, " '" eo. " ou"e. '" .. ,
D"I , tl ,. m 'TA (PTItI,Y
OUA.20 " " m '" ... ,
0160. '" ... , EIlTIU BlttAaT PILE INTO MEMORY AT '1000

OUO,AO " " no '" aurrEII';!: COPY DATA LENGTH TO LIST
0170,AO .. '" eo, ""RAUt
DlntU " '" m (PTII,.Y
oIH,AO " " no "" BUrrEll ·]
0111.C. ". '" on •• '1 " '" ... (PTIt,.Y
OnA'U '" ,>£
Onl,AD " " '" '" IU,.,.ZII+2 COItP,,"Z ENDING IYTS
onl'," ...
Onp,69 " '" .OC 1 >8UP?E.
0111,15 " , EIITTE
O ..), AD " " '" '" IWPnll ']
o .. " n ". OIn,69 " , .. .OC " IUP,.EII
"19,15 " '" n. Q1'TI!+1
0"1,20 H " '" '"

_.
lLOII IIITO KEMOJIY

01 .. , '" WIIITE" EHTIItJ: IlLOe DOT INTO TJ'!lIT ,.ILE

"la,AO " '" ... , ..
OI'to,,. '" m
0191091 " '" '" IEIYTEI ,Y """K END Of' rILE
0'9],61 '" 0I9hAO " '" ... , 'I'IUAI.H ' 1 SET IlANGE lZIfGTH
0196"1 " '" n' I"JtI , Y
0191,11 '" 01",,, '" 0I9A,'1 " '" '" IPTltl,Y
0.,C,20 " " '" '" WRITE WIUTE IU.OII ,.IIOM KEf'OltY

A·23

019': ". ,IIIISHED, CLOSE PIL£S

089':AD " " n'T OIIUF'
08A2:85 " ". m au'p
08A4:AO 1!:9 .. '" OIIu,,· 1 r 0'''1:'5 OJ m ". BU'P·} • 08At.20 46 " m '" CLOSE OUTPUT 'ILl!:
O'Ae,AD " m JllIP" · OIAI' •• 02 '" ,.,. • 0'81:AD " m "" llIUF'tl
0.84>.5 0) no ." BUFP.I
0186.20 46 " '" '" e",", CLOSE IMPtrr 'lLa 1£ 088.: 4C DO " '" ". IlACII TO DOS

OUC. '" EIUIOR, PRIKT "ERUl("

O'IC,AO " EIUtOR ,,» ,- 'IND IUM'VJat "X" 0 '81 " '" "" IPTltj ,1'
OkO.41 '" ...
OICI,A' e, m ... "" '" PRIN"l' "ERR"
01C),20 .. " '" '" COOT
O1C6.A9 " '" "" ,',
OIC., 20 .. " '" , .. COOT
oece.20 .. " '" '" COOT

'"
01Cr.20 " "' '" '" 'lUIYTE 'Rltn' It&X CODII
0'02,1)0 '" 'M DIE IIOIUIJlL1'

0'0), '" orb, co.tPt.r:rE PAJItIL'IST AHO OPEN 'ILE.

080),AO " " '" OPEN "" DOSWAMt2 'IND DOS
0806,15 " m m aupp.}
OIO •• AO " '" " 010 .. ,,14 " '" 'TT IU'P ""NT " BtlFrllt CNAIN

aloe, '" oc.x DOS BUrrus POR A P'lun: ONE

O'De,1I " '" GauP'O '" IIUrPl , 1' LOCATE NEXT DOl 1UP'P'EIt
01DC. 4' ,
OIO,:C. '" '" OlE.o.eL " , .. IBUrPl , 1'

" '" ft. BU'P·L
OIU:68 ".

" '" ft.
OlEhD(l .. no .. , "' .. COT "" 01E':A.5 " '" "" BtlFPtl
0 11100 " '" .. , GIIUP' "" ""
O o.A. "" '" "" '" "" IUP'P'11tI ItETUJIN ""'" OIU, 41 '" PNA.
0.,0, tC e, " '" , .. , .. '" PRINT MUIIAGE

O.,),AO 00 '" GIIU' " AT P'ILEN'","E
0.,5,81 " '" "" '8UPPI , 1'
O"1,P'0 " '" .OO GOT8U' .. " .. TIll!:AE , 'U. BUP'rER
O.,',AO " '" '" IT ' I MOT 'UE
08ra,00 ".. '" .. , G8U'0 GO GET NEXT ONE

08P'0,A' .. '" GO'I:IIUP' "" ..
O'P",.1 " '" OT. ,IIU'PP} ,1' MARl 1IU'P'BIt " "n
O.O}, '" 'INIIH COM'LETING OPOI LilT

O'OI,AD " ". ,noocoo
0.0).A9 " '" II'MOCO,
ot05.tt " '" m IPTIl) ,'I' OPCDOE TO OPOI
O'Ol,A. 00 '" "" " O'O •• AO " m ... , Inuw:::LN
O.o.,tt 00 '" m IPTltl,1' UCOi\t) l.INC1'H '1'0 ,
otoo,c' '" '" O.OIl:tt 00 '" m (PTltl,1'
0'10,AO " '" ... , ''''''''' Ott2,tt 00 '" '" (PTltl,1' AND VOLUME ,AN! VOL)

" ·24

OU 4. 20 " " '" '" """L PIIiD IlWr'S PAlIMS
0917.14 X '" ." m o,n.1S " '" ... ,.,1L·I
OUI. AO 01 '" "" " 0910. 11 X , .. LOA {A1LI .V Cft SLOT· I'
Ofl,, 4A >I. "" • OUO. 4A '" • OUI. 4A '" "'. • OU2. 4,., '" "" • SLOT_SLOT/I '
OUl. AG " '" "" ,PM5LT
ous.91 " '" ". {PTR' • ., lTOH III LIST
on70M " m " on,.11 X '" (AlLI ." on DR IVE
On •• AO " '" , ... ""
0920.91 .. '" ... (PTRI." "'"
our. '" COMMON INTEIII'ACE TO PI LE MANAGER

our. AO ,. 291 CALL'M co, m
093loS I " 2" C'MI.,l LOA {l lIrp) • ., Cft 'MIME &Urn. PTU
OUlo U '" OU4 .CI '" '" 0935.CO " '" m on
OU7 . " " '" """ cnu.>,
OU,. AO 11 '" . ntaurr_l
OUI." ". CntLP2
otX . ,1 00 '" ." ,"RI .T COP, THEM TO FM L 18T
OUE ... '" M '
our,co OC m ' P'MPI'IWA
otH .10 " '" .," CnlLP2

otH,4C '" " '" ,.. IX IT THRU PILI: ItAtIACIa

014', , .. CLOSE I CLOSE DC» PILI:

OU',AO .. '" "',,, "" , """""
OU,. A' " '" "''''''''' OUA.U " '" nA {PTR, • .,
OUC.20 " " '" '" 0ALLn< CLOSS PILI:
014"'0 01 '" """ 0951, 4C " " m '"' ERROR
0954 1AO 00 m OLM "" " 'UE 8Upru
on",. m '" 0''', t1 " no n. {IUPPI.T
on"" '" '"
O'$A. m nIIIH'1I l'OSlTIOtt TO ITAItT or 'IU:

OU/ .. AO " '" IDIIND one,'\, 00 '" " onl,91 " '" '" (PTRI • T """ RECORD NIlMBER 'AND ••
O"O,C' m '" au. 'co " m '" , rl'lO,rs · 2 om or'SET.
0,,),'0 " '" """
0165,'\0 " '" , """"" 0"7,..., " '" ,-"" Pet ITION OPCODr.:
0",,'1 " '" '" {PTRI .T
0".,20 " " '" '" UIT VIA PIt.8 IlAHACr.:R
0".'90 " m ooc,. CHr.:c. PO. r.:JtRORi ono.4C " .. '" ''''' .""'. 0913,60 '" _1m 'TO

A·25

0,14, '" • IlEAD, IlEAD , JlAtlGE or BYTES TO 11000 [•
09140AD D .. '" >DO nun rIND .ROPER BUP'ER
0971>15 " H. n, BUrP
097hAD EB .. '" nu.,.l r • onc,ls 0) '" .. , BU'P.l
11971:,.., Dl '" """"" II",II,DO DC '" .. , "''' '" '" "'"""" ,,,.,,
o,n, '" WltlTE , 'OUTE , .uu.cE or BYTES ,1IOfI 'UOO

"'1l,AD .. " , .. '>In ClIU" rIND PlIOntt BU'PER •
"'15.15 " '" ... , ..,,,
II"', AD .. " '" 08urPOl
""A,15 0) '" ." BU.,.1 r lIue,A' " '"""' .. _In: oPCODE
IInl, '" .. , "'."
O"E' '" DOlO, IlEAD/WRITE A .,,.,, '" onu I[
onl,AII " '" "'." ... " ."""'" 0190,11 " , , IPTRI ,Y SIT 0f'C0Dl!: ([Ot91,AO .. '" CO> ' PMSIICD
"'94 ,'" " , ' PMSlaA
",",91 " '" ... , IPTtt1 • Y DO IlANGE or IYTE •
On',AO " '" ... , ' PMIlAAD
onA,'" " '" onc.91 " '" ." IPTRI.Y litAHCE ADDAK8._$lOoo
onE,el m .. ,
O"',At " m • BU'PItR
OtAlltt " m ." IPTRI.Y
OtAl,lO " .. '" '" CAt.t.PM CAt.t. nt TO DO I/O OPlItATIOI'I
O'A"'O 0) m "" DOIOH
O'AI.4C .., " '" '" £IIIIOR
0',..' 60 '" DOIOH ."
OtAC, '" M" rto
O'AC,e, a '" '", • IJlIPUT
O'Ar,D!. ". " O'U,AO .. " O"!.IAO .. " t O""AO .. " O''',AO " ..
O,g,AO AO All
lltellAO AO AO [Ote4 ,AO AO All
Ote7,"0 100 100
OKA ,e, D!. 04 311 0ItNI.I ..., .""''''' OtelhDO D!. 04
O'DO. AO AO AO
O'D). AO AO AO

AO AO
O'ot,AO AO AO
O'OC,AO AO AO
O'Dr,AO AO AO
OtE2,AO AO AO
O'U, AO AO AO

lltEl , lU 08urr " ,
O'EA. 115 nurr " ,
.00 succu.P'tII,. "..EfUlI.Y , HO IIUIORB

,.,.

•
APPENDIX B

DISK PROTECTION SCHEMES

Aa the quantity and quality of Apple II software has
increased, 80 has the incidence of illegaL duplication of
copyrighted software . To combat this , software vendors have
introduced .ethods for protecting their software . Since
.oat protection schemes involve a -adified or custom
Operating it 8eem. appropriate to discuss disk
protection in general.

Typically, a protection scheme ' s purpose is to stop
unauthorized duplication of the contents of the diskette,
although it may also or be limited to , preventing
the listing of the software (If it i8 in BASIC) . This has
been attempted in a variety of ways , all of which
nece •• itate reading and writing non-standard formata on the
di ak. If the reader is unclear about how a normal diskette
I. foraatted, he should refer to Chapter 3 for more
information .

Early protection methods were primitive in comparison to
what is being done now . Just as the methods of protection
have improved . so have the techniques people have used to
break them . The cycle seem. endles.. AS new and more
sophisticated schemes are developed, they are soon broken ,
prompting the software vendoe to try to create even more
. ophi st i ca ted systems .
It aeea. reasonable at this time to say that it is
tapossible to protect a di.k in .uch a way that it can't be
broken. Thi. i., in large part, due to the fact that the
di . kette must be -boatable-; i .e. that it mu.t contain at
leaat one sector (Track 0, Sector 0) which can be read by
the program in the PROM on the disk controller card . Thi •
•• an. that it is possible to trace the boat process by
di •••• embling the normal sector or sectors that must be on
the disk . It turns out that it is even possible to protect
theae sectors. BecaUSe of a lack of space on the PROM (256
bytes) , the software doesn ' t fully check either the Address
,ield or the Data Field. But potential protection achemes
which take advantage of this are limited and must involve
only certain changes will be discussed below .

6 -1

Most protected disks use a modified version of Apple's DOS .
This is a .uch easier task than writing one ' s own Disk
Operating System and will be the primary area covered by
this discussion .

Although there are a vast array of different protection
scheaes, they all consist of having some portion of the disk
unreadable by a normal Disk Operating System. The two
logical areas to alter are the Address Field and the Data e
Field. Each include a number of bytes which , if changed,
will cause a sector to be unreadable. We will examine how
that is done in some detail.

The Address Field normally starts with the bytes
$05/ $AA/ $96. If anyone of these bytes were changed, OOS
would not be able to locate that particular Address Field,
causing an error . While all three bytes can and have been
changed by various schemes, it is important to remember that
they Nust be chosen in such a way as to guarantee their
uniqueness. Apple's DOS does this by reserving the bytes
$05 and $AAI i.e . these bytes are not used In the storage of
data. The sequence chosen by the would-be disk protector
can not occur anywhere else on the track, other than in
another Address Field . Next comes the address information
itself (volume, track, sector, and checksum). Some common
techniques include changing the order of the information,
doubling the sector numbers, or altering the checksum with
some constant . Any of the above would cause an 1/ 0 error in
a nor.al DOS . Finally, we have the two closing bytes
($OE/ $AA), which are similar to the starting bytes , but with
a difference . Their uniqueness i8 not critical, since DOS
will read whatever two bytes follow the information field,
using them for verification, but not to locate the field
itself .

The Data Field is quite similar to the Address Pield in that
its three parts correspond almost identically, as far as
protection schemes are concerned. The Data Field starta
with $D5/ SAA/ $AD , only the third byte being different , and
all that applies to the Address Field applies here also.
Switching the third bytes between the two field. is an
exaaple of a protective .. asure. The data portion consists
of 342 bytes of data , followed by a checksum byte . Quite
often the data is written so that the checksum computation
will be non-zero , causing an error . The clOSing bytes are
identical to those of the Address Pield ($DE/ $AA) .

As .. ntioned earlier , the PROM on the disk controller skips
certain parts of both types of fields. In particular,
neither trailing byte (SDE/ $AA) is read or verified nor is
the checksu. tested , allowing these bytes to be modified
even in track 0 sector O. However, this protection is
easily defeated by .aking slight modifications to DOS ' s RWTS
routine., rendering it unreliable as a protective measure .

8·2

In the early days of disk protection, a single alteration
vas all that vas needed to stop all but a fev from copying
the disk . Now, vith more educated users and pove rful
utilities available , multiple schemes are quite commonly
used . The first .eans · of protection va s probably that of
hidden control characters imbedded in a file name . NOv it
is common to find a disk using mUltiple non-s tandard
vritten even betveen tracks.
A state of the art pro tection scheme consists of two
elements . First, the data is stored on the diskette in some
non- standard vay in o rder make copying very difficult .
Secondly, some portion o f memory is utilized that will be
sl tered upon a RESET . (For examp'e , the primary text page
or certa i n ze ro page l ocations) This is t o prevent the
sof tvare from being removed fro. .emory i n tac t .

nit RACE IS IlE1WffN
THE PIVTECTOR5

AND THE UNPOOIT.CIORS .
Recen t ly , seve ral ·n ibble · o r by t e copy prog r ams hav e become
.vailab l e . Unlike tradi t ional copy prog ra ms wh ich r equ i r e
the da t a t o be i n a pr edefi ned fo rmat, these ut i liti es make
.S fev assumpt ions as poss i ble about the da t a s tr uc t u re .
Eve r since pro t ec t ed d isks wer e fir s t int rod uced, it has
been asked , ·vhy can 't a t rack be r ead i nto memo r y and t he n
writt e n back ou t to ano the r diske tte in exact l y the same
vay? - . The p robl em lies v i th t he se lf-sync o r a uto-sync
bytes . (Fo r a full discussion see Chapter II These by t es
conta i n extr a ze r o bi t s t ha t ar e los t when re ad into
memo r y . I n memor y it t s impoSSible t o de t e rmine the

8 -3

difference between a hexadeci.al $PP that was data and a hex
$PP that wa s a self-sync byte. TWO solutions are currently
being imple.ented in nibble copy programs . One is to
analyze the data on a track with the hope that the sync gaps
can be located by deduction. This has a high probability of
success if 1) or 16 sectors are present , even if they have
been .edified, but may not be effective in dealing with
non- standard sectoring where sectors are larger than 256
bytes. In short , this method is effective but by no means
foolproof . seoond method ia simple but likewise has a
difficulty. It simply writes every hex $FF found on the
track as if it were a sync byte. This , however , will expand
the physical space needed to wr ite the track back out , since
sync bytes require 25\ more roo. . If enough hex Spp's occur
in the data, the track will overwrite itself. This can
happen in general if the drive used to wr Lte the data is
significantly slower than normal . Thus , we are back to
having to analyze the data and, in effect, make some
assumptions . It appears that, apart from using scme
hardware device to help find the sync bytes , a softwar e
program must .ake acme assumptions about how the data is
structured on the diskette.

The result of the introduction of nibble copy programs has
been to -force the hand- of the software vendors . The
initial response was to develop new protection schemes that
defeated the nibble copy progra.s . More recent protection
schemes , however, involve hardware and ti.ing dependencies
which require current nibble copy programs to rely heavily
upon the USer for direction . If the present trend
continues , it is very likely that protection schemes will
evolve to a point where automated techniques cannot be used
to defeat thee .

E

E

•
•
e
E
• -
•

E

ACCESS TIME

ADDRESS

ALGORITHM

ALPHANUMERIC

ANALOG

AND

ARM

ASCII

APPENDIX C
GLOSSARY

The time required to locate and read or
write data on a direct access storage
device , such as a diskette drive.

The numeric location of a piece of data
in memory. Usually given as a
hexadecimal number from $0000 to $FFFF
(65535 decimal). A disk address is the
location of a data sector, expressed in
terms of its track and sector numbers.

A sequence of steps which may be
performed by a program or other process,
which will produce a given result.

An alphabetic character (A-Z) or a
numeric digit (0-9). The term used to
refer to the class of all characters and
digits.

As opposed to digital. Having a value
which is continuous, such as a voltage
or electrical resistance.

The logical process of determining
whether two bits are both ones . 0 AND I
results in 0 (false) , 1 AND I results in
I (true) .

The portion of a disk drive which
suspends the read/write head over the
disk's surface. The arm can be moved
radially to allow access to different
tracks.

American Standard Code for Information
Interchange . A hexadecimal to character
conversion code assignment, such that
the 256 possible values of a single byte
may each represent a alphabetic .
numeric, special , or control character .
ASCII is used when interfacing to
peripherals, such as keyboards,
printers, or video text displays .

c-,

ASSEMBLY LANGUAGE

BACKUP

BASE

BINARY

BIT

BIT CELL

BIT SLI P MARKS

BOOT/ BOOTSTRAP

BR<

BUFFER

BUG

C-2

Also known as MACHINE LANGUAGE. The
native programming language of the
individual computer . Assembly language
is oriented t o the machine , and is no t
humanized, as is BASIC, PASCAL, or
FORTRAN . An assembler is used to

E
E

convert assembly language statements to E
an executable program.

The process of making a copy of a
program or data against the possibility
of its accidental loss o r destruction .

The number system in use . Decimal is
base 10 , since each digit represents a
power of 10 (1 , 10,100, •. .) . Hexadecimal
is base 16 (1 , 16 , 256, • ..) . Binary is
base 2 (1,2 , 4 , 8, ...).

A number system based upon powers of 2.
Only the digits 0 and 1 are used. 101
in binary, for example, is 1 units
digit , 0 twos, and 1 fours, or 5 in
dec 1mal.

A single binary digit (a 1 or a OJ . A
bit is the smallest unit of storage o r
information in a computer.

The space on a di s kette, between two
clock pulses, which can hold the value
of a single binary 0 or 1 (bi t) .

The epilogue of a disk field. Used to
double check that the disk head is st ill
in read sy nc and the secto r has not been
damaged .

The process of loading a very large
program into memory by loading
successively larger pieces, each of
which loads its succes sor . The program
loads itself by ·pulling itself up by
its bootstraps· .

BREAK. An assembly langauge instruction
which can be used to force an interrupt
and immediate suspension of execution of
a program .

An area of memory used to temporarily
hold data as it is being transferred to
or from a peripheral , such as a disk
drive.

A programming error. Faulty operation
of a program.

E
E
E
E
E
e
I:
E
E
E
E
E
E
E
E
•

--•

BYTE

CARRIAGE RETURN

CARRY FLAG

CATALOG

CHAIN

CHECKSUM/ eRe

CLOBBERED

CODe

COLDSTART

CONTIGUOUS

CONTROL BLOCK

The .aallest unit of addressable
in a "byte usually consists
of 8 bits and can contain a decimal
nuaber ranging from 0 to 255 or a single
alphanuaeric character .

A control character which instructs the
printer to end one line and begin
another. When a cacriage
return is usually followed by a lIne
feed.

A 6502 processor flag which indicates
that a previous addition resulted in a
carry. Also used a8 an ercor indicator
by .any systea programs .

A directory of the files on a diskette.
See DIRECTORY .

" linked list of data elements . Data is
chained if its ele.ents need not be
contiguous In storage and each element
can be found from its via an
address pointer .

A aethod for verifying that data has not
been d.aaged. When dsta 1s written, the
sum of s11 its constituent bytes is
stored with it . If , when the is
later read, its sum no longer matches
the checksua, it has been

Daaaged or destroyed . A clobbered
sector is one which has overwritten
such that it is unrecoverable .

Executabl e instructions to the computer,
usually in machine language.

A restart of a program which
reinitializes all of its parameters,
usually erasing any work which was in
progress at the time of the restart. A
DOS coldstart erases the BASIC program
in memory.

Physically next to. Two bytes are
contiguous if they are adjoining each
other in me.cry or on the disk.

A collection of data which is used by
the operating system to manage
resources. Exaaples of a control block
used by DOS are the file buffers .

C-3

CONTROL CHARACTER A special ASCII code which is used to
peLform a unique function on a
peripheral , but does not generate a
printable Ca rriage return,
line feed , form feed , and bell are all
control characte r s .

CONTROLLER CARD A hardware ci rcuit board which is
plugged into an APPLE connector which
allows communica tion with a peripheral
device, such as a disk or printer. A
controller card usually contains a small
driver program in ROM.

CSWL A vector in zero-page through which
outpu t data -is passed for display on the
CRT or for printing_

CYCLE The smallest unit of · time within the
central processor of the computer . Each
machine language instruction requires
two or MOre cycles to complete. One
cycle (on the APPLE) is one
o r .one millionth of a second .

DATA Units of information .

DATA SECTOR BUFFER On the APPLE , a 256 byte buffer used by
DOS to hold the image of any given
sec tor on the diskette. As information
is read from the file , data is extracted
from the data sector buffer until it is
exhausted , at which time it is refilled
with the next image.

"DATA TYPE

OCT

OEC IMAL

DEFERRED COMMANOS

C-4

The type of information stored in a
byte . A byte might contain a printable
ASCII character, binary numeric data , Ot
III machine languBge instruction.

Device Table. Used as an
input parameter table to Read/Write
Track/Sector (RWTS) to describe the
hardware characteristics of the diskette
drive.

A number system based upon powers of
10 . Digits range from 0 to 9.

DOS commands which may (or must) be
inVOked from within an executing BASIC
program . OPEN , READ , WRITE , and CLOSE

all examples of deferred commands .

f·
L

IE
Ie
t:
t:

-

DIGITAL AS opposed to analog. Discrete values as
opposed to continuous ones . Only
digital values .ay be stored in a
computer . Analog measurements fra. the
real world , such as a voltage or the
level of light outside , must be
converted into a numerical value which ,
of necessity, must be off- to a
discrete value.

DIRECT ACCESS Peripheral storage allowing rapid access
of any piece of data , regardless of its
placement on the medium. Magnetic tape
is generally not considered direct
access , since the entire tape must be
read to locate the last byte . A
diskette is direct'access, since the arm
may be rapidly .eved to any track and
sector.

DIRECTORY A catalog of all files stored on a
diskette . The directory must contain
each file's name and its location on the
disk as well as other information
regarding the type of data stored
there .

DISK INITIALIZATION The process which places track
formatting information , including
sectors and gaps, on a blank diskette.
During disk initialization, DOS also
places a VTOC and directory on the newly
forlllatted dbk , as well as saving the
HELLO progralll .

DISPLACEMENT The distance from the beginning of a
block of data · to a particular byte or
field. Displacements are usually given
beginning with 0, for the first byte , 1
for the second , etc. Also known .s an
offset.

DRIVER A program which provides an input stream
to another program or an output device.
A printer driver accepts input from a
user program in the form of lines to be
printed, and sends them to the prlnter.

DUMP An unformatted or partially formatted
listing of the contents of memory or a
diskette in hexadeclmal. Used for

.diagnostic purposes.

ENCODE To translate data from one form to
another for any of a number of re.sons.
In DOS l . l, Data is encoded froc 8 bit
bytes to 6 bit bytes for storage on a
DISK II .

C-5

ENTRr POI NT (BPA)

EOF

EP I LOCUE

EXCLUSIVE OR

FIELD

FILE

PILE BUFPERS

PILE DESCRIPTOR

PILE MANAGER

FILE TYPE

FIRHWA.RE

C-6

The ent r y po'int add r ess h the l ocation
within • progr.m where execution is to
start. This is not necessa r ily the sa.e
.s the load point (or lowest
address i n the p rogram) .

End Of Pile. This mark signal. the e nd
of a data file . $00 fo r APPLE DOS text
fi les .

The last th r ee bytes of a fie l d on a
t r ack . These un ique byte, . r e used t o
i nsu re the i nteg r i t y of t he data which
preceeds them.

E
[A logical ope r ation which compare.

bits to if they are
different . 1 EDR 0 result. in 1.
1 results in O.

1 EOR E
[A group of contiguous byte. fo rming a

8ingle piece of data , such al a person ' s
name , his age , o r his social secu r ity r
numbe r . In disk formatting , a g roup of
d.ta bytes surrounded by gaps.

f A named collection of data on
or other mass storage medium .
contain data or progr ••• .

a diskette
Piles can i

In APPLE 005 , a collection of buffers
used to manage one open file . Included
are. d.ta sector buffer , • Tr.ck / Sector
List sector buffer , a file manager
workarea buffer , the name of the file ,

[

and pointers . The DOS HAXFILES E
3 , causes 3 of these file buffers to be
allocated .

A single entry in a diskette directory e
which describes one file . Included are
the name of the file , its data type , its
length , and its location on the
diskette .

That portion of DOS which manages
file. . The file manager handle. such
general operations as OPEN , CLOSE , READ,
WRITE , POSITION , RENAME , DELETE , etc .

The type of data held by a file . Valid
OOS f ile t ypes a r e Bi nary , Applesoft ,
I nteger- BASt C , Text , Reloca t able , S , A,
and B.

A .iddle ground between hardware and
software . Usually used to de.cribe
.icro-code or pr ogram. which haye been
.tor ed in read-only memory .

E
!§

E
E
E
E

GAPS

liARD ERROR

HARDWARE

IIEAD

HEXADECIMAL/ HEX

HIGH Io\EMORY

H,,,,,,,

IMMEDIATE COMMAND

INDEX

INSTRUCTION

INTEGER

The spaces between fields of data on a
diskette . Gaps on an APPLE diskette
contain self-sync bytes.

An unrecoverable Input/ Output error.
The data stored in the disk sector can
never be successfully read again.

Physical computer equipment, as opposed
to programs which run on the equipment .
A disk drive is an example of a hardware
component .

The read / write head on a diskette
drive . A magnetic piCkup , similar in
nature to the head on a stereo tapedeck ,
which rests on the spinning surface of
the diskette .

A numeric system based on powers of 16 .
Valid hex digits range from 0 to 9 and A
to F , where A is 10, 8 is 11, • . • , and
F is IS. 830 is 11 256 ' s, 3 16 ' s , and 0
l's , or 286 4 in decimal. Two
hexadecimal digits can be used to
represent the contents of one byte.
Hexadecimal is used with computers
because it easily converts with binary .

Those memory locations which have high
address values. $FFFF is the highest
memory location . Also called the
of memory.

APPLE's zero-page address which
identifies the first byte past the
available memory which can be used to
store BASIC programs and their
var !abIes.

A DOS command which may be entered at
any time , especially when DOS is waiting
for a command from the keyboard.
Deferred commands are the opposite of
immediate commands .

A displacement into a table or block of
storage.

A single step to be performed in an
assembly language or machine language
program. Instructions perform such
operations as addition , subtraction ,
store , or load .

AS opposed to floating point . A
number with no fraction associated with
it.

c-'

INTERCEPT

INTERLEAVE

INTERRUPT

l OB

I /O ERROR

JMP

JSR

K

KSWL

LABEL

LATCH

C-8

A program which logically places itself
in the path of
progra_ , o r pair of program. . A

is used to re-direct program
output frOlll the to a printer , fo r
example.

The practice of selecting the order of
sectors on a track to minimize
access time due to r otational •
Also - skewing - or interlacing.

• A hardware signal wh ich causes the
to halt execution of a prograa

and enter a special handler routine . •
Inter r upts are t o service real-tiNe
clock time - outs, BRK instructions , and
RESET .

Input/Ou tput Block. A collection of
parameter data , passed to Read/Write
Track/Sec tor, describing the operation
t o be per formed.

Input/Outpu t Error. An error whi c h
occurs during trans.isslon of data to oc
from a peripheral device , such aa a disk
or cassette tape .

A 6502 assembly langauge instruction
which causes the computer to begin
executing instructions at a different
location in memory. Similar to a GOTO
statement in BASIC.

A 6502 assembly langauge instruction
which causes the computer to "call" a
subroutine. Similar to a GOSU8 statement
in BASIC.

A unit of measurement, usually applied
to bytes . 1 K bytes is equivalent to
1024 bytes.

A vector in zero-page through which
input data is passed from the
keyboard or a remote terminal.

A name associated with a location in a
program or In memory . Labels are used in
assembly much like statement
numbers are used in BASIC.

A component into which the Input/Ou tput
hardware can ato re a byte value , which
will hold that value until the central
processor has time to read it (or vice
versa) .

•
\ . •

LINK

LIST

LOAD POINT (LPI

LO<i ICAL

LOOP

LOW MEMORY

LOMEM

LSB/ LO ORDER

MASTER DISK

MIC ROSECOND

MON ITOR

An address pointer in an of a
linked chain of data or buffers.

A one dimensional sequential aLray of
data iteNs.

The lowest address of a loaded assembly
language -- the first byte
loaded. Not necessarily the same as the
entry point address (EPA) .

A form of arithMetic whi ch operates with
binary -truth- or -false-, lor O. AND ,
OR , NAND, NOR, and EXCLUSIVE OR are all
logical operations.

A programming construction in which a
group of instructions or statement. are
repeatedly executed .

The IllellK)ry
addrel!Jl!Jca.
location.
memory .

locations with the lowest
$0000 is the lowest memory

Also called the -bottom- of

APPLE's zero-page addres s whi ch
identifies the first byte of the
available memory which can be used to
store BASIC programs and their
variables .

Least Significant Bit or Lea s t
Significant Byte. The l ' s bit in a byte
or the s econd pair of hexadecimal digits
forming an address . In the address
$8030, $30 is the LO o rder part of the
addre.s.

A OOS diskette which will boot in an
APPLE II of any size memory and take
full advantage of it.

A .illionth of a second. Equivalent to
one cycle of the APPLE II central
processor . Alao wr itten as · Usec·.

A aachine language program which always
resides in the computer and which 1s the
firat to receive control when the
machine is powered up . The APPLE
monitor resides in ROM and allows
exaaination and modification of memory
at a byte level .

C-g

MSB/ HI ORDER

NULL

NIBBLE!NYBBLE

OBJECT CODE

OBJECT MODULE

OPFSET

OPCODE

OPERATING SYSTEM

OR

OVERHEAD

PAGE

Most Significant Bit o r Most Significant
Byte. The l28 ' s bit of a byte (the
left-.ost) or the first pair of
hexadeci.al di9its in an address. In
the byte value $8J . the MSB ia on (i & a
1) .

•

-Empty , having no length or value. A
null s tring is one which contain. no
cha racters. The null control cha racte r
($00) produces no effect on a printer
(also called an idle) .

1
I;

A portion of a byte, usually 4 bit. and
represented by a single hexadeci.al
digit. SPE contains two nibbles, SF and
'E .
A machine lang uage progra. in binary
form, ready to execu t e . Object code is
the ou tput of an assembler .

A complete machine language program in
objec t code form , stored as a file on a
diskette .

The distance from the beginning of a
block of data to a particular byte or
field . Offsets are usually given
beginning with 0 , for the first byte , 1
for the second , etc . Alao known as a
displacement.

Operation Code . The three letter
mne.anic representing a single assembly
language instruction. JMP is the opcode 1
for the jump instruction.

A machine language program which manages {
the memory and pe riphe r als
automatically , simplifying the job of
the applications programmer .

The logical operation comparing two bits
to deter.ine if either of them are 1 . I
OR I results in 1 {true} , 1 OR 0 re su lts
in I , 0 OR 0 res ults in 0 (false) .

The space required by the system, eithe r
in memory or o n the disk , to manage
either. The disk direc tory and VTOC are
part of a diskette ' s overhead.

256 bytes of memory whi ch share a common
high o rder address byte . Zero page is
the first 256 bytes of memory ($ OOOO
through $OOFF) .

1-

PARALLEL

PARAMETER LI ST

PARITY

PARSE

PATCH

PERIPHERAL

PHYSICAL RECORe

POINTER

PROLOGUE

PRO>!

Opposite of serial . A communication
mode which se nds all of the bits in a
byte at once, each over a separate line
or "'ire .

An area of storage set aside fo r
communica tion between a calling program
and a subroutine. The parameter list
contains input and ou tput variables
which "'ill be by the subroutine .

A scheme , simila r to checksums but on a
bit level rath e r than a byte level,
which allows detection of ercors in a
single data byte . An extca pacity bit
is attached to each byte which is a sum
of the bits in the byte. Pacity is used
in expensive memory to detect o r coccect
single bit failuces, and when sendi ng
data ovec communications lines to detect
noise error s.

The pcocess of interpreting charactec
string data , such as a command with
keywords.

A small change t o the object code of an
assembly language progcam. Also called
a -,:ap-.

A device which is external to the
computec itself, such as a disk drive oc
a printer. Also called an Input/Output
device .

A collection of data corresponding to
the smallest unit of storage on a
peripheral device . For disks , 0
physical record is a sector.

The address or memory location of a
block of data or a single data item.
The address ·points - to the data .

The three bytes at the beginning of a
disk field which identify it
from any other data on the track.

Pcogrammable Read Only Memory . PROMs are
usually used on controller cards
associated with peripherals to hold the
driver program which interfaces the
device to applications programs.

An output string which lets the user
know that input is expected. A ••• is
the prompt characte r for the APPLE
monitor.

PROTECTED DISK

PSEUDO-OPCODE

RANDOM ACCESS

RECAL

RECORD

REGISTER

RELEASE

RELOCATABLE

A diskette whose format or content has
been modified to prevent its being
copied . Most retail software today i.
distributed on protected disks to
prevent theft,

A special assembly language opcode which
does not translate into a machine
instruction. A pseudo-opcode instructs
the assembler to perform some function ,
such as skipping a page in an assembly
listing o r reserving data space in the
output object code .

Direct access . The capability to
rapidly access any single piece of data
on a storage medIum without having to
sequentially read all of its
predecessors.

Random Access Memory . Compute r memory
which will allow storage and r etrieval
of values by address .

Recalibrate the disk arm 50 that the
read/write head is positioned over track
zero . This is done by pulling the arm
as far as it will go to the outside of
the diskette until it hits a stop ,
producing a ·clacking- sound .

A collection of associated data items or
fields. One or more records are usually
associated with a file . Each record
might cor.r espond to an employee, for
example .

A named temporary s ,torage location in
the cent ral processor itself . The 6502
has 5 registers, the A, X, Y, 5, and p
registe r s . Registers are used by an
assembly language program to access
memory and perform arithmetic .

A version of a distributed piece of
softwa r e. There have been severa l
releases of DOS .

The attribute of an object module file
which contains a machine language
program and the information necessary to
make it run at any memory location .

1

1-
I
1-
1
1
I
1
I
I

RETURN CODE

."".
SEARCH

SECTOR

SECTOR ADDRESS

SECTOR DATA

SEEK

SELF-SYNC

SEQUENTIAL ACCESS

SERIAL

SHIFT

A numeric value r eturned fr om a ,
subroutine, indicatin9 the success or
failure of the operation attempted . A
return code of usually means there
were no errors , Any o ther velue
indicates the nature of the error , as
defined by t he desi9n of the
sub routine .

Read Only Memory. Memory which ha s a
pe rmanent value . The APPLE monitor and
BASIC interpreters are s t ored in ROM.

Read/Write Track/Sector, A collection
of sub routines whi ch allow access t o the
diskette at a track and secto r level.
RWTS is part of DOS and may be called by
external assembly lan9uage programs .

The process of scanning a t r ack for a
9iven sector.

The smallest updatable unit of data on a
disk track. One sector on an APPLE DISK
II contains 256 data bytes.

A disk field which identifies the sector
data field which follows in terms of its
volume , track, and sector number,

A disk field which contains the actual
sector data in form .

The process of moving the disk arm to a
given track .

Also called · auto-sync· bytes. Special
disk bytes which contain more than 8
bits , allowin9 synchronization of the
hardware to byte boundaries when
reading .

A mode of data retreival where each byte
of data is read in the order in which it
was written to the disk,

A8 opposed to parallel . A communication
mode which sends data bits one at a time
over a 8in9le line or wire.

A logical operation which moves the bits
of a byte either left or ri9ht one
position , moving a 0 into the bit at the
other end .

SLAVE DISK

SOFT ERROR

SOFTWARE

SOURCE CODE

SKEWING

STATE MACHINE

STROBE

SUBROUTINE

TABLE

TCX>GLE

A diskette with a copy of OOS which is
not relocatable . The OOS image will
always be loaded into the same memory
location , regadless of the size of the
machine .

A recoverable I / O error. A worn diskette
might produce soft errors occasionally.

Computer programs and data which can be
loaded into RAM memory and executed .

A program in a form which is
understandable to humans; in character
form as opposed to internal binary
machine format. Source assembly code
must be processed by an assembler to
translate it into machine or · object"
code .

The process of interleaving sectors.
See INTERLEAVE .

A process (in software or hardware)
which defines a unique target state ,
given an input state and certain
conditions. A state machine approach is
used in DOS to keep track of its video
intercepts and by the hardware on the
disk controller card to process disk
data.

The act of triggering an I / O function by
momentarily referencing a special I / O
address . Strobing SC030 produces a
click on the speaker. Also called
-toggling· .

A program whose function is required
repeatedly during execution , and
therefore i s called by a main program in
several places .

A collection of data entries, having
similar format, residing in memory .
Each entry might contain the name of a
program and its address, for example . A
"lookup· can be performed on such a
table to locate any given program by
name .

The act of triggering an I / O function by
momentarily referencing a special I / O
address. Toggling SCOlO produces a
click on the speaker. Also called
"strobe-.

1

I:
1 :
I:

I:.

Ii!

E
E
E
E
E
r,

I •
I
I
I
I
I • I • I •
I
I
I · I

TOKENS

TRACK

TRANSLATE TABLE

T I S LIST

TTL

UTILITY

VECTOR

VOLUME

VTOC

WARMSTART

WRITE PROTECTED

A method whe r e human recoqni zable words
IfIay be coded to single binary byte
values for memory comp r ession lind faste r
processing . BASIC statements are
tokenized , where hex codes are assigned
to words like IF , PRINT , and END .

One complete circular path of magnetic
storage on II diskette . There are 35
concentric tracks on an APPLE diskette .

A table of single byte codes which are
to replace codes on II one-for-one
basis . A translate table is used to
convert from 6 bit codes to disk codes .

Track/Sector List . A sector which
describes the location of II file by
listing the track and sector number for
each of its data sectors in the order
that they are to be read or written.

Transistor to Transistor Logic . A
standard for the interconnection of
integrated circuits which also defines
the voltages which represent O' s and
l ' s.

A program which is used to maintain , or
assist in the development of, other
programs or disk files .

A collection of pointers or JMP
instructions at a fixed location in
memory which allow access to a
relocatable program or data.

An identification for a diskette, disk
platter , or cassette , containing one or
!Dore files.

volume Table Of Contents. 8ased upon the
IBM OS/VS VTOC . On the APPLE , a sector
mapping the free sectors on the diskette
and giving the location of the
directory.

A restart of a program which retains, as
much as is possible, the work which was
in progress at the time . A DOS
warms tart retains the BASIC program in
memory .

A diskette whose write protect notch is
covered, preventing the disk drive from
writing on it.

C- 15

ZAP

ZERO PAGE

C-16

F[om the IBM utility program, SUPERZAP .
A program which -allows updates to a disk
at a byte level. usi ng hexadecimal.

The first 256 bytes of memory in 8 6502
based machine . Zero page locations have
special significance to the central
processor , making their management and
assignment critical .

e
E

E
E

"

-" " · • ,
• •

· INDEX

.r. \.n r.ppl • .oft 5- 5

A type fill 1- 2 . 4-6 , 4-12 . 6- 12
Addr ••• Pield 3- 7 .) - 10 to 3 - 1 4 .) - 17, 1-16 . 1-)1 , 1 - 40 . B- 1. a -z
.Uoeatl leetor/tr.tek 4-1 to 4-4 . +-10 . 4-11 , 1- 25. 1- 29 to I - U
APPEND 2- 1 . 1- 4 , 1- 10. 1 - 19, 1 - 1 4
Appa_n entry point .. ector 1- 5

fill 4-6. 4-1, 4-12, 4-1' , 6 - 10
luto.ync byt •• - ._ •• byt ••
• ROM 2- 1 . 2-2. 5-5

• type file 2- 2 , 4-6 . 4-1 2. 6- 10 . A- 2
8A3tC oold,tlrt ' - 4 . 1 - 5

co..andl I - II. 1- 19
entry point:tor- table 1-4
enol' handlel 1- 4
reloe e 1- 4
ou.r..ta.rt 1 -5

.IMARY- fill 4-6 , +-7 , 4- 10 . +-12 , +-1). 6- 10
bi t cell) -),) - 7, C-2

+-12 • • - <t , I - II . 1-19. 1- 20
boot , lo.dinq 2-),)-22, +-2. 5-1. 5-4 to 5- 7, 7-2 .

I - I to I -l , 1-] 4 , &-1, C- 2
boot,trap loader Z-l. 5- 4

+-12, 1 - 4 , 1 - 19
&SAVE 2- 3 . +-2 . +-12 . 1- 4 . I - II . 1 - 19 . 1-14

e ltalog)-2. +-2 , +-4 to +-7 ,' +-10 , +-17, +-11 , 6- 7 , 6- 15.
1-22 . 1 - 26 . 1 - 10. C-3

TALOG 5- Z. 5- ' . 5 - 11 . 6- 13 . ' - 3. ' - 4 . ' - 1 4 , ' - Z5, ' - 3Z
CHAIN ' - 4 , ' - 13 , ' - 19

3- 1Z to 3- 1 4 , 3- 1', 4-1' . ' -Z, ' - 35, ' - 36, ' - 4 Z,
8-Z, C-3

c 10btMlted duket.t... 1 - 1 , 4-16 t.o 4-11
clock bite 3- 3 , 3- 4 , 3- ' , 3- '
CLOSE 5-Z , 6- ' , 6- 10, ' - 4 , , - 11, '-19, ' - Z3
olo.e fLie. 6- ', 6 - 10 , 1 - 10 t o 1 - 1Z
oo1d.tart 5- 5 , 5- ' , ' - 3, ' - 4 , ' - 5, ' - 1 4 , ' - ZO, C-3
c-nd hendlet table . - ,
oontrollet ' - 1 , C-]
COPY Z- Z, Z- 3, 4-11
CP/M) - 22
CSWL 1-6, 1 - ', ' - 1] , I-IS , ' - 1. , ' - ZO , 1-42 , C-4

' - 5, ' - 4Z

I- I

d..aqed +-1' to +-11
data] - 3 , 3- 1
data byt:11]-7, 3- 14 ,0-15 . 3- U. 6-4
Data Pi.ld 3- 1. 3-10 to] - 13.] - 17 . 1- 41. 8- 1 . 8-2
Data Pie14 encodirMJ) - u #

data latch 3- 4 . 3- 1 .) - 1 , 6- 2 , 6-3 . C-.
OCT - ... oeviee Characterilticl Table

CC»'Iv.rt nxltine . - ,
decodl) - L7
DELETE co..and +-11, 5- 2 . 6 - 1, ' - 11 . ' - 4 , 1 - 19 . 1- 15
dlllt.cll Ull +-6
dlecdptivl InttY +-6 , +-' . +-17. +-11
oevice Tabll '-35, 1- 37 . 1- 31, ' - 4 2. C- 4
di.k) - 2 . +-2, 5-7. I - I . 1 -)' to ' - 3' , C- l, C- 12
di.k phasel) - 2. 6- 2 . 6-), 6-5, 1-)5
dilk byte. 3- 1) to 3- 1' .) - 20
di.k protection - ... protected dilk.
DOS 3 . 2 . 1 and larlilr 1- 2. 2- 1 to 2-) . 3-2 ,) - 1 . 3- 14 .) - 22 .
DOS) . J 1-2, 2- 1 to 2-) . 1-2 .) - 14 .) - 20 .) - 22 , 1 - 2 , A- 2
DOS toolkit - I .. t oolllit
DOS pu-II routi... ' - 1

lxi-t routine 1- 7
rl.-to rl rlgiltlr routine , - 1

DUMP - ... utility prGgr ...

Incodl 1-)1. C- 5
Incode d.ta 3-1)
encodirMj technique 3-1) to)-15, 3-20
epilogue 3- 7 .)-12 ,) - 13 . C- 2 . C-'
erro r 91 tlxt table ' - 20
ERROR. DISK PULL +-11 . 6- 1 . 1 - 30 t o 1-3 2 , 1- 41

END or 1- 15 . I - I' , 1- 24 , 1-) 2
PILE LOCItr::O 1 -)2
PtLE POUND ' - 22 . ' -3 2
PILE TYPE MISMATCH 1- 12 . ' - 17
LANGUAGE NOT 1- 14 . ' - 22 . ' -)2
PIIOGMoM '!'OO LAJIGl: ' - 12, 1- 13

I - I , ' -)2
SYNTAX I - I . 1 - 11 . 1 - 16
WlUft P.aftC'n!D l - lZ EXEC co..&nd 1- 4 t o 1- 6 , I - II. ' - 11. ' -1'

PtD 2-). +-11, 6-1
file bu((lr 5-2. 5-7. 6 - ' . 6- 1), 6- 14 , 1-), 1- 5 . I- t . 1- 10.

1- 15 t o 1- 11. 1- 20 . 1- 26, 1-) 2 , C-2
tile .. nagar 5 - 2 , 5- 5 , 5-1. ' - 7 , 6- 1 t o 6- 11. 6- 1) , 6- 15 , 6- 11,

' - 10 . 1 - 12, 1- 14 to 1- 16 , ' - 26 . ' - 30 t o I - J2, A- 2 , C-6
(11e workarea ' - I , 6 - 1U to 6- 13 , 6- 15. 1- 11 . ' - 22 ,

1 - 25 t o ' - 2' . ' - 31 . 1 -)) , ' - 41
PORMAT 6- 5. 6- 7 , 1 - 19 , ' -)5
PP co...nd 1- 4 , I - I'
tree .-ctorl 2-), +-3 . 4- 4 , 4- 1' , ' -)0

1-2

."

I .
I
o

I
o

I
o

I
o

I
o

I
o

I
I
I

hardYar. addr..... 6- 1
N IlIl4ec1.aal convlrt routiMt 1- 9
"lHEM 5- 1 . 5- 2 . 5-5 . 5-7 . 7-]. 1- 12 . 8- 1] . 1- 17 . 1- 42

I/O .lock - ... 108
1/ 0 ERROR 4-16 , +-17 , 6- 1 , A- 16
tNI co.aand 1-) , 1- 4 , 1- 9 , 1-19
I"IT 5-2. 6- 8. 6-12 . 1- 4 , 1- 14 , 1- 19 , 1- 21 . 1- 26 . I - J2 ,

8-)4 . '-40
INIT.] - 1 ,]- 10 , J - 12 , 4-2 , 5-1, 5-5, 5 -7, 7- 1,

7-], '-40
INPUT .t.t ... nt hlndler 1- 6
tNT coe.&nd 1- 4 , 1- 14
lntlg.r fi1. +-6 , 4-12 , +-15 , 6- 10
101 6- 4 to 6- 6 . 8-)8. 1-4 2 . C-J , C-I

klyboaId int.re.pt handl.r I - J . 1-5
klyword flag bit 1-19
klyword 8- 1
kSWL 1- 6 , 1- 7 , 1- 20 , 1- 42, C-I

1&"9",a91 card 2-). 7- 2 . 7-). 8- 41 LOAD _
2- 2 • 12 . I - J . 1- " . 1- 12 , - 5-2, 6 - 1 , 6 - 11 , 1-4 , I - la ,

"""" 1- 12 , I - ll , 1- 42. c-,
MA$ftR CREATE 2- 2 , +-17 , 7- 1, 7- 2

1- 19 , 1- 20
1-19, 1- 2 4 ,

... t.r dl.k.tt.
MAXP'1t.ES

2- J , 5- 6 , 5-7, 7- 1 , I - I , C-9
5- 2 , 5- 5, 6- 1) , 1- 4 , 1-5, I - I , 1- 9 ,

1- 17 to 1-21. C-6
MOM eo...nd 2- 1 , 1- 4 , 1-7 t o 1- 9 . 1-19, 1- 20 , 1- 21
.otor oR/off 6-2, 6 -] , 6-5, I - ll . 8-)9
MIJ1'P I M 2 -]

nlhbiU., 2-]. 5-7, 1-2 , 1-36 . A- ·4 . C-ll
nlhb l. copy prograae 1- 4
NOMOM 2- 1 , 1- 4 t o 1-6 , 8-9 . 8-19

OMr:RR I-ll

I - J2

OPEN 2-1, 2-2, 5-2 . 6-1 , 6 - 10 to 6 - 12 . 1- 4 , I - la ,
1- 19 , 1- 22 , 1-])

oPln [iI' 5- 2, 6 - 7 , 6 - 1 , 6 - 10 6 - 13 , 6-15. 1-10 . I - II . 1- 14 .
1-2 , 1-41

output handler 1-6 . 1-7
ov.rhead 4-1, 4-2

... tlr li.t, [iI' 6-7 to 6 - 10 , 6- 12 , 1-],
1- ' to 1-15 , 1-26 to 1-)5 , A-5, A-20, C-ll

- ... par ... t,r 1i.t , [111 .. nager
par.. 1- 7 . C- l1
'He. l 7-2
ph&..a. - .M di.k &.ra ph
fOal TIOM 2- 1 . 5- 2. 6-1, 6- 10 , 6- 12, 1- 4 , 1- 14 , I - IS ,

1- 19 . 1- 25
Bitt eo...nd I - J . 1- 4 , 1- 9 . 1-19
prlnibbill.,) - 15 ,] - 20. I - J5 , I - ll , A- I , A- 4
prologue J-7. J - 12 . J - l) , C-l1
protected dilk A- 4 , 1-2 t o 1- 4. C-12
protect ion leh ... - ... protected dl.kl

1-3

It type file - ... RELOCATABLE fUe
ran&o. fl1. 4-10
RDADR. r.ad addr ••• fia14 1-36
READ eo..and 2-1, 5-2, 6-5 . 6-6 . 6-1. 6 -10, 6-11, 6- 12, 1 - 4 ,

1-14. 1-19 . 1-23
1 - 6. 1 - 14
fl1.. 2- 2, 4-6 . 4-12 . 6- 10

RENAME co.aand 5- 2, 6-1. 6-11, 1-4 , 1-10, 1-19 . 1-23
rapairlng diskatta. 4-16 to +-11
ra.erved byta. 3-12, 3-15. 3-21
RESET 4-16 , 4-11. 5-5. 1-5. B-3
raturn coda 6-5 to 6-1, 6-10 to 6-12
RUN 1-4 . a-6 . 1-1 , 1-13. 1-19 . 1-21
RWTS 2-2. 2-3, 3-15, 3-22, 4-11. 5- 2, 5 - 3, 5- 5, 5- 1, 6- 3. 6- 4 ,

6- 6. 6- 1', 1-2, 1- 26 to 1- 21, 1 - 3 4 , 1 - 35, 1-31, 1- 4 2.
A- l . A-5. 8- 2. C-13

S type filla 2- 2, +-6 , +-12, 6- 10
SAVE co..and 2-3, +-12, 1 - 4 . 1 - 12, 1-19 , 1-34
aector intlrllaving 3- 22, 3- 23, 1 - 3 , 1- 39, C-I
SE2X 6- 3, 6- 5, 6- 6
.alf- .ync:: bytll 3- 4,] -7, 3-1. 3-10, 3- 11 . 1- 37 , 8- 40 , C-ll
.equantial file +-10. 4-11
Ikevin9 -ector interleavin9
.lave dilkettl 5-6, 5- 7, 1 - 1, 7- 3
Ilot nu.b8r 6-2, 6-5 to 6-1, 6- 10 to 6- 12 . 6-15, I-I . 1-], 1- 4 ,

1 - 21 . 1-33, 1 - 35 t o I -l i
IIO ['! errorl 4-16
l o ft a.ctoring 3-2
Itepper .otor 3-2, 6-2 . 1- 37

T/ L li.t - ... track/lector lilt
TEXT flle 2-1, 4-6 , 4-7, 4-10 , 4-11 , 4-1" 6- 10, A-2
toolkit . DOS 2- 2 , 4-12 . A- 2
track/lector lilt-" 4-1 to 4-10, 4-17 . 4-11 , 6- 1, 6- 10 t o 6- U ,

6- 15 , 1-17, 1-22, 1 - 23, 1 - 25 , 1- 21 to 1-29 . 1-32, 1- 33,
A- 2 , A- 16 . C-6, C- 15

tran81ate tabla 1-37, C-15

UH10CK 5-2, '-1 , 6- 11, 8- 4 , 8 - 10 , I - I', ' -2 4 , 1-32
utility progr.... A-l t o A-26

COPY, convart filII A-2. A-20 to A- 26
DUMP. track du.p facility A-l , A- 4 t o A-7
PTS . find T/ S list A- 2 , A-16 t o A- 20
INIT, rl[o r.at lin911 track A-2, A- 12 to A- 15
ZAP, disk updata utility A-l , A-8 to A- ll

vecto rl, DOS 5-2, 5-4 , 5-5, 6- 17
VERIPT co.aand 2-3 , 4-17 , 5-2, 6-1, 6- 1 , 1-4, 1-12, 1-19, 1-25,

1-]4
video inter08pt handler 1-3, 1-5
video inter08pt I tate 1-6, I-I
VTOC, y o lu.. tabla o [contants 2-3, 3-2, 4-2 to 4-5 , 4-11 , 5-5,

6-1, 1-23, 1-25, 1-26, 1-21 , 1-]0 t o 8-33 . C-15

5-5. 1-5, I-I, I-IS, 1-20, C-15
WRJTE oo..and 2-1, 5-2, '-5. ,." ' · 1 , '-10 t o 6-12. 1- 4 , 1-1,

1-13. 1-14 , 1-19, 1-23

ZAP 4-17 , 4- 11 . 1-42. A- l , A-16, C-16
rlro page, DOS uaagl 1-42

1-4

1-
1

1

	Beneath Apple DOS 01b
	Beneath Apple DOS 02a
	Beneath Apple DOS 02b
	Beneath Apple DOS 03a
	Beneath Apple DOS 03b
	Beneath Apple DOS 04a
	Beneath Apple DOS 04b
	Beneath Apple DOS 05a
	Beneath Apple DOS 05b
	Beneath Apple DOS 06a
	Beneath Apple DOS 06b
	Beneath Apple DOS 07a
	Beneath Apple DOS 07b
	Beneath Apple DOS 08a
	Beneath Apple DOS 08b
	Beneath Apple DOS 09a
	Beneath Apple DOS 09b
	Beneath Apple DOS 10c
	Beneath Apple DOS 10d
	Beneath Apple DOS 11c
	Beneath Apple DOS 11d
	Beneath Apple DOS 12c
	Beneath Apple DOS 12d
	Beneath Apple DOS 13c
	Beneath Apple DOS 13d
	Beneath Apple DOS 14c
	Beneath Apple DOS 14d
	Beneath Apple DOS 15c
	Beneath Apple DOS 15d
	Beneath Apple DOS 16c
	Beneath Apple DOS 16d
	Beneath Apple DOS 17c
	Beneath Apple DOS 17d
	Beneath Apple DOS 18c
	Beneath Apple DOS 18d
	Beneath Apple DOS 19c
	Beneath Apple DOS 19d
	Beneath Apple DOS 20c
	Beneath Apple DOS 20d
	Beneath Apple DOS 21c
	Beneath Apple DOS 21d
	Beneath Apple DOS 22c
	Beneath Apple DOS 22d
	Beneath Apple DOS 23c
	Beneath Apple DOS 23d
	Beneath Apple DOS 24c
	Beneath Apple DOS 24d
	Beneath Apple DOS 25c
	Beneath Apple DOS 25d
	Beneath Apple DOS 26c
	Beneath Apple DOS 26d
	Beneath Apple DOS 27c
	Beneath Apple DOS 27d
	Beneath Apple DOS 28c
	Beneath Apple DOS 28d
	Beneath Apple DOS 29c
	Beneath Apple DOS 29d
	Beneath Apple DOS 30c
	Beneath Apple DOS 30d
	Beneath Apple DOS 31c
	Beneath Apple DOS 31d
	Beneath Apple DOS 32c
	Beneath Apple DOS 32d
	Beneath Apple DOS 33c
	Beneath Apple DOS 33d
	Beneath Apple DOS 34c
	Beneath Apple DOS 34d
	Beneath Apple DOS 35c
	Beneath Apple DOS 35d
	Beneath Apple DOS 36c
	Beneath Apple DOS 36d
	Beneath Apple DOS 37c
	Beneath Apple DOS 37d
	Beneath Apple DOS 38c
	Beneath Apple DOS 38d
	Beneath Apple DOS 39c
	Beneath Apple DOS 39d
	Beneath Apple DOS 40c
	Beneath Apple DOS 40d
	Beneath Apple DOS 41c
	Beneath Apple DOS 41d
	Beneath Apple DOS 42c
	Beneath Apple DOS 42d
	Beneath Apple DOS 43c
	Beneath Apple DOS 43d
	Beneath Apple DOS 44c
	Beneath Apple DOS 44d
	Beneath Apple DOS 45c
	Beneath Apple DOS 45d
	Beneath Apple DOS 46c
	Beneath Apple DOS 46d
	Beneath Apple DOS 47c
	Beneath Apple DOS 47d
	Beneath Apple DOS 48c
	Beneath Apple DOS 48d
	Beneath Apple DOS 49c
	Beneath Apple DOS 49d
	Beneath Apple DOS 50c
	Beneath Apple DOS 50d
	Beneath Apple DOS 51c
	Beneath Apple DOS 51d
	Beneath Apple DOS 52c
	Beneath Apple DOS 52d
	Beneath Apple DOS 53c
	Beneath Apple DOS 53d
	Beneath Apple DOS 54c
	Beneath Apple DOS 54d
	Beneath Apple DOS 55c
	Beneath Apple DOS 55d
	Beneath Apple DOS 56c
	Beneath Apple DOS 56d
	Beneath Apple DOS 57c
	Beneath Apple DOS 57d
	Beneath Apple DOS 58c
	Beneath Apple DOS 58d
	Beneath Apple DOS 59c
	Beneath Apple DOS 59d
	Beneath Apple DOS 60c
	Beneath Apple DOS 60d
	Beneath Apple DOS 61c
	Beneath Apple DOS 61d
	Beneath Apple DOS 62c
	Beneath Apple DOS 62d
	Beneath Apple DOS 63c
	Beneath Apple DOS 63d
	Beneath Apple DOS 64c
	Beneath Apple DOS 64d
	Beneath Apple DOS 65c
	Beneath Apple DOS 65d
	Beneath Apple DOS 66c
	Beneath Apple DOS 66d
	Beneath Apple DOS 67c
	Beneath Apple DOS 67d
	Beneath Apple DOS 68c
	Beneath Apple DOS 68d
	Beneath Apple DOS 69c
	Beneath Apple DOS 69d
	Beneath Apple DOS 70c
	Beneath Apple DOS 70d
	Beneath Apple DOS 71c
	Beneath Apple DOS 71d
	Beneath Apple DOS 72c
	Beneath Apple DOS 72d
	Beneath Apple DOS 73c
	Beneath Apple DOS 73d
	Beneath Apple DOS 74c
	Beneath Apple DOS 74d
	Beneath Apple DOS 75c
	Beneath Apple DOS 75d
	Beneath Apple DOS 76c
	Beneath Apple DOS 76d
	Beneath Apple DOS 77c
	Beneath Apple DOS 77d
	Beneath Apple DOS 78c
	Beneath Apple DOS 78d
	Beneath Apple DOS 79c
	Beneath Apple DOS 79d
	Beneath Apple DOS 80c
	Beneath Apple DOS 80d
	Beneath Apple DOS 81c
	Beneath Apple DOS 81d
	Beneath Apple DOS 82c
	Beneath Apple DOS 82d
	Beneath Apple DOS 83c
	Beneath Apple DOS 83d
	Beneath Apple DOS 84c
	Beneath Apple DOS 84d
	Beneath Apple DOS 85c
	Beneath Apple DOS 85d
	Beneath Apple DOS 86c
	Beneath Apple DOS 86d
	Beneath Apple DOS 87c
	Beneath Apple DOS 87d
	Beneath Apple DOS 88c
	Beneath Apple DOS 88d
	Beneath Apple DOS 89c
	Beneath Apple DOS 89d
	Beneath Apple DOS 90c
	Beneath Apple DOS 90d
	Beneath Apple DOS 91c
	Beneath Apple DOS 91d
	Beneath Apple DOS 92c
	Beneath Apple DOS 92d
	Beneath Apple DOS 93c
	Beneath Apple DOS 93d
	Beneath Apple DOS 94c
	Beneath Apple DOS 94d
	Beneath Apple DOS 95c
	Beneath Apple DOS 95d

